
TOWARDS DOMAIN-ADAPTIVE, RESOLUTION-FREE 3D TOPOLOGY OPTIMIZATION WITH NEURAL
IMPLICIT FIELDS

Amin Heyrani Nobari1,∗,†, Lyle Regenwetter1,†, Faez Ahmed1

1Massachusetts Institute of Technology, Cambridge, MA

ABSTRACT
Topology optimization is a ubiquitous task in engineering

design, involving the optimal distribution of material in a pre-
scribed spatial domain. Recently, data-driven methods such as
deep generative AI models have been proposed as an alternative
to iterative optimization methods. However, existing data-driven
approaches are often trained on datasets using fixed grid resolu-
tions and domain shapes, reducing their applicability to different
resolutions or different domain shapes. In this paper, we in-
troduce two key innovations — a fast TO solver and a neural
implicit field architecture to address these limitations. First, we
introduce a fast, parallelizable, iterative GPU-based TO solver
optimized for high-throughput dataset generation for 3D unstruc-
tured meshes. Our solver generated 122K optimized 3D topolo-
gies, an order of magnitude more than the largest existing public
dataset. Second, we introduce a new resolution-free data-driven
method for 3D topologies using neural fields, called NITO-3D.
A single NITO-3D model trains and predicts for a variety of
resolutions and aspect ratios. By also eliminating the need for
computationally intensive physical field conditioning, NITO-3D
offers a faster, more flexible alternative for 3D topology opti-
mization. On average, NITO-3D generates topologies roughly
2000 times faster and with only 0.3% higher compliance than
state-of-the-art iterative solvers. With 10 steps of iterative fine-
tuning, NITO-3D is on average 15 times faster and generates
topologies that are under 0.1% more compliant than SIMP’s.
We open-source all data and code associated with this work at
https://github.com/Lyleregenwetter/NITO-3D.

1. INTRODUCTION
Topology optimization (TO) is a computational method used

to determine the most efficient material distribution within a given
design space to meet specific performance criteria under imposed
constraints. TO has been explored for different types of objec-
tives and constraints, however, the most common type of TO
involves optimally distributing material within a domain to min-
imize compliance, which is often referred to as the minimum

†Joint first authors
∗Corresponding author

compliance problem [1]. For this kind of problem, many re-
searchers have explored different optimization approaches. One
of the most popular approaches for TO is the Solid Isotropic Ma-
terial with Penalization (SIMP) approach [2, 3]. Gradient-based
optimization schemes like SIMP are robust and easily adaptable
to different domain shapes and resolutions. Despite their ef-
fectiveness, however, methods like SIMP face challenges with
computational demands, especially for large-scale problems [4]
such as 3D topology optimization applications. This means there
is great potential and value in accelerating these frameworks and
enabling fast and effective TO without the time and computational
cost of conventional optimization schemes.

The Rise of Deep Generative Models in Engineering: The
surge of recent advancements in deep generative AI models
(DGMs) for vision and language [5–11] has motivated the use of
deep learning in engineering optimization tasks, including TO.
These advancements have already revolutionized our ability to
handle multimodal and unstructured data, leading to novel gener-
ative approaches for such data [12–15]. This growing prevalence
of DGMs has paved the way for extensive research in engineer-
ing and design [16–19] and now constitutes an important area of
research in computational design and engineering.

Bridging Traditional and Deep Learning Approaches in TO:
Given these advancements, the integration of machine learning,
especially DGMs, into topology optimization, has been a focus
of recent research, offering a new paradigm to tackle TO prob-
lems [16]. For conciseness, we will refer to such deep generative
topology optimization models as “DGTOMs”. DGTOMs, which
are trained on optimized topologies and conditioned on various
loads and boundary conditions, promise substantial time effi-
ciency over traditional TO solvers like SIMP, providing a spec-
trum of near-optimal solutions [18, 20–23]. This research has
shown that the potential for time and cost reduction through DG-
TOMs is considerable. It is crucial to recognize that while DG-
TOMs and the integration of deep learning into TO have shown
promising advancements, there has been a range of feedback and
critique from the research community [4]. To address some of
the challenges, our work proposes a hybrid approach that aims to

1

merge the strengths of traditional TO methods with the innovative
potential of deep learning. This strategy is designed to overcome
many of the limitations identified, setting a path toward more
efficient, accurate, and versatile topology optimization solutions.
Below, we discuss a few challenges with current DGTOMs.

