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ABSTRACT

Topology optimization is a ubiquitous task in engineering
design, involving the optimal distribution of material in a pre-
scribed spatial domain. Recently, data-driven methods such as
deep generative Al models have been proposed as an alternative
to iterative optimization methods. However, existing data-driven
approaches are often trained on datasets using fixed grid resolu-
tions and domain shapes, reducing their applicability to different
resolutions or different domain shapes. In this paper, we in-
troduce two key innovations — a fast TO solver and a neural
implicit field architecture to address these limitations. First, we
introduce a fast, parallelizable, iterative GPU-based TO solver
optimized for high-throughput dataset generation for 3D unstruc-
tured meshes. Our solver generated 122K optimized 3D topolo-
gies, an order of magnitude more than the largest existing public
dataset. Second, we introduce a new resolution-free data-driven
method for 3D topologies using neural fields, called NITO-3D.
A single NITO-3D model trains and predicts for a variety of
resolutions and aspect ratios. By also eliminating the need for
computationally intensive physical field conditioning, NITO-3D
offers a faster, more flexible alternative for 3D topology opti-
mization. On average, NITO-3D generates topologies roughly
2000 times faster and with only 0.3% higher compliance than
state-of-the-art iterative solvers. With 10 steps of iterative fine-
tuning, NITO-3D is on average 15 times faster and generates
topologies that are under 0.1% more compliant than SIMP's.
We open-source all data and code associated with this work at
https://github.com/Lyleregenwetter/NITO-3D.

1. INTRODUCTION

Topology optimization (TO) is a computational method used
to determine the most efficient material distribution within a given
design space to meet specific performance criteria under imposed
constraints. TO has been explored for different types of objec-
tives and constraints, however, the most common type of TO
involves optimally distributing material within a domain to min-
imize compliance, which is often referred to as the minimum
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compliance problem [1]. For this kind of problem, many re-
searchers have explored different optimization approaches. One
of the most popular approaches for TO is the Solid Isotropic Ma-
terial with Penalization (SIMP) approach [2, 3]. Gradient-based
optimization schemes like SIMP are robust and easily adaptable
to different domain shapes and resolutions. Despite their ef-
fectiveness, however, methods like SIMP face challenges with
computational demands, especially for large-scale problems [4]
such as 3D topology optimization applications. This means there
is great potential and value in accelerating these frameworks and
enabling fast and effective TO without the time and computational
cost of conventional optimization schemes.

The Rise of Deep Generative Models in Engineering: The
surge of recent advancements in deep generative Al models
(DGMs) for vision and language [5—11] has motivated the use of
deep learning in engineering optimization tasks, including TO.
These advancements have already revolutionized our ability to
handle multimodal and unstructured data, leading to novel gener-
ative approaches for such data [12—15]. This growing prevalence
of DGMs has paved the way for extensive research in engineer-
ing and design [16—19] and now constitutes an important area of
research in computational design and engineering.

Bridging Traditional and Deep Learning Approaches in TO:
Given these advancements, the integration of machine learning,
especially DGMs, into topology optimization, has been a focus
of recent research, offering a new paradigm to tackle TO prob-
lems [16]. For conciseness, we will refer to such deep generative
topology optimization models as “DGTOMs”. DGTOMs, which
are trained on optimized topologies and conditioned on various
loads and boundary conditions, promise substantial time effi-
ciency over traditional TO solvers like SIMP, providing a spec-
trum of near-optimal solutions [18, 20-23]. This research has
shown that the potential for time and cost reduction through DG-
TOMs is considerable. It is crucial to recognize that while DG-
TOMs and the integration of deep learning into TO have shown
promising advancements, there has been a range of feedback and
critique from the research community [4]. To address some of
the challenges, our work proposes a hybrid approach that aims to



merge the strengths of traditional TO methods with the innovative
potential of deep learning. This strategy is designed to overcome
many of the limitations identified, setting a path toward more
efficient, accurate, and versatile topology optimization solutions.
Below, we discuss a few challenges with current DGTOM:s.

Challenges with DGTOMs: Despite their speed, current DG-
TOMs face challenges in precision, data dependency, and gen-
eralizability, which are discussed below. Precision: The most
prevalent critique of DGTOMSs has been their precision: They
typically generate topologies that are less optimal than SIMP and
are more likely to violate constraints like volume fraction. This
limitation stems from their primary focus on density estimation,
largely overlooking the physical aspects of the problems. Fortu-
nately, recent DGTOMs have become significantly more precise,
in part by integrating physics into the models in different ways,
such as through physical field conditioning [18, 20, 21]. How-
ever, recent models [24] have achieved less than 1% performance
degradation compared to SIMP and even outperforming SIMP
in some instances. Therefore, the challenge of precision has ar-
guably become less pressing as the latest methods continue to
demonstrate greater and greater accuracy. Instead, generalizabil-
ity and data dependency of DGTOMSs remain critical concerns
that have seen minimal recent progress.

Data dependency: DGTOMs require significant amounts
of data to train. Recent works [18, 20-23] have trained on
tens of thousands of optimized topologies, each of which was
computed using an iterative TO optimizer, namely SIMP. This
necessary step has historically prohibited researchers from ap-
plying DGTOMs to larger 2D TO problems or, particularly, 3D
TO problems. The few DGTOM papers that have considered
high-dimensional 2D or 3D topologies only consider a handful
of boundary conditions in their datasets, possibly due to the lim-
ited data generation throughput [25]. Due to this data bottleneck,
we believe that the community should focus on creating effective
solvers and frameworks for data generation for TO.

