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ABSTRACT

Typical engineering design tasks require the effort to modify
designs iteratively until they meet certain constraints, i.e., perfor-
mance or attribute requirements. Past work has proposed ways
to solve the inverse design problem, where desired designs are
directly generated from specified requirements, thus avoid the
trial and error process. Among those approaches, the condi-
tional deep generative model shows great potential since 1) it
works for complex high-dimensional designs and 2) it can gen-
erate multiple alternative designs given any condition. In this
work, we propose a conditional deep generative model, Range-
GAN, to achieve automatic design synthesis subject to range con-
straints. The proposed model addresses the sparse condition-
ing issue in data-driven inverse design problems by introducing
a label-aware self-augmentation approach. We also propose a
new uniformity loss to ensure generated designs evenly cover the
given requirement range. Through a real-world example of con-
strained 3D shape generation, we show that the label-aware self-
augmentation leads to an average improvement of 14% on the
constraint satisfaction for generated 3D shapes, and the unifor-
mity loss leads to a 125% average increase on the uniformity of
generated shapes’ attributes. This work laid the foundation for
data-driven inverse design problems where we consider range
constraints and there are sparse regions in the condition space.

1 INTRODUCTION

A typical design process involves tedious trial and error
procedures, wherein a designer modifies design configurations
based on functional, geometric, or aesthetics requirements. From
the structural or materials design in engineering applications to
the shape design of everyday objects, this design process usually
takes considerable time and effort. To reduce human effort, one
can automate the trial and error process by using optimization
techniques, but the computational time scales up with the prob-
lem dimension [1]. Besides, instead of isolating a final optimal
solution, one may be interested in discovering multiple alterna-
tives. Recent advances in deep generative models allow people
to train a data-driven model that can propose new design alter-
natives [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. A generative model learns
the distribution of past exemplars so that one can draw new sam-
ples from that distribution. In most scenarios, rather than draw-
ing random samples, we also want these new designs to have
certain desired properties, such as particular attributes or perfor-
mance requirements. While one can still use an optimization
process to select desired candidates [3,7,11], this method has the
same issues as mentioned earlier. Instead, a conditional genera-
tive model can be trained to learn a conditional distribution (i.e.,
distribution of designs conditioned on any property), so that new
design candidates will be generated with given user-specified
properties [12, 13, 14, 15]. In this paper, we adopt this method
and further address the problem of conditioning on range con-
straints — i.e., given upper and lower bounds on any property,
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how can we generate designs for which this property falls within
the specified bounds. This is different from previous work, where
conditions are set as exact values. The consideration of range
constraints is more practical since, in many cases, some toler-
ance is allowed for certain properties.

1. How to enforce range constraints (with arbitrary
lower/upper bounds) on generated samples?

2. How to ensure accurate conditioning when data with some
conditions are sparse or unavailable?

3. How to allow the conditions of generated samples to uni-
formly fall within the range constraints?

To address the above challenges, we propose a deep gener-
ative model called the range-constrained generative adversarial
network (Range-GAN). We then demonstrate the effectiveness of
our proposed model on a 3D shape design example. Our primary
contributions are as follows:

1. A new range loss function which allows for effective range
conditioning in continuous spaces, with over 80% constraint
satisfaction.

2. We introduce a novel loss term to encourage uniform cov-
erage of the condition (label1) space inside the acceptable
constraint range, and show that this loss leads to a 125%
average increase on the uniformity of generated samples’ la-
bels.

3. We propose label-aware self-augmentation, which allows for
augmenting the data such that the sparsely populated regions
of the condition (label) space are populated. We show that
this augmentation improves the real-world performance of
Range-GAN notably (by up to 18%), which proves the ef-
fectiveness of the augmentation in improving Range-GAN.

4. We apply Range-GAN in a 3D shape generation process to
demonstrate the ease with which Range-GAN can be effec-
tively applied to any GAN approach.

2 BACKGROUND AND RELATED WORK
Our work addresses an inverse design problem, where a de-

signer inputs some requirements and expects an algorithm/model
to generate desired designs. In this section, we first introduce the
techniques used in the inverse design problem, especially the use
of data-driven methods. Then, we provide a brief description
of conditional generative adversarial networks, upon which our
proposed model is based.

2.1 Inverse Design Problem
Inverse design problems have been studied in various en-

gineering design domains such as airfoil shape design, mech-

1In this paper, the word label refers to the actual value of a design’s perfor-
mance or attribute.

anism design, and metamaterial design. A typical inverse de-
sign problem can be solved by optimization, where we optimize
design parameters such that the design’s performance satisfies
certain objectives or constraints. Unfortunately, gradient-based
optimization (e.g., topology optimization or adjoint-based shape
optimization) is restricted to limited design representations and
solver types. On the other hand, in gradient-free optimization
(e.g., genetic algorithm or Bayesian optimization), as the prob-
lem dimension (i.e., the number of design parameters) increases,
the computational cost quickly becomes prohibitive due to the
curse of dimensionality [1]. Alternatively, one can use a neural
network as a surrogate for any physics simulation, so that stan-
dard back propagation can be used to get analytical gradients for
gradient-based optimization [16]. This approach applies to any
black-box physics solvers and does not have the computational
cost problem seen in gradient-free optimization methods.