Challenges with DGTOMs: Despite their speed, current DG-
TOMs face challenges in precision, data dependency, and gen-
eralizability, which are discussed below. Precision: The most
prevalent critique of DGTOMs has been their precision: They
typically generate topologies that are less optimal than SIMP and
are more likely to violate constraints like volume fraction. This
limitation stems from their primary focus on density estimation,
largely overlooking the physical aspects of the problems. Fortu-
nately, recent DGTOMs have become significantly more precise,
in part by integrating physics into the models in different ways,
such as through physical field conditioning [18, 20, 21]. How-
ever, recent models [24] have achieved less than 1% performance
degradation compared to SIMP and even outperforming SIMP
in some instances. Therefore, the challenge of precision has ar-
guably become less pressing as the latest methods continue to
demonstrate greater and greater accuracy. Instead, generalizabil-
ity and data dependency of DGTOMs remain critical concerns
that have seen minimal recent progress.

Data dependency: DGTOMs require significant amounts
of data to train. Recent works [18, 20–23] have trained on
tens of thousands of optimized topologies, each of which was
computed using an iterative TO optimizer, namely SIMP. This
necessary step has historically prohibited researchers from ap-
plying DGTOMs to larger 2D TO problems or, particularly, 3D
TO problems. The few DGTOM papers that have considered
high-dimensional 2D or 3D topologies only consider a handful
of boundary conditions in their datasets, possibly due to the lim-
ited data generation throughput [25]. Due to this data bottleneck,
we believe that the community should focus on creating effective
solvers and frameworks for data generation for TO.

Generalizability: Since datasets are limited, and the space
of possible TO problems is infinite, DGTOMs must learn to gen-
eralize to new problems. Whereas iterative TO is easily applied
in a variety of domain shapes and resolutions, current DGMs are
typically only able to perform well on test cases that have the
same domain and resolution as their training data. This is often
due to the choice of a representation scheme, where most exist-
ing DGTOM approaches rely on discretizing the physical domain
into a grid, limiting their adaptability to varying resolutions or
domain shapes [18, 20–23]. Fundamentally, this dependence is
ingrained in the convolutional neural network (CNN) architec-
tures used by these models, which provide strong spatial learning
capabilities, but restrict their generalizability. Attempts to gen-
eralize CNNs across domains have still required retraining on
hundreds or thousands of new topologies to succeed in the new
domain [25]. Unless a DGTOM can generalize, thousands of
iterative TO cases must be computed for every application case.
This lack of generalizability is particularly problematic because
it effectively voids the main benefit of DGTOMs over iterative
TO. If DGTOMs are unable to amortize the cost of TO due to
their lack of generalizability, the value proposition for DGTOMs

over iterative TO is largely unconvincing [4]. Hence, there is a
need for significant advancements in DGTOM generalizability.

3D DGTOMs: Both data dependency and generalizability
concerns are significantly amplified in 3D TO compared to 2D.
Data generation is orders of magnitude more costly, making data
much more scarce. The combinatorial increase in boundary con-
dition configurations and aspect ratios also makes the generaliza-
tion of data-driven models much more difficult. In this work, we
embrace the challenges of 3D TO to better address each of these
prohibitive challenges with DGTOMs and provide a framework
for 3D TO both for data generation and deep learning.