Generalizability: Since datasets are limited, and the space
of possible TO problems is infinite, DGTOMs must learn to gen-
eralize to new problems. Whereas iterative TO is easily applied
in a variety of domain shapes and resolutions, current DGMs are
typically only able to perform well on test cases that have the
same domain and resolution as their training data. This is often
due to the choice of a representation scheme, where most exist-
ing DGTOM approaches rely on discretizing the physical domain
into a grid, limiting their adaptability to varying resolutions or
domain shapes [18, 20-23]. Fundamentally, this dependence is
ingrained in the convolutional neural network (CNN) architec-
tures used by these models, which provide strong spatial learning
capabilities, but restrict their generalizability. Attempts to gen-
eralize CNNs across domains have still required retraining on
hundreds or thousands of new topologies to succeed in the new
domain [25]. Unless a DGTOM can generalize, thousands of
iterative TO cases must be computed for every application case.
This lack of generalizability is particularly problematic because
it effectively voids the main benefit of DGTOMs over iterative
TO. If DGTOMs are unable to amortize the cost of TO due to
their lack of generalizability, the value proposition for DGTOMs

over iterative TO is largely unconvincing [4]. Hence, there is a
need for significant advancements in DGTOM generalizability.

3D DGTOMs: Both data dependency and generalizability
concerns are significantly amplified in 3D TO compared to 2D.
Data generation is orders of magnitude more costly, making data
much more scarce. The combinatorial increase in boundary con-
dition configurations and aspect ratios also makes the generaliza-
tion of data-driven models much more difficult. In this work, we
embrace the challenges of 3D TO to better address each of these
prohibitive challenges with DGTOMs and provide a framework
for 3D TO both for data generation and deep learning.

Addressing DGTOMs Challenges: In this paper, we take sig-
nificant strides to address the data dependency and generalizabil-
ity challenges with DGTOMs for challenging 3D topologies. To
tackle the data dependency bottleneck, we introduce a new SIMP-
based TO library in Python specialized for high-throughput data
generation (up to 5x faster than older implementations such as
Topy [26]). Our solver finds optimal topologies in unconven-
tional domain shapes and unstructured meshes, enabling users
to build datasets spanning diverse problem domains. To address
the challenges with generalizability, we introduce a framework
that completely eliminates convolution in favor of implicit neural
fields and point-cloud-based boundary conditioning. This allows
it to generalize to different domain shapes and resolutions during
both training and inference. Our model is also faster and more
accurate than convolution-based models. When used in conjunc-
tion with a short iterative refinement stage, our model generates
topologies nearly 2000x faster and with only 0.3% higher com-
pliance than SIMP:

* We introduce a new TO solver that leverages parallel com-
puting to multiply dataset generation throughput. In under
two days, our solver generated a dataset of 106K 3D topolo-
gies, an order of magnitude larger than any public 3D TO
dataset.

* Werelease the largest public dataset of 3D topologies, featur-
ing 210 topology configurations spanning numerous aspect
ratios, resolutions, and boundary conditions.

* We introduce the first DGTOM for 3D topologies that can
train and generate on multi-resolution, mixed aspect-ratio,
and unstructured domains.

* We show that NITO-3D generates topologies nearly 2000x
faster and with only 0.3% higher compliance than SIMP
(median). With 10 steps of refinement, NITO’s median
topologies are only 0.08% more compliant and are still 15x
faster to generate, compared to SIMP.

2. BACKGROUND & RELATED WORKS

This section delves into the background of topology opti-
mization and neural implicit fields. We also provide an overview
of existing DGTOMs.
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FIGURE 1: Overview of 3D Topology Optimization: This fig-
ure illustrates the essential components of TO, including the
domain, boundary conditions, loads, and volume fraction.
The objective of TO is to identify the optimal design variables,
denoted as ¢, that enhance prescribed performance objec-
tives such as minimizing compliance f, while adhering to all
specified constraints and maintaining static equilibrium

2.1 Structural Topology Optimization

Topology optimization (TO) is a computational technique
that determines the optimal material distribution within a given
set of constraints, boundary conditions, and loads, often with the
objective of minimizing compliance in structural scenarios (see
Fig. 1) [27]. A popular TO method is the Solid Isotropic Material
with Penalization (SIMP) method, which leverages a density field
to represent material allocation, with higher field values indicat-
ing higher material density [28]. This process involves iterative
system simulations to assess and then update the material dis-
tribution based on the objective’s gradient. The mathematical
representation of this optimization is defined as follows, where
the aim is to minimize compliance F’d, with F denoting the
nodal loads and d the nodal displacements:

m(;n f=Fd
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The loads and displacements are related by equilibrium equation
K(¢)d = F in terms of a stiffness tensor. The optimization is also
subject to a volume fraction constraint ), .o p¢ (¢)v¢ < V, which
ensures the total volume does not exceed a maximum limit V. Fi-
nally, the design variables are subject to a set of bounds (@min and
¢max) for every element i in the domain Q. Since densities can
vary between 0 and 1, this formulation supports gradient-based
optimization. Although gradient-based optimization helps with
fast convergence, solving K(¢)d = F at each iteration (typically
done using FEA) causes each optimization step to be compu-
tationally intensive. Importantly, the computational cost scales
cubically (O(n*)) with the number of elements in the problem.

2.1.1 Deep Learning for Topology Optimization.
While deep learning techniques have revolutionized the vision
and language domains, their full potential in engineering ap-
plications, particularly in TO, is still being realized. These
methods have been applied across a spectrum of engineering
tasks: direct design [25, 29-32], post-processing [33, 34], and
acceleration [35-39] of optimization processes, sensitivity analy-
sis [40—43], super-resolution [44-46], and many others [47-50].

Particularly relevant to this work are conditional deep genera-
tive models that perform the topology optimization task end-to-
end. We discuss such DGMs in more detail in the following
section. The evolving landscape of deep learning in TO is well-
summarized in the critique by Woldseth et. al. [4] and the review
by Shin et. al. [51], providing a comprehensive overview of cur-
rent methodologies and their implications.

2.2 Deep Generative Models for Topology

Optimization

Deep Generative Models have seen increasing utilization in
design. DGMs have been leveraged for material and molecu-
lar discovery [52-55] and applied to a variety of product, ma-
chine, and system design tasks [56-58]. Topology optimization
has also been a popular application area for DGMs in design.
Though many DGMs in design are conditional, they are nonethe-
less probabilistic, meaning that they can generate a variety of
possible design solutions given the same set of constraints. This
property is often desirable to increase the diversity of generated
designs [59, 60]. While non-generative models can also be con-
figured to synthesize design solutions given problem constraints,
they are usually deterministic and cannot generate a variety of
solution candidates. In this section, we summarize existing work
on the use of DGMs for optimal topology generation.