While many traditional techniques on the inverse design
problem focus on the use of optimization, research has been done
to completely remove such time-consuming iterative optimiza-
tion processes to significantly reduce the computational cost. Re-
inforcement learning (RL) offers one way to achieve this goal.
For example, Vermeer [17] used temporal difference (TD) learn-
ing to synthesize mechanism designs with desired output trajec-
tories. Lee et al. [18] used a DQN to design a microfluidic device
which led to a target flow shape. While RL works well for dis-
crete and low-dimensional design spaces, it does not effectively
scale to more complex scenarios [19].

The aforementioned approaches only allow for bijective
mappings between the target and design parameters, which might
be impractical for many problems. For example, a specific lift or
drag coefficient may correspond to multiple feasible design so-
lutions. This becomes more obvious when we only require that
the target performance falls within a range rather than at an ex-
act point. Recent advances in deep generative models, generative
adversarial networks (GANs) [20], and variational autoencoders
(VAEs) [21] in particular, provide ways to solve this problem.
Deep generative models can learn a distribution of designs so that
one can quickly sample plausible designs without any optimiza-
tion process. The learned distribution can be further conditioned
on target performance by using models like conditional GANs
(cGANs) [22] or conditional VAEs (CVAEs) [23]. This allows
us to generate many designs conditioned on any performance re-
quirement; i.e., the mapping from the performance space to the
design space can be one-to-many. This technique has been used
for the inverse design of metasurfaces, metamaterials, and cel-
lular structures [12, 13, 24]. As pointed out in [25], however,
conditional generative models with continuous conditions may
fail. Unlike finite discrete conditions, design data under certain
continuous performance conditions can be sparse or even non-
existing, leading to inaccurate conditioning under those condi-
tions and subsequent failure of the model. Past work [14, 15]
proposes to discretize the continuous values of the metrics. This
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approach, however, eliminates the possibility of setting arbitrary
conditions.

In this paper, we address the above issue in continuous con-
ditional generative models. Moreover, we consider a more gen-
eral problem, where, instead of using exact performance metrics
as conditions, we generate designs with performances within any
user-defined range. We achieve this goal by modifying the cGAN
model, which we introduce in the next section.

2.2 Conditional Generative Adversarial Networks
A generative adversarial network [20] consists of two mod-

els — a generator and a discriminator. The generator G maps
an arbitrary noise distribution to the data distribution, in our case
the distribution of designs, and can thus generate new data; si-
multaneously, the discriminator D tries to perform classification
(i.e., attempts to distinguish between real and generated data).
Both models are usually built with deep neural networks. As D
improves its classification ability, G also improves its ability to
generate data that fools D. Thus, a vanilla GAN (standard GAN
with no bells and whistles) has the following objective function:

min
G

max
D

V (D,G)=Ex∼Pdata [logD(x)]+Ez∼Pz [log(1−D(G(z)))],
(1)

where x is sampled from the data distribution Pdata, z is sampled
from the noise distribution Pz, and G(z) is the generator distribu-
tion. A trained generator can thus map from a predefined noise
distribution to the distribution of designs.

The conditional GAN, or cGAN [22], further extends GANs
to allow the generator to learn a conditional distribution. This
is done by feeding the condition, y, to both D and G. The loss
function then becomes:

min
G

max
D

VcGAN(D,G) =Ex∼Pdata [logD(x|y)]+

Ez∼Pz [log(1−D(G(z|y)))].
(2)

Therefore, given any conditions, cGAN can generate a set
of designs that satisfy the given conditions, by feeding a set of
random noise. In this paper, we use range constraints as con-
ditions — i.e., the performance/attribute of generated designs
needs to fall within some lower and upper bounds. This is a
more practical consideration because a certain level of tolerance
on the performance/attribute is allowed in many cases.

As mentioned in the previous section, conditional GAN
may fail when the conditions are continuous due to data spar-
sity at certain conditions. To address this issue, past work ei-
ther discretizes continuous conditions [14,15] or proposes a new
sampling scheme to mitigate the problem [25]. However, nei-
ther method works well with large sparse regions in the condi-
tion space. In this paper, we address this problem by using a
label-aware self-augmentation method, which we elaborate on in
Sect. 3.5.

2.3 3D Shape Synthesis via Deep Generative Models

In this paper, we validate our proposed model on a 3D shape
synthesis task. The goal of this task, in general, is to generate
useful new 3D shapes while avoiding manual efforts/expertise to
construct and modify detailed geometries. Deep generative mod-
els, like GANs or VAEs, are excellent candidates for this task due
to their ability to learn complex data distributions and generate
realistic samples. The model architecture, cost, and performance
are highly dependent on data representation. Volumetric repre-
sentations, like voxel grids and point clouds, are straight-forward
to learn but require large models and hence have wasteful com-
putational or memory cost [26, 27, 28, 29, 6, 8]. View-based ap-
proaches generate multi-view depth maps, normal maps, or sil-
houettes, which reduce the computational/memory cost, but can-
not produce shapes with self-occlusion [30]. Surface patch rep-
resentation uses one or more images to represent the 3D object’s
surface. This allows self-occlusion but requires complex data
preprocessing and shape correspondence [31]. To further reduce
computation/memory requirement, 3D objects are represented as
implicit fields (e.g., signed distance fields) and neural networks
are trained to approximate those functions, simply mapping 3D
coordinates to scalars [32, 33, 34]. This produces simple neural
network architectures and generates shapes with no resolution
limit, since each shape is represented as a continuous implicit
field.