Addressing DGTOMs Challenges: In this paper, we take sig-
nificant strides to address the data dependency and generalizabil-
ity challenges with DGTOMs for challenging 3D topologies. To
tackle the data dependency bottleneck, we introduce a new SIMP-
based TO library in Python specialized for high-throughput data
generation (up to 5x faster than older implementations such as
Topy [26]). Our solver finds optimal topologies in unconven-
tional domain shapes and unstructured meshes, enabling users
to build datasets spanning diverse problem domains. To address
the challenges with generalizability, we introduce a framework
that completely eliminates convolution in favor of implicit neural
fields and point-cloud-based boundary conditioning. This allows
it to generalize to different domain shapes and resolutions during
both training and inference. Our model is also faster and more
accurate than convolution-based models. When used in conjunc-
tion with a short iterative refinement stage, our model generates
topologies nearly 2000x faster and with only 0.3% higher com-
pliance than SIMP:

• We introduce a new TO solver that leverages parallel com-
puting to multiply dataset generation throughput. In under
two days, our solver generated a dataset of 106K 3D topolo-
gies, an order of magnitude larger than any public 3D TO
dataset.

• We release the largest public dataset of 3D topologies, featur-
ing 210 topology configurations spanning numerous aspect
ratios, resolutions, and boundary conditions.

• We introduce the first DGTOM for 3D topologies that can
train and generate on multi-resolution, mixed aspect-ratio,
and unstructured domains.

• We show that NITO-3D generates topologies nearly 2000x
faster and with only 0.3% higher compliance than SIMP
(median). With 10 steps of refinement, NITO’s median
topologies are only 0.08% more compliant and are still 15x
faster to generate, compared to SIMP.

2. BACKGROUND & RELATED WORKS
This section delves into the background of topology opti-

mization and neural implicit fields. We also provide an overview
of existing DGTOMs.

2

Optimizer/Solver
(SIMP, NITO, etc.)

Volume Fraction : 0.38

TO Problem Resulting Topology

Force

Fixed in X
Fixed in Y
Fixed in Z

FIGURE 1: Overview of 3D Topology Optimization: This fig-
ure illustrates the essential components of TO, including the
domain, boundary conditions, loads, and volume fraction.
The objective of TO is to identify the optimal design variables,
denoted as φ, that enhance prescribed performance objec-
tives such as minimizing compliance f , while adhering to all
specified constraints and maintaining static equilibrium

2.1 Structural Topology Optimization
Topology optimization (TO) is a computational technique

that determines the optimal material distribution within a given
set of constraints, boundary conditions, and loads, often with the
objective of minimizing compliance in structural scenarios (see
Fig. 1) [27]. A popular TO method is the Solid Isotropic Material
with Penalization (SIMP) method, which leverages a density field
to represent material allocation, with higher field values indicat-
ing higher material density [28]. This process involves iterative
system simulations to assess and then update the material dis-
tribution based on the objective’s gradient. The mathematical
representation of this optimization is defined as follows, where
the aim is to minimize compliance F𝑇d, with F denoting the
nodal loads and d the nodal displacements:

min
𝜙

𝑓 = F𝑇d

s. t. K(𝜙)d = F∑︁
𝑒∈Ω 𝜌

𝑒 (𝜙)𝑣𝑒 ≤ 𝑉
𝜙min ≤ 𝜙𝑖 ≤ 𝜙max ∀𝑖 ∈ Ω

(1)

The loads and displacements are related by equilibrium equation
K(𝜙)d = F in terms of a stiffness tensor. The optimization is also
subject to a volume fraction constraint

∑︁
𝑒∈Ω 𝜌

𝑒 (𝜙)𝑣𝑒 ≤ 𝑉 , which
ensures the total volume does not exceed a maximum limit𝑉 . Fi-
nally, the design variables are subject to a set of bounds (𝜙min and
𝜙max) for every element 𝑖 in the domain Ω. Since densities can
vary between 0 and 1, this formulation supports gradient-based
optimization. Although gradient-based optimization helps with
fast convergence, solving K(𝜙)d = F at each iteration (typically
done using FEA) causes each optimization step to be compu-
tationally intensive. Importantly, the computational cost scales
cubically (𝑂 (𝑛3)) with the number of elements in the problem.