The challenges of traditional optimization methods have
spurred a surge in research leveraging DGMs for TO. Key to our
study are deep generative topology optimization methods (DG-
TOMs) that offer an end-to-end solution, accepting constraints
and boundary conditions to deliver near-optimal topologies aimed
at compliance minimization. Many of these approaches have
leveraged either generative adversarial networks (GANS) or dif-
fusion models, though other types of DGMs have also been ex-
plored [61, 62]

2.2.1 GAN-based DGTOMSs. The generative adversarial
network was one of the first popular DGM frameworks used for
TO [63-66]. For instance, Yu et. al [67] developed an approach
combining an autoencoder for topology generation with a GAN
for super-resolution applied concurrently. Similarly, Rawat &
Shen [68] and Li et. al. [69] utilize GANs for both the initial
topology creation and its super-resolution enhancement. Mean-
while, Sharpe & Seepersad [64], Nie et. al. [70], and Behzadi &
Ilies [71] focus on direct topology generation using conditional
GANSs, and Wang et. al [72] explore U-Net-based frameworks for
TO.

2.2.2 Diffusion-based DGTOMSs. Recentadvancements
have seen diffusion models outperform GANs in topology opti-
mization [21-23]. Mazé & Ahmed [21] showcased the superior-
ity of diffusion models over GANs in generating optimal topolo-
gies by proposing the Topodiff model. They also highlighted
how model performance is enhanced by integrating guidance
from a compliance prediction regression model and a classifier
designed to detect floating material. Despite their effectiveness,
Topodiff had a slower output rate, potentially requiring up to
1000 iterations to produce a single sample. To address this,
Giannone et. al. [22] suggested diffusion optimization models
(DOMs), which align their diffusion process with the optimizer’s



intermediate outputs to decrease the required iterations, signifi-
cantly reducing the sampling steps. However, their model needed
retraining to be applied to a new domain shape. Despite the strong
performance of diffusion models, neural fields, which we dis-
cuss next, have recently emerged as another promising approach,
demonstrating higher-quality solution topologies and faster gen-
eration speed [24].

2.3 Topology Generation using Neural Fields
In this section, we introduce neural fields, discuss their ap-

plication to TO, and present previous work using neural fields for
TO.

2.3.1 Neural Fields. Neural fields are fields that are pa-
rameterized by a neural network. These networks typically take
spatial coordinates x € R” as input, then output field values
®(x) € R™, encapsulated as ®(x) = fp(x) where fg is the neural
function parameterized by © [73]. Neural fields have been applied
across various domains including audio, images, videos, and 3D
representations. Since TO can be regarded as the generation of
an optimal density field across space, neural fields can be used to
represent topologies. In fact, neural implicit representations have
been directly optimized in a gradient-based approach to identify
the optimal topology for any given problem [48, 74—77]. These
works demonstrate that implicit neural fields are capable repre-
sentations for topologies [77, 78]. Implicit field representations
have even been embraced by commercial softwares like nTop.
While this technique presents an effective method to encode and
generate optimal structures, it is not a DGTOM. This is because
the neural network is trained only to represent a single optimal
topology, and does not learn a generalized representation that
can be used to generate optimal topologies for different TO prob-
lems. Our method takes the latter approach, training a conditional
neural implicit field model aimed at generating diverse optimal
topologies based on specified conditions like material constraints
and load configurations.

2.3.2 Neural Fields for TO. Recent studies have ex-
plored implicit neural fields for topology creation, with
Hu et. al. [18] employing them in their [IF-TONIR method. How-
ever, their reliance on stress and strain fields for boundary con-
dition representation, using CNNss, limits the flexibility and gen-
eralizability of these fields. This is due to the use of CNNs,
which introduce domain and resolution dependence and create
scalability issues that limit the model’s capacity to be trained on
very large and high-resolution data. Neural Implicit Topology
Optimization [24] (NITO) has been proposed as an approach for
resolution-free topology optimization using neural fields. In this
work, we propose and benchmark NITO-3D, an adaptation of
NITO for 3D topologies.

2.4 Datasets and Data-driven Solvers for 3D TO

3D topology optimization presents significant challenges
over its 2D counterpart due to higher dimensionality and com-
putational demands, making both iterative solving and dataset
generation for DGMs notably more complex and costly. The vast
constraint space further complicates DGMs’ generalizability for
3D data. Limited data-driven methods have been explored for 3D

TO; notable attempts include Behzadi & Ilies [25], who train a
CNN, swapping components and fine-tuning the model to switch
between the nine solution domains and resolutions tested. Ke-
shavarzzadeh et. al. [79] train a deep disjunctive normal shape
model for topologies. Finally, Dittmer et. al. [80] use equivariant
neural networks to generate topologies. However, these models
need to be retrained to solve any problem with a different resolu-
tion. These models provide a baseline for the size and diversity of
existing 3D TO datasets. Statistics on the corresponding datasets
used are included in Table 1, for easy comparison to our own.

3. METHODOLOGY

In this section, we go into the details of our approach and
discuss some of the details of our solver and dataset. We then dis-
cuss NITO-3D, focusing on its resolution-free, domain-agnostic
features.

3.1 Dataset Generation & Solver

As discussed, data-generation throughput is a critical lim-
itation for DGTOMSs. To address this, we introduce a fast it-
erative TO solver customized for dataset generation and release
the largest public dataset of optimized 3D topologies. In this
subsection, we discuss the features of our solver and dataset.