Our model for 3D shape synthesis is built on IM-NET [33],
which is one of the implicit field-based methods. The IM-NET
consists of two parts: representation learning (i.e., learning a la-
tent vector representation for 3D shapes) and generative mod-
eling (i.e., learning the latent vector distribution and generating
new latent vectors). We modify the second part such that the
latent vector distribution can be conditioned on any range con-
straints. We will further elaborate our shape generation pipeline
in Sect. 3.1.

3 METHODOLOGY

This section describes our overall methodology. We
start by discussing the overall pipeline for 3D shape gener-
ation (Sect. 3.1). Next, we propose new loss functions and
generator architecture to effectively enforce range-constraints
(Sect. 3.2). The following two sections address problems with
range-constraint conditioning: Sect. 3.4 addresses the problem
of getting uniformly distributed samples within a range, while
Sect. 3.5 addresses data sparsity with augmentation methods.
Our methodology concludes by showing how these methods ap-
ply to constraints on multiple variables. We summarize the over-
all architecture of Range-GAN in Fig. 1.
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FIGURE 1. Overall architecture for the Range-GAN

3.1 3D Shape Generation Pipeline
While our method can be applied to various use cases, we

demonstrate the effectiveness of the Range-GAN on a 3D shape
design example. To generate 3D models, we combine our Range-
GAN with the implicit decoder in the IM-NET [33]. Specifically,
the implicit decoder is a neural network that approximates the
implicit fields of shapes. At each point (x,y,z), an implicit field
assigns a value of 1 if the point is inside the 3D shape, and 0
otherwise. Given the implicit field of a shape, we can obtain its
surface mesh by using methods like marching cubes [35]. Each
implicit field is also conditioned on a latent vector, which repre-
sents a unique shape and is learned by an encoder. The implicit
decoder takes in both a latent vector and a 3D point coordinate
and predicts the implicit field at the given point to describe a
shape represented by the given latent vector. The combination of
the encoder and the implicit decoder is called an IM-AE and is
trained according to Ref. [33]. After training, we obtain the latent
vectors for the training data. We can further use our Range-GAN
to learn the distribution of those latent vectors. By concatenating
the trained generator of the Range-GAN with the trained implicit
decoder, we can generate 3D shapes based on any condition and
noise vector, as shown in Fig. 2 (we will elaborate on the gener-
ator training in the following sections). The merit of using this
framework is that we can modularize two tasks — 1) genera-
tive modeling of latent vectors and 2) transformation from latent
vectors to 3D shapes. This, on one hand, simplifies the genera-
tive modeling task, because the GAN is learning a much lower-
dimensional distribution compared to directly learning the distri-
bution of 3D shapes. On the other hand, this provides a platform
for future study on generative modeling for 3D shapes, where we
do not need to worry about shape representation, because we al-
ready have the latent vector as an efficient shape representation.

3.2 Enforcing Range Constraints in GANs
Similar to the idea of adding an auxiliary classifier/regressor

to the cGAN [36, 24] to improve generation quality or enforce
accurate conditioning, we use a label estimator to guide the gen-
erator during training to generate designs that meet input con-

straints. In this way, we utilize the discriminator’s insight into the
data distribution to promote synthesis of realistic designs while
simultaneously using the estimator’s insight to guide the gener-
ator towards meeting input requirements. In this approach, the
estimator can be any differentiable model that predicts the la-
bel of generated designs (e.g., an adjoint-based physics simula-
tor or a deep neural network (DNN) regression model). In this
paper, we use a pre-trained DNN-based estimator to predict the
labels of any given design. To integrate the estimator into the
GAN’s objective, we propose a novel loss function for the gen-
erator. This loss function must have certain characteristics to be
effective — 1) the loss function must have a zero gradient for
samples within the input condition range (i.e., samples that meet
the condition need no further change) and 2) the gradient should
start gradually decreasing as samples get closer to the acceptable
range to stabilize training. Given that these characteristics are
seen in the negative log likelihood (NLL) function of the GAN
objective, we attempt to create a similar loss function that ap-
plies the same principles for the range conditions. To imitate the
NLL, we need a mechanism that turns predicted continuous la-
bels into probabilities of condition satisfaction. To do this, we
use two sigmoid functions shifted to the lower and upper bounds
of the given range condition to estimate the probability of condi-
tion satisfaction:

p(x|[ylb,yub])≈
1

1+ eφ(E(x)−ylb)
− 1

1+ eφ(E(x)−yub)
, (3)

where E(x) is the label predicted by the estimator E, ylb and yub
are the lower and upper bounds of the range constraint, and φ

is a scaling factor determining how aggressively the probability
grows/shrinks at the lower/upper bounds. The hyper-parameter φ

determines how aggressive the overall gradient will be, and how
close the sigmoids will be to a unit step function. We measure
the NLL based on this estimated probability using the range loss
function:

Lrange =−
∑

N
i=11(yi−yi,ub)×(yi−yi,lb)≥0 log(p(xi|[yi,lb,yi,ub]))

∑
N
i=11(yi−yi,ub)×(yi−yi,lb)≥0

.

(4)
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Here, N is the number of samples generated in a batch and xi
is the i-th sample in the batch with an estimated/calculated label
of yi. Note that Lrange = 0 for samples that meet the condition
(yi,lb ≤ yi ≤ yi,ub). When this loss term is added to the generator
loss, the estimator will guide the generator to produce samples
that satisfying the range condition as training proceeds.