2.1.1 Deep Learning for Topology Optimization.
While deep learning techniques have revolutionized the vision
and language domains, their full potential in engineering ap-
plications, particularly in TO, is still being realized. These
methods have been applied across a spectrum of engineering
tasks: direct design [25, 29–32], post-processing [33, 34], and
acceleration [35–39] of optimization processes, sensitivity analy-
sis [40–43], super-resolution [44–46], and many others [47–50].

Particularly relevant to this work are conditional deep genera-
tive models that perform the topology optimization task end-to-
end. We discuss such DGMs in more detail in the following
section. The evolving landscape of deep learning in TO is well-
summarized in the critique by Woldseth et. al. [4] and the review
by Shin et. al. [51], providing a comprehensive overview of cur-
rent methodologies and their implications.

2.2 Deep Generative Models for Topology
Optimization
Deep Generative Models have seen increasing utilization in

design. DGMs have been leveraged for material and molecu-
lar discovery [52–55] and applied to a variety of product, ma-
chine, and system design tasks [56–58]. Topology optimization
has also been a popular application area for DGMs in design.
Though many DGMs in design are conditional, they are nonethe-
less probabilistic, meaning that they can generate a variety of
possible design solutions given the same set of constraints. This
property is often desirable to increase the diversity of generated
designs [59, 60]. While non-generative models can also be con-
figured to synthesize design solutions given problem constraints,
they are usually deterministic and cannot generate a variety of
solution candidates. In this section, we summarize existing work
on the use of DGMs for optimal topology generation.

The challenges of traditional optimization methods have
spurred a surge in research leveraging DGMs for TO. Key to our
study are deep generative topology optimization methods (DG-
TOMs) that offer an end-to-end solution, accepting constraints
and boundary conditions to deliver near-optimal topologies aimed
at compliance minimization. Many of these approaches have
leveraged either generative adversarial networks (GANs) or dif-
fusion models, though other types of DGMs have also been ex-
plored [61, 62]

2.2.1 GAN-based DGTOMs. The generative adversarial
network was one of the first popular DGM frameworks used for
TO [63–66]. For instance, Yu et. al [67] developed an approach
combining an autoencoder for topology generation with a GAN
for super-resolution applied concurrently. Similarly, Rawat &
Shen [68] and Li et. al. [69] utilize GANs for both the initial
topology creation and its super-resolution enhancement. Mean-
while, Sharpe & Seepersad [64], Nie et. al. [70], and Behzadi &
Ilies [71] focus on direct topology generation using conditional
GANs, and Wang et. al [72] explore U-Net-based frameworks for
TO.

2.2.2 Diffusion-based DGTOMs. Recent advancements
have seen diffusion models outperform GANs in topology opti-
mization [21–23]. Mazé & Ahmed [21] showcased the superior-
ity of diffusion models over GANs in generating optimal topolo-
gies by proposing the Topodiff model. They also highlighted
how model performance is enhanced by integrating guidance
from a compliance prediction regression model and a classifier
designed to detect floating material. Despite their effectiveness,
Topodiff had a slower output rate, potentially requiring up to
1000 iterations to produce a single sample. To address this,
Giannone et. al. [22] suggested diffusion optimization models
(DOMs), which align their diffusion process with the optimizer’s

3

intermediate outputs to decrease the required iterations, signifi-
cantly reducing the sampling steps. However, their model needed
retraining to be applied to a new domain shape. Despite the strong
performance of diffusion models, neural fields, which we dis-
cuss next, have recently emerged as another promising approach,
demonstrating higher-quality solution topologies and faster gen-
eration speed [24].

2.3 Topology Generation using Neural Fields
In this section, we introduce neural fields, discuss their ap-

plication to TO, and present previous work using neural fields for
TO.