3.1.1 Solver. Many iterative TO solvers are publicly avail-
able [81] in a variety of different software languages, each with
varying implementation nuances. For readers who are interested
in an in-depth review and analysis of these different solvers, we
refer you to the review article by Wang et. al. [§1]. Existing
code suffers from a few important problems which makes them
less suited for large-scale data generation. First, many of them
are implemented in MATLAB [81], while most deep learning
research is often conducted using Python-based libraries. Con-
sidering this, many independent developers and researchers have
developed Python libraries for performing TO in Python, such as
Topy [26], or DLATO [82] which is focused on Pytorch imple-
mentation for direct gradient passing to Pytorch for training based
on FEA. Unfortunately, these libraries are either out of date [26],
or focus on integrating FEA into deep learning platforms [82].
In both cases, the libraries use solvers and numerical schemes
that are not optimized for dataset generation, both when it comes
to the solvers used and when it comes to their Python APIs fo-
cused on the TO task rather than being tailored for randomizing
boundary conditions and generating data.

Given the constraints of current TO libraries, we developed
a new TO library. In doing so, we carefully considered the ex-
isting state-of-the-art in iterative TO [81] and consolidated sev-
eral cutting-edge techniques into our framework to both improve
and accelerate the optimization process. We also implemented
pipelines for a versatile Python API to seamlessly import meshes,
performing TO for minimum compliance in both 2D and 3D
problems, and evalaute results both visually and analytically. A
comprehensive discussion of our solver’s features exceeds this
paper’s scope, but we offer a summary of key functionalities and
direct readers to our code and documentation for in-depth details.

Finite Element Analysis (FEA) For Linear Elasticity: Itera-
tive TO solvers rely on Finite Element Analysis (FEA) solvers to



TABLE 1: Comparison to existing datasets of optimized 3D topologies and several recent public 2D datasets. We consider the
number of topologies included, the minimum and maximum number of elements per topology, the total elements across all
topologies, the number of unique support configurations, and the number of unique aspect ratios in the dataset. Our dataset
features an order of magnitude more topologies, configurations and total elements than existing 3D TO datasets.

Number of Minimum Maximum Total Support  Aspect Domain

Topologies Elements  Elements Elements Configs Ratios Dimensionality
Topodift [21] & DOM [22] 33K 4.1K 4.1K 122M 42 1 2D
TopologyGAN [20] 49K 8.2K 8.2K 402M 42 1 2D
DOM [22] & NITO [24] 60K 66K 66K 3.9B 42 1 2D
Keshavarzzadeh et. al. [79] 2.0K 0.4K 3.2K 3.6M 1 1 3D
Behzadi & Ilies [25] 2.2K 8.0K 128K 75M 5 3D
Dittmer et. al. [80] 9.8K 6.1K 32K 315M 11 2 3D
NITO-3D (ours) 122K 32K 48K 4.3B 210 7 3D

solve the linear elasticity equation for different problems. The first
step in FEA is to discretize a physical domain, which is done by
making meshes that describe a given domain in discrete volumet-
ric or surface meshes for 3D and 2D respectively. Commonly,
structured meshes comprising square quadrilaterals in 2D and
voxel hexahedrals in 3D are employed, as noted in most publicly
available codes [81]. However, this approach can compromise the
accuracy of complex shape representations. To overcome these
limitations, our method supports the use of both arbitrary linear
triangle and quadrilateral elements in 2D, and arbitrary linear
tetrahedral or hexahedral elements in 3D, enhancing our ability
to accurately model more intricate domain shapes. In conducting
Finite Element Analysis (FEA) on a mesh, assembling the stiff-
ness matrix (K) for given boundary conditions is the initial step.
This involves calculating the stiffness for each element based on
material properties like Young’s modulus and Poisson’s ratio,
which depend on the material density field (¢). Thus, assembling
K becomes a repetitive task in each optimization cycle.

While structured meshes benefit from computational ef-
ficiencies due to their regularity, our goal to generate di-
verse datasets necessitates accommodating arbitrary, unstruc-
tured meshes, making stiffness matrix assembly more challeng-
ing. To streamline this process for unstructured meshes, we
have developed a method to vectorize the assembly of the stiff-
ness matrix. We precompute sparse assembly kernels that map
the stiffness contributions of each element to the overall matrix
based on element densities, creating a sparse kernel matrix sized
Nuon-zero by Netements- This approach allows for efficient ma-
trix multiplication that aggregates these contributions into the
comprehensive stiffness matrix K, all while maintaining sparse
matrix efficiency. We apply a similar strategy for other density-
dependent calculations, like adjoint gradient updates, enhancing
overall optimization speed. Detailed explanations and kernel
construction are documented in our code.

After assembling the stiffness matrices, the subsequent task
involves solving the resultant large sparse linear system. We
primarily employ a direct sparse solver executing Cholesky de-
composition, capitalizing on the guaranteed symmetric positive
definite nature of stiffness matrices. This method proves signif-
icantly more efficient than LU decomposition utilized by earlier
Python solvers, such as Topy. For exceedingly large systems

where Cholesky decomposition’s performance diminishes, we
switch to the conjugate gradient (CG) method. Notably, our solver
introduces, for the first time to our knowledge, GPU acceleration
for the CG method, achieving substantial speed enhancements for
large-scale problems. These advancements are integrated into our
solver, accessible through a user-friendly Python API, facilitat-
ing TO applications on both structured and unstructured meshes
across large domains. This solver is made publicly available with
a simple Python API which allows for easy application of TO
for both structured and unstructured meshes and for very large
domains, which we release as part of our solver.

3.1.2 Randomization Process and Dataset. Besides
the aforementioned accelerated solver, we also include code for
random parallelized TO data generation on both CPU and GPU
This is done by a configuration randomizer that creates random-
ized load cases, boundary configurations, and resolutions for TO
problems. In creating our dataset, we select a discrete set of 210
resolution, domain, and boundary condition combinations, while
leaving the load position and direction random across the entire
domain surface. More details are included in Appendix A. Some
samples from the dataset are displayed in Fig. 2, which shows
several of the dataset’s different domain shapes and boundary
condition combinations. In total, the dataset includes 106,425
3D topologies with different domain shapes, resolutions, and
boundary conditions.