We do not have ylb and yub in the data. During training, yi,lb
and yi,ub are randomly sampled as follows:

yi,lb ∼ unif(ymin,ymax−0.05(ymax− ymin)),

yi,ub ∼ unif(yi,lb +0.05(ymax− ymin),ymax),
(5)

where ymin = mini{yi} and ymax = maxi{yi}. When we scale the
label to the range [0,1], we simply have ymin = 0 and ymax = 1.
We only sample one condition at every training step and use that
condition for the entirety of the batch. We found this treatment
gave better results. Also, as we will discuss in Sect. 3.4, this is a
necessary requirement for our uniformity loss.

3.3 Incorporating Conditions by Conditional Batch
Normalization

A naı̈ve approach to incorporate input conditions in cGANs
is to concatenate input conditions with the input noise vector be-
fore feeding them into the generator [22]. For categorical labels,
which cGANs were developed for, this approach is effective as
input labels are typically one-hot embeddings that are highly dis-
crete and distinct. On the other hand, scalar labels in continuous
spaces may not be very distinct and are therefore not suitable for
this approach [25]. We avoid this issue by applying conditional
batch normalization [38] to the output of every linear layer in the
generator (Fig. 2), where the conditional batch normalization is
computed based on the input conditions. This approach is effec-
tive in feeding continuous conditions [25].

3.4 Enforcing Label Uniformity
It is important to note that even the labels of generated de-

signs satisfy a given range constraint, the label distribution can
vary. For example, labels can either spread uniformly over the
entire range or gathered at one point. So far in our implemen-
tation of the range loss (Eqn. 9), samples that meet any given
condition are treated equally, with no gradient applied to them
based on their predicted labels. In this paper, we introduce an
approach to promote uniform coverage of the condition range.
Uniform coverage is the most generalizable case, because, since
the generator can be trained to cover all of the condition space,
it should theoretically also be possible to bias the generator to-
wards the lower or higher bounds of any given input condition.
Uniform coverage demonstrates that the generator can cover an
entire range space and biasing the generator towards either bound
should be as simple as changing the loss function to encourage
the generator towards either bound.

To promote uniformity in the labels of generated designs,

we can maximize any entropy-based metric on those labels. In
our experiments, we found that general entropy losses are not
very useful, as they encourage overall entropy, which means the
loss terms encourage the generator to generate samples with la-
bels having the largest possible distance, thus pushing generated
designs outside the constraint range and significantly decreas-
ing condition satisfaction rate. To overcome this, we introduce
a novel uniformity loss which takes into account the acceptable
range and encourages entropy only within that acceptable range.
Furthermore, our proposed uniformity loss is particularly geared
around encouraging uniform distribution and takes advantage of
a specific property of uniform distributions.

Specifically, we take advantage of two properties: 1) given
a starting distribution that is uniform, if we split this distribu-
tion into two, both resulted distributions will also be uniform;
2) the mean of any uniform distribution is the mean of the lower
and upper bound of the distribution. With those properties, the
uniformity loss slices the generated samples’ label distribution
at random points within the constraint range. It then measures
the mean of each label subset and uses the mean absolute error
between the actual mean and the expected uniform distribution
mean as the loss term. This is done multiple times for each batch
during training to ensure that uniformity is stochastically encour-
aged. This is because, theoretically, if the slice points remained
constant, a non uniform multi-modal distribution could mimic a
uniform distribution for a set of slice points, where the modes of
said distribution are located exactly between slice points. This
loss function will only be applied to the samples that meet the
input condition and can be formulated as such:

Lunif =
1
K

K

∑
j=1

Eε j∼U(ylb,yub)|
∑

N
i=11(yi−yub)×(yi−ε j)≤0 (yi−

yub+ε j
2 )

∑
N
i=11(yi−yub)×(yi−ε j)≤0

|+

|
∑

N
i=11(yi−ylb)×(yi−ε j)≤0 (yi−

ylb+ε j
2 )

∑
N
i=11(yi−ylb)×(yi−ε j)≤0

|,

(6)

where we apply random splits K times using slice points (ε j)
uniformly sampled in the input condition range. Note that we
use the entire batch to form the distribution. Therefore, yub and
ylb are sampled once per batch and are used to generate every
sample in that batch during training. At this point, the overall
objective of Range-GAN can be written as the combination of
the vanilla GAN objective from Eqn. 1 and the new loss terms:

min
G

max
D

V (D,G)+λ1Lrange(G)+λ2Lunif(G), (7)

where hyper-parameters λ1 and λ2 determine the weight of the
range and uniformity losses, respectively.
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FIGURE 2. 3D shape generation pipeline during inference (left) and detailed architectures for the generator (left), the discriminator (middle), and the
estimator (right). The residual connections in the estimator take the outputs of the higher layer before activation and batch normalization and add them
to the outputs of the following layer before activation and batch normalization. (Cond. BN: conditional batch normalization; SELU: scaled exponential
linear units [37])

3.5 Label-Aware Self-Augmentation to Address The
Data Sparsity Problem

As discussed before, sometimes exact estimators of any de-
sign’s label (e.g., performance metrics, attributes, etc.) are not
readily differentiable. In these circumstances, the estimator can
be a pre-trained DNN regression model which predicts the label
based on a set of training data. It is, however, often the case
that the labels in the data do not evenly cover the label space.
In these circumstances, there may not be enough data associated
with certain regions of the label space for the DNN estimator to
learn those regions with high accuracy. This leads to inconsis-
tencies in the actual labels of the generated designs compared to
the predicted labels in the sparsely populated regions of the label
space. This issue is often seen in engineering design datasets,
where the extremes of any given label do not have many samples
associated with them.