2.3.1 Neural Fields. Neural fields are fields that are pa-
rameterized by a neural network. These networks typically take
spatial coordinates x ∈ R𝑛 as input, then output field values
Φ(x) ∈ R𝑚, encapsulated as Φ̃(x) = 𝑓Θ (x) where 𝑓Θ is the neural
function parameterized byΘ [73]. Neural fields have been applied
across various domains including audio, images, videos, and 3D
representations. Since TO can be regarded as the generation of
an optimal density field across space, neural fields can be used to
represent topologies. In fact, neural implicit representations have
been directly optimized in a gradient-based approach to identify
the optimal topology for any given problem [48, 74–77]. These
works demonstrate that implicit neural fields are capable repre-
sentations for topologies [77, 78]. Implicit field representations
have even been embraced by commercial softwares like nTop.
While this technique presents an effective method to encode and
generate optimal structures, it is not a DGTOM. This is because
the neural network is trained only to represent a single optimal
topology, and does not learn a generalized representation that
can be used to generate optimal topologies for different TO prob-
lems. Our method takes the latter approach, training a conditional
neural implicit field model aimed at generating diverse optimal
topologies based on specified conditions like material constraints
and load configurations.

2.3.2 Neural Fields for TO. Recent studies have ex-
plored implicit neural fields for topology creation, with
Hu et. al. [18] employing them in their IF-TONIR method. How-
ever, their reliance on stress and strain fields for boundary con-
dition representation, using CNNs, limits the flexibility and gen-
eralizability of these fields. This is due to the use of CNNs,
which introduce domain and resolution dependence and create
scalability issues that limit the model’s capacity to be trained on
very large and high-resolution data. Neural Implicit Topology
Optimization [24] (NITO) has been proposed as an approach for
resolution-free topology optimization using neural fields. In this
work, we propose and benchmark NITO-3D, an adaptation of
NITO for 3D topologies.

2.4 Datasets and Data-driven Solvers for 3D TO
3D topology optimization presents significant challenges

over its 2D counterpart due to higher dimensionality and com-
putational demands, making both iterative solving and dataset
generation for DGMs notably more complex and costly. The vast
constraint space further complicates DGMs’ generalizability for
3D data. Limited data-driven methods have been explored for 3D

TO; notable attempts include Behzadi & Ilies [25], who train a
CNN, swapping components and fine-tuning the model to switch
between the nine solution domains and resolutions tested. Ke-
shavarzzadeh et. al. [79] train a deep disjunctive normal shape
model for topologies. Finally, Dittmer et. al. [80] use equivariant
neural networks to generate topologies. However, these models
need to be retrained to solve any problem with a different resolu-
tion. These models provide a baseline for the size and diversity of
existing 3D TO datasets. Statistics on the corresponding datasets
used are included in Table 1, for easy comparison to our own.

3. METHODOLOGY
In this section, we go into the details of our approach and

discuss some of the details of our solver and dataset. We then dis-
cuss NITO-3D, focusing on its resolution-free, domain-agnostic
features.

3.1 Dataset Generation & Solver
As discussed, data-generation throughput is a critical lim-

itation for DGTOMs. To address this, we introduce a fast it-
erative TO solver customized for dataset generation and release
the largest public dataset of optimized 3D topologies. In this
subsection, we discuss the features of our solver and dataset.

3.1.1 Solver. Many iterative TO solvers are publicly avail-
able [81] in a variety of different software languages, each with
varying implementation nuances. For readers who are interested
in an in-depth review and analysis of these different solvers, we
refer you to the review article by Wang et. al. [81]. Existing
code suffers from a few important problems which makes them
less suited for large-scale data generation. First, many of them
are implemented in MATLAB [81], while most deep learning
research is often conducted using Python-based libraries. Con-
sidering this, many independent developers and researchers have
developed Python libraries for performing TO in Python, such as
Topy [26], or DL4TO [82] which is focused on Pytorch imple-
mentation for direct gradient passing to Pytorch for training based
on FEA. Unfortunately, these libraries are either out of date [26],
or focus on integrating FEA into deep learning platforms [82].
In both cases, the libraries use solvers and numerical schemes
that are not optimized for dataset generation, both when it comes
to the solvers used and when it comes to their Python APIs fo-
cused on the TO task rather than being tailored for randomizing
boundary conditions and generating data.