3.2 Introduction to Hybrid 3D Neural Implicit

Topology Optimization

In this paper, we introduce a hybrid scheme to accelerate
topology optimization by combining deep learning with opti-
mization, which retains the precision of optimization schemes
while accelerating optimization using deep learning. Our frame-
work is designed to expedite topology generation by removing
the need for iterative sampling, achieving linear scalability with
the number of sampled points. In this section, we detail how
we achieve this by describing different aspects of our proposed
model.

3.2.1 Implicit Neural Representation For Learning
Material Density. The core objective of our framework is to
learn the material distribution within a domain to minimize the
mechanical compliance of the resulting structure. Following [24],
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FIGURE 2: Random samples from the dataset demonstrating
the diversity of different domain shapes and varying bound-
ary conditions and loads that are included in the dataset.
Aside from the domain shapes, different resolutions also ap-
ply to these domains which may not be visible here. The
boundary conditions are displayed above and the corre-
sponding SIMP solution is displayed below it.

material distribution is depicted by a density field p(x), with x
being a spatial coordinate and p(x) representing the material
density at that point. Our aim is not to learn a singular material
distribution but to determine a conditional density field based on
specific boundary conditions and volume constraints:

P(xIC:0) = fo(x,C), (€5

where f represents the neural field function, determined by the
network architecture, and C encapsulates conditions like domain
shape, boundary conditions, and volume ratio, and 6 refers to the
parameters defining the model. Ideally, the neural field should
output binary values at any point, indicating the presence or
absence of material. However, to make the problem tractable, we
interpret the output as the probability of material presence at a
given point. Therefore, the objective function is reformulated to:

Z£(6) = - Ex.c [p(x|C) log fo (x, C)
+(1 = p(x]C)) log(1 - fo(x, C))]

where p(x|C) represents the material probability at x, which is
aligned with the output from the SIMP optimizer. Figure 4 pro-
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FIGURE 3: The 7 different domain shapes and resolutions
used in the dataset. This shows that our dataset covers both
different shapes and different resolutions.

vides a detailed depiction of the NITO-3D framework’s operation.

3.2.2 Beyond Physical Fields: Latent Constraint
Representation. One of the key contributions of NITO-3D
compared to recent works [20-22, 83] is the transition away from
physical fields as a conditioning mechanism. In this section, we
discuss the limitations brought about by physical fields and our
approach to eliminating them in favor of cheaper, more general-
izable conditioning methods.

Conditioning on Physics Fields: Previous research [20, 21, 83,
83] predominantly employs physical fields like stress and strain
energy derived from simulations to represent boundary condi-
tions into problems. This method is often deemed essential for
high-performance topology generation using conditioned gener-
ative models. However, this reliance on field-based conditioning
restricts the models to a specific resolution and domain due to the
dependency on CNNs, impacting their generalizability. It is also
time-consuming, effectively requiring a finite element simulation
for every topology generated. The prevalent use of field-based
conditioning is arguably due to limitations in existing condition-
ing mechanisms, where conditioning is typically applied only
at the initial layers. NITO-3D leverages a simplified model to
represent and integrate conditions, enhancing generality and ap-
plicability.

Constraints as Point Clouds: Using the ‘Boundary Point
Order-invariant MLP’ (BPOM) method from [24] for 2D prob-
lems, our methodology aims to represent 3D TO problem bound-
ary conditions in a domain-agnostic manner, enabling generaliza-
tion across various domain shapes without the need for distinct
models for each domain shape or resolution. We represent con-
ditioning based on loads, displacement constraints, and volume
fraction using four separate point clouds for loads, and x, y, and z
supports. These sparse conditions are condensed into a single la-
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FIGURE 4: The NITO-3D framework for generalizable topology optimization through deep optimization. BPOM is used to process

point cloud representations of the boundary conditions and a neural field is guided by these representations by modulating
layer normalization based on the latent representation of the constraints. In the end, the resulting density field is further refined
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FIGURE 5: Comparison of field-based representations, given
a TO problem (left), such as stress fields (middle), and point-
cloud-based (right). Unlike the iterative FEA method, point
clouds provide a more generalizable and memory-efficient

representation of the boundary conditions.

tent representation using ResP Layers proposed by Ma et. al. [84]
from the PointMLP model. We omit the geometric affine module
proposed in the original work due to the simpler nature of our
boundary condition point clouds.

Order-Invariant Aggregation Given the variable size of point
clouds, we employ order-invariant pooling, as in [24] to con-
solidate each point cloud into a singular vector representing the
boundary conditions, combining minimum, maximum, and aver-
age pooling results. These vectors are then concatenated to form

a comprehensive representation, which is inputted into the mod-
ulated layer normalization mechanism of our conditional neural
fields (more details to follow). Additionally, the volume fraction,
a singular value, is processed through a fully-connected layer,
with its output integrated with the BPOM results for complete
boundary condition representation.

3.2.3 Building Blocks of Neural Implicit Fields. In
this section, we will delve into some key aspects of our frame-
work’s implementation. Our implementation utilizes neural fields
constructed from basic multi-layer perceptrons (MLPs). Among
the various implicit neural field models, our approach specifically
adopts SIREN layers, as introduced by Sitzmann et al. [85], which
incorporate sine activation functions at each layer’s output. More-
over, implicit neural fields have been identified to occasionally
overlook finer details in higher-frequency features. The work of
Tancik et al. [86] highlights that the application of Fourier feature
mapping to spatial coordinates effectively addresses this limita-
tion. Consequently, we have integrated Fourier feature mapping
into our model’s input coordinates.

Advanced Conditioning Techniques for TO: Neural fields
are capable of adapting to new scenarios through conditioning
on a latent vector C. This vector represents the unique attributes
of a TO problem, including boundary conditions and volume



ratio, or forces and domain shape. The concept of Feature-
wise Linear Modulation (FiLM) proposed by Perez et al. [87],
which conditions the model by adjusting the output across var-
ious layers, informs our approach. Specifically, this adjustment
is achieved through two networks, a(C) and B(C), that compute
multiplicative and additive modulations for each layer’s output.
Drawing inspiration from techniques surrounding conditioning
through normalization layers like adaptive instance normaliza-
tion (AdalN) [88], our model conditions neural fields by applying
layer normalization coupled with modulation of the layer norm’s
scale and shift for each output feature.