In this paper, we propose a self-augmentation method that
uses the generated samples to augment the dataset and retrain
the DNN estimator to better cover sparse regions of the label
space. Specifically, after the first round of training is finished
on the GAN, a number of samples are generated and evaluated
using a high fidelity evaluator (e.g., a physics simulator). Un-
like the label estimator mentioned earlier, such an evaluator is
not necessarily differentiable and can be any black-box model.
We then add samples from this subset to the dataset if their ac-
tual labels are located in sparse regions. Particularly, we split the
label space into 10 equally spaced bins and count the number of
samples from the data in each bin. We then add data from the
generated and evaluated samples to bins with a smaller number
of samples until the bin counts become equal or no more sam-

ples exist in the newly generated set to fill the less populated
bins. We then re-train the DNN estimator using this augmented
dataset and use the improved DNN estimator and the newly gen-
erated and evaluated data to re-train the GAN. By doing this, we
overcome the initial shortcomings of the DNN in sparsely pop-
ulated regions of the label space, which will, in turn, guide the
generator towards meeting input conditions better. Generally, the
quality of the estimator is crucial to Range-GAN’s success, and
exact differentiable estimators will ultimately be the strongest
option. Regardless, the lack of data in certain regions will also
always impact the performance of the trained GAN, given the
fact that, if data doesn’t exist in certain regions, GANs cannot
be expected to explore those regions. Ultimately, GANs only
emulate the dataset and do not typically generate novel samples.

4 EXPERIMENTAL SETTINGS
In this paper, we illustrate our results using the real-world

example of synthesizing 3D airplanes. For this purpose, we use
the airplane subset of the ShapeNet dataset [39], which includes
4,043 airplane models. We then measure the aspect ratio and
volume ratio of models and use them as the labels for condition-
ing. The aspect ratio is the measure of the ratio between fuselage
length and wingspan, while the volume ratio is the ratio of the
volume of the 3D model compared to a unit cube it occupied.
And since the volume of the unit cube is constant, the volume
ratio practically indicates the volume of the model.

As discussed prior, sparsity in the label space is a major
problem, which also exists in this dataset. To avoid extremely
sparse sectors of the label space, we remove the samples beyond
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the 99.5 percentile in both volume and aspect ratios. After this
step, we are left with a dataset of 4,012 models. The distribution
of labels in this dataset is presented in Fig. 3. As evident, the
data is mostly centered around a very narrow region of the label
space, which makes this dataset a perfect example to demonstrate
the effectiveness of Range-GAN even in such extremely sparse
datasets.

FIGURE 3. A kernel density estimation of the probability density
function for the labels in the dataset, demonstrating the distribution of
labels within the dataset. Note that these labels report the normalized
values of volume and aspect ratios, and not the true values.

We then train the IM-NET model (as described in Sect. 3.1
and Ref. [33]) on this dataset and use the 256-dimensional latent
vectors to train Range-GAN. After training, the Range-GAN can
generate new latent vectors, which can then be transformed into
the implicit field representation of 3D models using the implicit
decoder. We further obtain the surface meshes via marching
cubes [35]. Fig. 4 demonstrates some examples of the ShapeNet
airplanes reconstructed using the implicit decoder.

For all experiments, we set φ = 20, λ1 = 2.0, and λ2 = 1.0.
We train our models for 50,000 steps with a batch size of 32.
We use the Adam optimizer with a learning rate of 10−4, which
decays by 20% every 5,000 steps. We train the estimator using
the L2 regression loss for 10,000 steps with a batch size of 256
using the Adam optimizer with a learning rate of 10−4, which
decays by 40% every 2,500 steps. To reduce bias in the discrim-
inator, we sample the data during training such that the labels of
any given batch are uniformly distributed across the label space.
To do this, we uniformly sample random numbers between 0.0
and 1.0, which are the normalized bounds of the labels, and pick
the sample with the label closest to the random number. We do
the same when training the estimator; we found that this training
improves the estimator significantly.

FIGURE 4. A subset of the ShapeNet airplane dataset reconstructed
by our trained IM-NET model.

5 RESULTS AND DISCUSSION
In this section, we present the results of training Range-

GAN based on the methods described above. First, we demon-
strate Range-GAN in the context of single constraint condition-
ing for both the volume and aspect ratio labels independently.
Then, we demonstrate the performance of Range-GAN on condi-
tioning in both volume and aspect ratio labels simultaneously. In
the end, we discuss the effects of our data augmentation and the
performance of Range-GAN when measured based on exactly
calculated labels. In sections before the augmentation, unless
otherwise specified, the results presented are based on estimator
predictions rather than exact values, which we do because calcu-
lating the actual labels is computationally expensive. Finally, we
normalize the labels for both volume and aspect ratio to span the
full range from 0.0 to 1.0. The values of aspect ratio (A/R) and
volume ratio (V/R) presented here are based on the normalized
label values and not the physical values.