Given the constraints of current TO libraries, we developed
a new TO library. In doing so, we carefully considered the ex-
isting state-of-the-art in iterative TO [81] and consolidated sev-
eral cutting-edge techniques into our framework to both improve
and accelerate the optimization process. We also implemented
pipelines for a versatile Python API to seamlessly import meshes,
performing TO for minimum compliance in both 2D and 3D
problems, and evalaute results both visually and analytically. A
comprehensive discussion of our solver’s features exceeds this
paper’s scope, but we offer a summary of key functionalities and
direct readers to our code and documentation for in-depth details.

Finite Element Analysis (FEA) For Linear Elasticity: Itera-
tive TO solvers rely on Finite Element Analysis (FEA) solvers to

4

TABLE 1: Comparison to existing datasets of optimized 3D topologies and several recent public 2D datasets. We consider the
number of topologies included, the minimum and maximum number of elements per topology, the total elements across all
topologies, the number of unique support configurations, and the number of unique aspect ratios in the dataset. Our dataset
features an order of magnitude more topologies, configurations and total elements than existing 3D TO datasets.

Number of
Topologies

Minimum
Elements

Maximum
Elements

Total
Elements

Support
Configs

Aspect
Ratios

Domain
Dimensionality

Topodiff [21] & DOM [22] 33K 4.1K 4.1K 122M 42 1 2D
TopologyGAN [20] 49K 8.2K 8.2K 402M 42 1 2D

DOM [22] & NITO [24] 60K 66K 66K 3.9B 42 1 2D

Keshavarzzadeh et. al. [79] 2.0K 0.4K 3.2K 3.6M 1 1 3D
Behzadi & Ilies [25] 2.2K 8.0K 128K 75M 9 5 3D
Dittmer et. al. [80] 9.8K 6.1K 32K 315M 11 2 3D
NITO-3D (ours) 122K 32K 48K 4.3B 210 7 3D

solve the linear elasticity equation for different problems. The first
step in FEA is to discretize a physical domain, which is done by
making meshes that describe a given domain in discrete volumet-
ric or surface meshes for 3D and 2D respectively. Commonly,
structured meshes comprising square quadrilaterals in 2D and
voxel hexahedrals in 3D are employed, as noted in most publicly
available codes [81]. However, this approach can compromise the
accuracy of complex shape representations. To overcome these
limitations, our method supports the use of both arbitrary linear
triangle and quadrilateral elements in 2D, and arbitrary linear
tetrahedral or hexahedral elements in 3D, enhancing our ability
to accurately model more intricate domain shapes. In conducting
Finite Element Analysis (FEA) on a mesh, assembling the stiff-
ness matrix (𝐾) for given boundary conditions is the initial step.
This involves calculating the stiffness for each element based on
material properties like Young’s modulus and Poisson’s ratio,
which depend on the material density field (𝜙). Thus, assembling
𝐾 becomes a repetitive task in each optimization cycle.

While structured meshes benefit from computational ef-
ficiencies due to their regularity, our goal to generate di-
verse datasets necessitates accommodating arbitrary, unstruc-
tured meshes, making stiffness matrix assembly more challeng-
ing. To streamline this process for unstructured meshes, we
have developed a method to vectorize the assembly of the stiff-
ness matrix. We precompute sparse assembly kernels that map
the stiffness contributions of each element to the overall matrix
based on element densities, creating a sparse kernel matrix sized
𝑁𝑛𝑜𝑛−𝑧𝑒𝑟𝑜 by 𝑁𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠. This approach allows for efficient ma-
trix multiplication that aggregates these contributions into the
comprehensive stiffness matrix 𝐾 , all while maintaining sparse
matrix efficiency. We apply a similar strategy for other density-
dependent calculations, like adjoint gradient updates, enhancing
overall optimization speed. Detailed explanations and kernel
construction are documented in our code.