Synthesizing Components for Topology Optimization:
Putting this all together this framework can be described as:

fo(x,C) = fB o fED 6.0 f0(x,C)) 4)

where f ) fori e {1,2, ..., L — 1} indicates the function applied
at each layer of the neural field except the first and last layer.
Each layer takes a hidden input #() and sends it through a fully
connected (FC) layer and normalization with modulation based
on the condition vector, which in this case is the latent constraint
vector C:

fi(h', C) = sin(LN; o(W'A + b') x a(C) + B(C)), (5)

where LN  is layer norm with scale=1 and shift=0 and « and 8
are FC layers that use the condition C to determine the feature-
wise scale and shift for the normalization. In the first layer, the
input coordinates are transformed by Fourier feature mapping be-
fore being passed to the first FC layer in the neural field. The
final layer lacks the conditioning modulation on layer normaliza-
tion and is activated by a sigmoid function rather than the sin
activation used in other layers. These neural fields can easily be
adapted to any domain shape or resolution so long as it is speci-
fied in the latent representation C. This stems from the fact that
the input to the neural field is coordinates, which allows for sam-
pling arbitrarily in space making this kind of model well-suited
for generalization to different domains.

Perfecting Generated Topologies with Few-step Refinement:
While generative models and deep learning strategies have shown
promise in TO, the quality of topologies they produce still
lags behind that of traditional optimization baselines. Gian-
none et. al. [22] suggest an innovative solution to bridge this
gap by incorporating a few optimization steps (5-10) using SIMP
on the outputs from generative models, a stark reduction from
the hundreds of iterations typically required for full optimization.
This strategy leverages near-optimal topologies generated by the
models as starting points, allowing SIMP to refine them quickly
and efficiently under given boundary conditions. We adopt this
strategy in our approach, viewing it as an integral part of the
generative model-based topology generation process. This inte-
gration solidifies the NITO-3D framework as a comprehensive
‘deep optimization’ methodology, as depicted in Figure 4.

4, EXPERIMENTS & RESULTS
In this section, we conduct various experiments to demon-
strate, quantify, and compare the capabilities of NITO-3D to

SIMP. As existing CNN-based methods do not generalize to mul-
tiple domain shapes, unstructured meshes, and different mesh res-
olutions, we solely focus on quantifying the performance of our
method by comparing it against the SIMP optimization method.

With the experiments in this section, we provide compelling
evidence that:

1. NITO-3D is scalable, resolution-free, and compact, with a
smaller number of parameters than even state-of-the-art 2D
models, yet it is capable of performing very well and on par
with SIMP.

2. NITO-3D is faster than most 2D state-of-the-art models,
despite operating on 3D data, and is capable of accelerating
the entire TO process in 3D by an order of magnitude in
comparison to conventional iterative optimization schemes
such as SIMP.

3. NITO-3D integrates the speed of deep learning models with
the accuracy and dependability of optimization methods,
establishing a robust ‘deep optimization’ framework. This
approach is a noteworthy avenue for the widespread imple-
mentation and application of deep learning techniques in the
field of engineering design.

4.1 Experimental Details

We first establish some of the details of the experiments we
run to clarify what we measure and how the measurements are
performed.

Topology Optimization Dataset: We use our new dataset of
optimized 3D topologies for the training and testing of our model.
2,000 samples are held out of the training split for testing.

Evaluation Metrics: We evaluate the models in terms of perfor-
mance (i.e., minimum compliance), constraint satisfaction, and
inference time. Initially, to evaluate the effectiveness of the mod-
els in minimizing compliance, we calculate the compliance er-
ror (CE) by determining the difference between the compliance
of a produced sample and the compliance of the SIMP-optimized
solution for the same issue. Additionally, we assess the volume
fraction error (VFE), which represents the absolute discrepancy
between the actual volume fraction of the generated topology and
the target volume fraction designated for the problem. Beyond
these fundamental performance indicators, we also measure infer-
ence time and compare it against the speed of the SIMP optimizer
for context.

Setup: We train NITO-3D for 50 epochs with a uniform sam-
pling of points in space. The batch size used to train NITO-3D
is 32, with 2048 points sampled for each item in the batch. The
optimizer we use for training is AdamW, with a decaying learning
rate on the cosine schedule, which starts at a learning rate of 10~*
and decays by stepping at the end of each epoch to the minimum
learning rate of 107> Since the model in this work is not proba-
bilistic and would not yield different results for a given boundary
conditions, we only asses the performance of the trained model on
one sample for each boundary condition. Similar to prior work,



when reporting results, we remove outlier samples [22]. Outliers
are defined as samples where NITO-3D fails to add material at
the location of load and causes compliance error over 1000%.
These samples comprise ~ 2% of the test data. We then seed
SIMP using the NITO-3D-generated topologies and run SIMP
for 5 and 10 steps.

4.2 Qualitative Results & Discussion of
Generalizability

Ground Truth NITO-3D

NITO-3D (5)

NITO-3D (10)
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FIGURE 6: Qualitative visualization of NITO-3D generated
topologies with and without a few steps of direct optimiza-
tion. Column 1: ground truth obtained using our SIMP opti-
mizer. Column 2: The topology produced by the neural field
with BPOM without direct optimization. Columns 3 & 4: the
NITO-3D framework output leveraging 5 and 10 steps of di-
rect optimization. We see that NITO-3D is an effective deep
optimization framework that could enable accelerated topol-
ogy optimization in a generalizable fashion. Note that the raw
output of the neural field includes continuous values that are
not easy to visualize, which is why a few steps of optimiza-
tion are effective [24].