5.1 Evaluation Metrics
In this paper, the primary objective is for the generator to

meet the input range condition. As such, we measure the success
of any model by how well it can satisfy the input conditions. We
do this using the condition satisfaction metric, which essentially
measures the number of generated samples that meet the input
condition:

Satis f action =
∑

N
i=11(yi−yi,ub)×(yi−yi,lb)≤0

N
, (8)

where N is the total number of generated samples. The second
metric we use is the measure of uniformity in the output distri-
bution for the samples that meet the input condition. To do this,
we use the quadratic entropy. Quadratic entropy is the mean of

7 Copyright © 2021 by ASME



the square of the distances between any two samples’ labels:

QuadraticEntropy =
N

∑
i=1

N

∑
i= j

1
N2 (yi− y j)

2, (9)

where N is the number of generated samples that meet the in-
put condition, and yi and y j are the labels of any two generated
samples that meet the input condition.

5.2 Single Constraint Case Studies
First, we analyze Range-GAN’s performance in a single

constraint application. In this paper, we train Range-GAN using
the volume ratio and aspect ratio labels separately. For the as-
pect ratio case, we present some of our results visually in Fig. 5-
Left. It can be visually confirmed that, as the input aspect ratio
condition increases, the ratio between the fuselage length and
wingspan increases, which demonstrates Range-GAN is work-
ing as intended. The same visual confirmation is available in the
volume ratio dataset. The samples of Range-GAN conditioned
on different volume ratio ranges are presented in Fig. 5-Right.
In this case as well, one can visually confirm that Range-GAN
is performing as expected. With the results now visually con-
firmed, we can move on to measure the performance of the mod-
els using our metrics. To demonstrate the performance of the
model across the label space, we compute the satisfaction met-
ric for input ranges of length 0.05, 0.1, and 0.2 spanned from
one side of the label space to the other for 100 input condition
ranges spanned uniformly across the label space. For each con-
dition, we generate 2,000 samples and use the predicted labels
from the estimator to compute the condition satisfaction. Fur-
ther, we show the satisfaction calculated for the same ranges in
the data. The curves representing data are essentially demonstrat-
ing the probability of meeting the input conditions to the gener-
ator if we were to randomly sample airplanes from the dataset.
The results of this are presented in Fig. 6 and Table. 2. As evi-
dent, Range-GAN is performing very well when it comes to the
single constraint range conditioning. Further, we observe that as
the input constraint range becomes narrower, the performance of
Range-GAN declines. This is expected as, when the range be-
comes more and more restrictive, it becomes more difficult for
the generator to meet the input conditions. Finally, if the input
range’s bounds converge to a single point, it becomes practically
impossible to meet the exact input condition up to machine pre-
cision (i.e., εmachine). We can then move onto measuring the uni-
formity of the label distribution of output samples. We use the
quadratic entropy metric discussed before. To measure this, we
take a similar approach as we did for satisfaction. We measure
the quadratic entropy at different input conditions across the con-
dition space. This time, however, we train Range-GAN without
the uniformity loss to establish a baseline measurement for the
effectiveness of the uniformity loss. We measure the quadratic
entropy of the labels of 1,000 generated samples that meet the

condition at every point in the conditioning space. Because uni-
formity is only relevant inside the acceptable range, we measure
the uniformity only for samples that meet the input condition.
For the sake of brevity, we only present the results for the aspect
ratio case study. In Fig. 7, we observe that the entropy increases
significantly after introducing the uniformity loss. This demon-
strably indicates the effectiveness of the introduced uniformity
loss term. Furthermore, we observe that the difference between
the label distributions’ entropy becomes more pronounced with
an increase in the size of the input condition range. This means
that, in more broad input conditions, the GAN with a range loss
alone can simply generate samples closer to each other within
the acceptable range without any incentive to cover the entire
acceptable label space without the uniformity loss. We visually
demonstrate this in Fig. 8, which shows one example of how the
loss term improves the output distribution to allow for uniform
coverage of the label space.

5.3 Multi-Constraint Case Study
Now that we have established the effectiveness of our ap-

proach in single constraint range conditioning, we will demon-
strate that Range-GAN can be applied in multi-constraint range
conditioning as well. We do this by passing range conditions
for both the aspect ratio and the volume ratio to the generator.
For the case of multi-constraint Range-GAN, we present some of
our results visually in Fig. 9. This figure demonstrates samples
generated by Range-GAN that meet the input conditions since
only one sample is presented for each input condition. Regard-
less, the visual trend seen here is present in generated samples
overall. As evident in this image, the two trends seen before for
the single constraint cases are present together, visually demon-
strating the effectiveness of the Range-GAN in multi-constraint
conditioning. Having established our results visually, we will
present the condition satisfaction for the multi-constraint case
study. Given the difficulty of presenting the higher dimensional
data, we will only present our results for the range size of 0.1
for both constraints. Similar to the single constraint case be-
fore, we compute the satisfaction for 2,000 generated samples
at each condition and calculate the satisfaction for 20 conditions
spanned uniformly across each label space. The results of this
analysis are presented in Fig. 10 and Table. 2. Comparably to
the single constraint case, Range-GAN is capable of condition-
ing effectively despite the very limited distribution of the data
labels (Fig. 3), which demonstrates the fact that the approaches
discussed in Range-GAN can be expanded to multi-constraint
applications effectively. We do, however, observe that the over-
all satisfaction is lower in the multi-constraint case than in the
single constraint cases. This is expected, as the complexity of
the task quadruples in going from a single constraint to two con-
straints. Another important observation is that Range-GAN has
failed to produce low aspect ratio and high volume ratio sam-
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Aspect Ratio Input Constraints
[0.0, 0.1] [0.2, 0.3] [0.4, 0.5] [0.6, 0.7] [0.8, 0.9]