After assembling the stiffness matrices, the subsequent task
involves solving the resultant large sparse linear system. We
primarily employ a direct sparse solver executing Cholesky de-
composition, capitalizing on the guaranteed symmetric positive
definite nature of stiffness matrices. This method proves signif-
icantly more efficient than LU decomposition utilized by earlier
Python solvers, such as Topy. For exceedingly large systems

where Cholesky decomposition’s performance diminishes, we
switch to the conjugate gradient (CG) method. Notably, our solver
introduces, for the first time to our knowledge, GPU acceleration
for the CG method, achieving substantial speed enhancements for
large-scale problems. These advancements are integrated into our
solver, accessible through a user-friendly Python API, facilitat-
ing TO applications on both structured and unstructured meshes
across large domains. This solver is made publicly available with
a simple Python API which allows for easy application of TO
for both structured and unstructured meshes and for very large
domains, which we release as part of our solver.

3.1.2 Randomization Process and Dataset. Besides
the aforementioned accelerated solver, we also include code for
random parallelized TO data generation on both CPU and GPU
This is done by a configuration randomizer that creates random-
ized load cases, boundary configurations, and resolutions for TO
problems. In creating our dataset, we select a discrete set of 210
resolution, domain, and boundary condition combinations, while
leaving the load position and direction random across the entire
domain surface. More details are included in Appendix A. Some
samples from the dataset are displayed in Fig. 2, which shows
several of the dataset’s different domain shapes and boundary
condition combinations. In total, the dataset includes 106,425
3D topologies with different domain shapes, resolutions, and
boundary conditions.

3.2 Introduction to Hybrid 3D Neural Implicit
Topology Optimization
In this paper, we introduce a hybrid scheme to accelerate

topology optimization by combining deep learning with opti-
mization, which retains the precision of optimization schemes
while accelerating optimization using deep learning. Our frame-
work is designed to expedite topology generation by removing
the need for iterative sampling, achieving linear scalability with
the number of sampled points. In this section, we detail how
we achieve this by describing different aspects of our proposed
model.

3.2.1 Implicit Neural Representation For Learning
Material Density. The core objective of our framework is to
learn the material distribution within a domain to minimize the
mechanical compliance of the resulting structure. Following [24],

5

Random Boundary Conditions And Domains From The Dataset

Optimized Topologies For The Above Boundary Conditions

Fixed in X Fixed in Y Fixed in Z Force

FIGURE 2: Random samples from the dataset demonstrating
the diversity of different domain shapes and varying bound-
ary conditions and loads that are included in the dataset.
Aside from the domain shapes, different resolutions also ap-
ply to these domains which may not be visible here. The
boundary conditions are displayed above and the corre-
sponding SIMP solution is displayed below it.

material distribution is depicted by a density field 𝜌(x), with x
being a spatial coordinate and 𝜌(x) representing the material
density at that point. Our aim is not to learn a singular material
distribution but to determine a conditional density field based on
specific boundary conditions and volume constraints:

�̂�(x|C; 𝜃) = 𝑓𝜃 (x,C), (2)

where 𝑓 represents the neural field function, determined by the
network architecture, and C encapsulates conditions like domain
shape, boundary conditions, and volume ratio, and 𝜃 refers to the
parameters defining the model. Ideally, the neural field should
output binary values at any point, indicating the presence or
absence of material. However, to make the problem tractable, we
interpret the output as the probability of material presence at a
given point. Therefore, the objective function is reformulated to:

L(𝜃) = − Ex,C [𝜌(x|C) log 𝑓𝜃 (x,C)
+(1 − 𝜌(x|C)) log(1 − 𝑓𝜃 (x,C))]

(3)

where 𝜌(x|C) represents the material probability at x, which is
aligned with the output from the SIMP optimizer. Figure 4 pro-

40x40x20 32x32x32 120x40x10

64x32x16 120x20x20 80x40x15

60x40x20

FIGURE 3: The 7 different domain shapes and resolutions
used in the dataset. This shows that our dataset covers both
different shapes and different resolutions.

vides a detailed depiction of the NITO-3D framework’s operation.

3.2.2 Beyond Physical Fields: Latent Constraint
Representation. One of the key contributions of NITO-3D
compared to recent works [20–22, 83] is the transition away from
physical fields as a conditioning mechanism. In this section, we
discuss the limitations brought about by physical fields and our
approach to eliminating them in favor of cheaper, more general-
izable conditioning methods.