Here we visualize some of the results of our experiments
and discuss some notable observations. Figure 6 shows a few
examples of topologies generated by NITO-3D with and without
additional SIMP optimization steps. In most cases, NITO-3D

produces topologies that are very close to the ground truth topol-
ogy. However, we see that NITO-3D sometimes struggles to
cleanly generate intricate features that are present in the ground
truth topologies. This highlights the value of adding a very small
number of steps of direct optimization. Even with 5 steps of SIMP
on top of NITO-3D, the resulting topologies quickly converge to
detailed topologies, and with 10 steps of direct optimization, the
results start to look even better. This observation is also sup-
ported by our quantitative results (discussed later), where the
median compliance error of NITO-3D reduces from 0.32% to
0.11% in five steps and 0.077% in ten steps.

Importantly, we see NITO generating topologies in different
domain shapes and resolutions without retraining. As discussed,
most prior works focus on one domain shape at a time and require
retraining on new domains. We demonstrate that generalizable
frameworks like NITO-3D can cover different domain shapes
and resolutions simultaneously without any significant loss of
performance. Notably, NITO-3D has also learned to generate
near-optimal topologies without the need for physical fields as
input for describing boundary conditions, showing that BPOM
is an effective strategy for conditioning deep learning models
on sparse boundary conditions. This is also a critical step for
generalizability, avoiding fixed-domain non-sparse conditioning
strategies. These results showcase NITO-3D’s promise as a gen-
eralizable and foundational framework for topology optimization.

4.3 Performance

In Table 2, we present the performance metrics and constraint
satisfaction outcomes. The table reveals that our TO frame-
work, which leverages neural fields, achieves comparable results
to SIMP in most scenarios, even without implementing the direct
optimization step. This is highlighted by the median compli-
ance error of 0.32%, marked in green in Table 2. However, it’s
noted that in some instances, solely using neural fields results in
significant deviations, pushing the average compliance error to
5.95%, much higher than the median. Yet, incorporating a direct
optimization step significantly enhances the neural field’s density
predictions. Unlike the binary outcomes seen in Figure 6, the
neural field actually produces a probability map that can be finely
tuned through direct optimization, avoiding the need for binary
thresholding. This nuanced approach allows for rapid optimiza-
tion convergence, particularly in areas of uncertainty predicted
by the neural field, as shown by the reduced compliance error
to 0.52% and volume fraction error to below 1% with just five
steps of direct optimization in Table 2. This capability outpaces
approaches that rely on more deterministic starting points [24],
affirming the synergistic potential of neural fields and optimiza-
tion in a ‘deep optimization’ strategy for accelerated TO. Kernel
density estimates of compliance error distributions are also in-
cluded in Figure 7.

Another notable observation we encountered in the quanti-
tative data is that in some cases, NITO-3D outperforms SIMP. In
the 2,000 test samples that we used in our experiments, NITO-3D
with 10 steps of optimization outperformed the ground truth in 86
of the cases, about 4%. This is something that other works have
also observed in some cases [21, 22, 24], which shows that there
may be certain advantages of deep learning-based frameworks in



TABLE 2: Quantitative evaluations of NITO-3D with and with-
out direct optimization. This table shows that NITO’s perfor-
mance is very close to SIMP with much less time devoted to
optimization. Even without direct optimization, NITO-3D per-
forms very well on the test data with an average compliance
error of 5.96%. Note that the median value for compliance er-
ror is far lower, which is because a handful of outliers skew
the mean while in most cases vanilla neural fields would per-
haps be close enough to SIMP.

Model CE % Mean CE % Med VFE % Mean VFE % Med
NITO-3D 5.95 0.32 4.38 2.40
NITO-3D (5) (ours) 0.52 0.11 0.96 0.81
NITO-3D (10)(ours) 0.31 0.077 0.67 0.54
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FIGURE 7: Kernel density estimate plot of compliance error
distributions for NITO-3D with 0, 5, and 10 steps of optimiza-
tion. With more optimization, NITO-3D generates compli-
ances with near-zero compliance error. Interestingly, NITO-
3D without optimization yields more designs with lower com-
pliance than SIMP (negative compliance error). This phe-
nomenon is explained by the higher volume fraction error,
causing some of these generated design to use more mate-
rial than SIMP.

improving upon the optimization algorithms they are trained to
emulate.

4.4 Inference Speed & Scalability

One of the key benefits of deep learning for TO is speed. We
therefore measure inference time and speed for different configu-
rations of NITO-3D in Table 3. We measure inference times and
compare them against the inference time for performing the full
optimization using SIMP. We see that the neural field alone only
takes an average of 0.124s to compute topologies, which is an
impressive 1900x improvement in inference, this is also faster
than most CNN-based methods in 2D [22]. However, even with
10 steps of direct optimization to improve accuracy, NITO-3D
still provides a 93% (14x faster) reduction in inference time as
compared to SIMP. With 5 steps of direct optimization, NITO-3D
is 97% faster than SIMP (29x faster). As shown, taking just a
few steps of direct optimization is still many times faster than a

10

full SIMP optimization and is a potent strategy to reduce total
inference time. Note that these results are based on topologies
with different resolutions and domain shapes and are the average
time measured across the test set. Imporantly, SIMP inference is
measured for 150 steps, which is roughly what we observed as
the average iteration count for convergence when generating the
data (iteration count for topologies in the dataset varied due to
naturally differing convergence rates).

TABLE 3: Average inference time measured for SIMP and
NITO-3D in different configurations. Here we see that NITO-
3D without direct optimization is multiple orders of magni-
tude faster than SIMP, while even with 10 steps of direct op-
timization, NITO-3D is 93% faster than SIMP. Note that times
are averaged for test samples from the dataset which have
different element counts. SIMP time is calculated for 150
steps of optimization, the rough average iteration count to
convergence in generating the dataset. These times are mea-
sured using an RTX 4090 GPU and i9-13900K CPU.