Volume Ratio Input Constraints
[0.0, 0.1] [0.2, 0.3] [0.4, 0.5] [0.6, 0.7] [0.8, 0.9]

FIGURE 5. Left: Example of Range-GAN outputs with different aspect ratio conditions. The input range conditions are presented above each column
of images. The images in each column represent the outputs of Range-GAN given a single input condition. Right: Example of Range-GAN outputs
with different volume ratio conditions. The input range conditions are presented above each column of images. The images in each column represent
the outputs of Range-GAN given a single input condition. The images are to scale so models that appear larger occupy a larger volume.

FIGURE 6. The performance of Range-GAN in input condition sat-
isfaction for both volume and aspect ratios compared to the same metric
in the data distribution. The x-axis on the plots represents the center
of the input range condition, meaning input condition of the range with
width of rangesize centered at the value on the x-axis.

FIGURE 7. The effect of the uniformity loss term on the output la-
bels’ quadratic entropy for two different range sizes at the input con-
dition.The x-axis on the plots represents the center of the input range
condition.

FIGURE 8. The histograms of the distribution of output labels (for the
aspect ratio case) in the acceptable range of 0.4 to 0.5 (these conditions
were picked arbitrarily to visually demonstrate the distributions), both
with and without the uniformity loss. Both figures represent probability
density on the y-axis. The overlaid constant distribution at a probability
density of 10 illustrates a perfectly uniform distribution.

ples, as can be seen in the top left corner of the Range-GAN
satisfaction plot. This is not necessarily unexpected, as the data
is practically non-existent in that location. A low aspect ratio
requires that the generated aircraft have a significantly smaller
fuselage compared to its wingspan, and, given that the fuselage
typically contains most of the aircraft’s volume, it becomes very
difficult, in fact practically impossible, to generate large numbers
of airplanes with such properties.

5.4 Effects of Data Augmentation
So far, we have evaluated the performance of our models

based on the DNN estimator predictions of performance. In
this section, we will discuss the real measured performance of
the generated samples by generating samples and reconstructing
them using the implicit decoder, and measuring their volume and
aspect ratios. This task is computationally expensive, which is
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Aspect Ratio Input Constraints
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FIGURE 9. Example of Range-GAN outputs with different volume ratio and aspect ratio conditions. The input range conditions are presented above
each column and to the left of each row. The images are to scale so models that appear larger occupy a larger volume, hence a larger volume ratio.

FIGURE 10. The performance of Range-GAN in input condition sat-
isfaction in both volume and aspect ratio. The Values indicated on the x
and y axes of the plots represent the center of the input range conditions
with the range size of 0.1. The white grid lines indicate the start and end
of the input condition ranges.

TABLE 1. Experimental results on condition satisfaction (mean and
standard deviation over the entire condition space) with estimator pre-
diction

Condition Variable Range Size Condition Satisfaction

Volume Ratio 0.1 0.9131±0.0309

Volume Ratio 0.2 0.9841±0.0102

Aspect Ratio 0.1 0.8723±0.03806

Aspect Ratio 0.2 0.9687±0.0112

Both 0.1 0.6921±0.1102

Both 0.2 0.9294±0.0432

why it is not practical to show these results for all of our work in
this manner. Further, the methodology surrounding Range-GAN
assumes that an accurate estimator is being used, which is cru-
cial for the success of Range-GAN; measuring the performance
based on the estimator shows how well the range loss works in
guiding Range-GAN towards the correct labels. Nevertheless,
the real-world implications of using DNN-based approximate es-
timators must be discussed. Additionally, we do this to show that
the proposed data-augmentation improves the estimator, hence
the real-world performance of Range-GAN. First, we present
the real-world performance of the models with and without aug-
mentation for the single constraint case-studies at 50 conditions
uniformly spanned across the condition space for a range size
of 0.1. For every condition, we generate and construct 50 3D
samples and measure their real-world performance. The actual
satisfaction are presented for both volume and aspect ratios in
Fig. 11 and Table. 2. As is evident, the real-world performance
of Range-GAN is worse than the performance of Range-GAN
based on the estimator prediction. Further, we can see that the
data after augmentation is relatively uniformly distributed across
the label space, which has helped improve the DNN estimator
significantly. We find that Range-GAN’s real performance is
more consistent in both volume and aspect ratio conditioning
when augmentation is applied, while the Range-GAN without
augmentation is more inconsistent in performance with signif-
icant dips in satisfaction. This proves the original claim that
the DNN estimator would struggle in sparse regions, which we
see specifically in the higher end of both volume and aspect ra-
tios; the un-augmented Range-GAN performs poorly here, while
the augmented Range-GAN does better. It is important to men-
tion that the computational cost of augmentation is significant,
as shapes have to be reconstructed to calculate their labels. The
benefits, however, seem significant enough to justify such costs.
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FIGURE 11. The real-world performance of Range-GAN in input
condition satisfaction in both volume and aspect ratio compared to the
same metric in the data distribution both before and after data augmenta-
tion for a range size of 0.1. The x-axis on the plots represents the center
of the input range condition.

TABLE 2. Experimental results on condition satisfaction with a range
size of 0.1 (mean and standard deviation over the entire condition space)
with exact performance calculation

Condition Variable Condition Satisfaction Augmented

Volume Ratio 0.5823±0.1861 No

Volume Ratio 0.7682±0.0763 Yes

Aspect Ratio 0.6745±0.1926 No

Aspect Ratio 0.7580±0.0896 Yes

5.5 Limitations and Future work
The approach taken in Range-GAN has some notable lim-

itations. First, is the fact that the method is heavily reliant on
a differentiable estimator, the quality of which will determine
the performance of Range-GAN. Therefore, great care must be
taken when selecting the estimator, and exact estimators are al-
ways preferred. Unfortunately, in most design applications exact
estimators are not readily differentiable, and even if they were,
the evaluation speed is often quite slow and thus impractical.
This means that, more often than not, we are bound to use a
DNN-based estimator. Therefore, the most significant limitation
in this approach to conditioning in continuous spaces is the esti-
mator. Consequently, approaches in improving estimator models
for more accurate guidance of the GAN are very important in this
application. In the future, we intend to develop improved meth-
ods for obtaining highly accurate data-driven estimators that can
mimic high-fidelity physics simulations and other exact estima-
tors to create more consistency in results between Range-GAN’s
estimator predicted performance and its real-world performance.

Besides, it is important to note that the methodology pre-
sented in this paper is extendable to other domains of design,

where data is available and labeled. In the future, Range-GAN
can be applied to any domain to allow for design synthesis un-
der continuous constraints, which, given the current lack of such
tools, is an important contribution to the field of data-driven de-
sign synthesis.

6 CONCLUSION

In this paper, we introduced an approach that allows for data-
driven design synthesis under range constraints in continuous la-
bel spaces. Range-GAN is the first to address this problem. To
achieve this, we introduced a novel architecture that uses a pre-
trained estimator to guide Range-GAN towards achieving proper
conditioning through a novel loss function, the ‘range loss’. We
demonstrated the effectiveness of this approach in both single
constraint design and multi-constraint design using a 3D shape
synthesis example to generate airplane models. We showed that
Range-GAN can successfully generate samples that meet the in-
put conditions, even when the dataset is extremely sparse in cer-
tain parts of the label space, achieving more than 80% satisfac-
tion of input range condition.

Another aspect of conditioning under range constraint is the
output distribution of the generated samples’ labels. In this pa-
per, we developed an approach that encourages uniform coverage
of the label space in the acceptable condition range. To achieve
this, we introduced a novel loss function, the ‘uniformity loss’,
to encourage uniform coverage of the input constraint range. We
demonstrated this loss function’s effectiveness at encouraging
uniform coverage of the label space by comparing Range-GAN
results with and without this loss, finding that the loss function is
highly effective and more than doubles the label entropy.

We also analyzed how Range-GAN can be improved by
label-aware self-augmentation of the data. We showed this by
augmenting the data using the Range-GAN’s own generated
samples to add more samples to sparse regions of the label space,
enabling us to re-train the DNN-based estimator and Range-
GAN using this augmented data to improve the performance of
Range-GAN significantly. We show that the label-aware self-
augmentation leads to an average improvement of 14% on the
constraint satisfaction for generated 3D shapes.

This work laid the foundation for data-driven inverse de-
sign problems where we consider range constraints and there are
sparse regions in the condition space. Both situations are com-
mon in engineering design scenarios. While we validated our
proposed model on a 3D shape synthesis example, the method is
not restricted to this application. For example, by replacing the
latent vector with parameters of unit cell shapes, this model can
also help address the inverse design problem of cellular struc-
tures [24].

11 Copyright © 2021 by ASME



REFERENCES
[1] Bellman, R., 1966. “Dynamic programming”. Science,

153(3731), pp. 34–37.
[2] Burnap, A., Liu, Y., Pan, Y., Lee, H., Gonzalez, R., and

Papalambros, P. Y., 2016. “Estimating and exploring the
product form design space using deep generative models”.
In ASME 2016 International Design Engineering Techni-
cal Conferences and Computers and Information in Engi-
neering Conference, American Society of Mechanical En-
gineers Digital Collection.

[3] Yang, Z., Li, X., Catherine Brinson, L., Choudhary, A. N.,
Chen, W., and Agrawal, A., 2018. “Microstructural ma-
terials design via deep adversarial learning methodology”.
Journal of Mechanical Design, 140(11).

[4] Oh, S., Jung, Y., Kim, S., Lee, I., and Kang, N., 2019.
“Deep generative design: Integration of topology optimiza-
tion and generative models”. Journal of Mechanical De-
sign, 141(11).

[5] Guo, T., Herber, D., and Allison, J. T., 2019. “Circuit syn-
thesis using generative adversarial networks (gans)”. In
AIAA Scitech 2019 Forum, p. 2350.

[6] Zhang, W., Yang, Z., Jiang, H., Nigam, S., Yamakawa, S.,
Furuhata, T., Shimada, K., and Kara, L. B., 2019. “3d
shape synthesis for conceptual design and optimization us-
ing variational autoencoders”. In ASME 2019 International
Design Engineering Technical Conferences and Computers
and Information in Engineering Conference, American So-
ciety of Mechanical Engineers Digital Collection.

[7] Chen, W., Chiu, K., and Fuge, M. D., 2020. “Airfoil design
parameterization and optimization using bézier generative
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