SIMP (150) NITO-3D (0) NITO-3D (5) NITO-3D (10)
Inf. Time (s) 239.14 0.124 8.10 16.06
Acceleration 0% 99.95% 96.61% 93.28%

NITO-3D has several features that allow for natural paral-
lelism and low memory use. NITO trains by sampling batches of
points from a field. This enables easy parallelism, accelerating
training on modern GPUs. Notably, it also avoids problematic
memory scaling trends seen in convolution-based models. To
train on larger and larger dimensionalities, CNNs require more
memory [89]. For example, to train a reasonable 3D diffusion
model on 64x64x64 topologies would require over 24 GB of
GPU memory to train, more than is offered on any consumer-
grade GPU offered on the market at the time of writing. To
handle higher-resolution topologies using CNNs, practitioners
would need large numbers of deep learning-optimized GPUs in
large clusters. In contrast, NITO-3D can handle arbitrarily high-
resolution with the same amount of memory. Despite training on
much larger problems and handling a greater variety of domains,
NITO-3D is much smaller than even convolution-based models
for smaller 2D problems. Table 4 summarizes the adaptability
and scalability of NITO-3D, compared to several select DGTOMs
and neural field-based methods.

5. CONCLUSION & FUTURE WORKS

We propose NITO-3D, a 3D Neural Implicit Topology Opti-
mization framework, marking a departure from traditional neural
TO methods as a pure resolution- and domain-agnostic approach.
Our proposed Boundary Point Order-Invariant MLP (BPOM)
sidesteps the complexities that CNNs face, enabling NITO to
adapt to various resolutions and domain shapes without retrain-
ing. It also has a smaller parameter footprint than 2D models.
The ability of NITO-3D to scale and generalize provides a strong
basis for future models in topology optimization and other areas
involving physics, solving high-dimensional problems that were
not possible with CNN-based methods.

We also introduce an efficient Python solver for rapid data
generation and a comprehensive dataset of 122K optimized 3D



TABLE 4: In this table, we summarize some of the latest works on TO using deep learning. Domain adaptability refers to an
approach’s ability to be trained on multiple domain shapes simultaneously. Resolution-free refers to an approach’s ability to be
trained and inferred at multiple resolutions at the same time. Scalable training refers to the fact that the training does not require
processing information on an entire domain, enabling training on very large domains (e.g., the model does not need physical
fields for training and does not need to generate the solution during training). We see that the best-performing convolution-based
methods are not generalizable while requiring significantly more parameters for 2D than NITO-3D needs for 3D. T IF-TONIR has
no public code and its model size is unknown. # IF-TONIR’s training is resolution-dependent due to field calculations. During
inference, different topologies can be sampled, but the provided physical field must be calculated at the same resolution as the

training data.

Model Domain Parameter =~ Domain  Resolution Scalable Base
Dimensionality Count (M) Adaptable Free Training  Architecture
TopoDiff [21] 2D 121 X X X Convolution
TopoDiff-Guided [21] 2D 239 X X X Convolution
DOM [22] 2D 121 X X X Convolution
TopologyGAN [20] 2D ~ 300 X X X Convolution
IF-TONIR (CNN Based Encoder/Conditioning) [18] 2D N/AT v i X Neural Field
NITO [24] 2D 22 v v v Neural Field
NITO-3D 3D 72 v v v Neural Field

topologies to aid future TO model development. While NITO
advances TO, its deterministic nature limits design diversity and
its performance on new problem types. Future research must
focus on this aspect, possibly by incorporating advancements in
probabilistic approaches for neural implicit fields [90, 91]. In
addition, future enhancements should concentrate on refining the
training methods and architecture of NITO to minimize reliance
on direct optimization steps for detail, thereby enhancing the
model’s independence and accuracy in generated topologies.
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APPENDIX A. ADDITIONAL DETAILS ON DATASET
GENERATION

In this section, we discuss further details on the generation
of the dataset. Details on the 210 configurations are shown in
Table 5. For each configuration, the resolution, support place-
ment, and support types are exactly fixed. For each configuration,
a single load is randomly applied at one point on the surface of
the domain. Loads are applied exclusively in one of the three
principal directions with 10% chance each, in one of the three
principal planes with 15% chance each and in all three directions
with 25% chance. We refer readers to our codebase for more
details.

TABLE 5: Configurations for 3D topology dataset. Seven res-
olution settings were defined, spanning from 32k to 48k ele-
ments. Five boundary conditions types were defined. Each
case calls for 3-5 supports, with each support constraining
displacement in one, two or three directions (e.g. ‘x2’ sup-
ports load in x and z directions). Finally, six support place-
ment options were defined, defining where the 3-5 supports
shall be placed, respectively (e.g. xI means the support shall
be placed on the x = 1 plane, while xu means the support
shall be placed on the x = res, plane where resy is resolu-
tion of the domain in the x direction). Each combination of
the seven, five and six choices were selected for 210 config-
urations total. The exact support locations are set determin-
istically and repeatably across all datapoints for a particular
configuration

Domain Support Support
Resolution Type Location
120x20x20 XYZ, XYZ, XYZ xu, yu, zu, xI, yl
32x32x32 XyZ, XY, YZ, XZ yu, zu, x1, yl, zI
60x40x20  xyz, xXyz, Xy, Yz, Xz  zu, xl, yl, zl,xu
40x40x20  xyz, xyz, Xyz, xyz  xl, yl, zl,xu, yu
120x40x10 XYZ, XYZ, X, Y, Z yl, zl,xu, yu, zu
80x40x15 zl, xu, yu, zu, xI
64x32x16
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APPENDIX B. COMPUTING HARDWARE USED
NITO-3D was trained on a Nvidia RTX 4090 GPU with Intel Number of Elements: 364,500

19-13900k processor. The dataset was generated on 64 nodes of Total Run Time: 352s (RTX 4090)

the MIT SuperCloud cluster, each with 48 cores and 96 threads.

APPENDIX C. SOLVER DEMONSTRATION

Number of Elements: 364,500
Total Run Time: 344s (RTX 4090)

P
s
o
oy

FIGURE 9: The solution of our optimizer for the cantilever
beam problem.

In this section, we run our GPU implementation of our
solver (using an RTX 4090) on a common bridge problem and a
classic cantilever beam problem to demonstrate the solver’s effi-
FIGURE 8: The solution of our optimizer for the bridge prob- cacy. We use a mesh size of 180x45x45. Figures 8 and 9 show the
lem. solutions for each of the problems from the solver with a volume
fraction of 0.1.
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