Conditioning on Physics Fields: Previous research [20, 21, 83,
83] predominantly employs physical fields like stress and strain
energy derived from simulations to represent boundary condi-
tions into problems. This method is often deemed essential for
high-performance topology generation using conditioned gener-
ative models. However, this reliance on field-based conditioning
restricts the models to a specific resolution and domain due to the
dependency on CNNs, impacting their generalizability. It is also
time-consuming, effectively requiring a finite element simulation
for every topology generated. The prevalent use of field-based
conditioning is arguably due to limitations in existing condition-
ing mechanisms, where conditioning is typically applied only
at the initial layers. NITO-3D leverages a simplified model to
represent and integrate conditions, enhancing generality and ap-
plicability.

Constraints as Point Clouds: Using the ‘Boundary Point
Order-invariant MLP’ (BPOM) method from [24] for 2D prob-
lems, our methodology aims to represent 3D TO problem bound-
ary conditions in a domain-agnostic manner, enabling generaliza-
tion across various domain shapes without the need for distinct
models for each domain shape or resolution. We represent con-
ditioning based on loads, displacement constraints, and volume
fraction using four separate point clouds for loads, and x, y, and z
supports. These sparse conditions are condensed into a single la-

6

Force

Fixed in X
Fixed in Y
Fixed in Z

Domain Shape

Target Volume Fraction
BP

O
M

X Y

X Constraint Point Cloud
Z

X Y

Y Constraint Point Cloud
Z

Z Constraint Point Cloud
X Y Z

BP
O

M
BP

O
M

...
...

...

X Y

Force Point Cloud
Z

BP
O

M
...

FC
 L

ay
er

............

Latent Constraint Representation

Mesh Element Centroid
x,y,z

Fo
ur

ie
r F

ea
tu

re

M
ap

pi
ng

FC
 L

ay
er

FC Layer FC Layer

Conditioning Through
Modulation of Layer Normalization

0

...

FC
 L

ay
er

...

...

Generated Density Field

Few Step Direct
Optimization

Final Topology

Fx Fy Fz

FIGURE 4: The NITO-3D framework for generalizable topology optimization through deep optimization. BPOM is used to process
point cloud representations of the boundary conditions and a neural field is guided by these representations by modulating
layer normalization based on the latent representation of the constraints. In the end, the resulting density field is further refined
through a few steps of direct optimization.

Point Cloud Representation

Force

Fixed in X
Fixed in Y
Fixed in Z

X Y 1 1 1Z
X Y 1 1 1Z

X Y 1 1 1Z

X Y Fx Fy FzZ

Problem Field Representation

FIGURE 5: Comparison of field-based representations, given
a TO problem (left), such as stress fields (middle), and point-
cloud-based (right). Unlike the iterative FEA method, point
clouds provide a more generalizable and memory-efficient
representation of the boundary conditions.

tent representation using ResP Layers proposed by Ma et. al. [84]
from the PointMLP model. We omit the geometric affine module
proposed in the original work due to the simpler nature of our
boundary condition point clouds.

Order-Invariant Aggregation Given the variable size of point
clouds, we employ order-invariant pooling, as in [24] to con-
solidate each point cloud into a singular vector representing the
boundary conditions, combining minimum, maximum, and aver-
age pooling results. These vectors are then concatenated to form

a comprehensive representation, which is inputted into the mod-
ulated layer normalization mechanism of our conditional neural
fields (more details to follow). Additionally, the volume fraction,
a singular value, is processed through a fully-connected layer,
with its output integrated with the BPOM results for complete
boundary condition representation.

3.2.3 Building Blocks of Neural Implicit Fields. In
this section, we will delve into some key aspects of our frame-
work’s implementation. Our implementation utilizes neural fields
constructed from basic multi-layer perceptrons (MLPs). Among
the various implicit neural field models, our approach specifically
adopts SIREN layers, as introduced by Sitzmann et al. [85], which
incorporate sine activation functions at each layer’s output. More-
over, implicit neural fields have been identified to occasionally
overlook finer details in higher-frequency features. The work of
Tancik et al. [86] highlights that the application of Fourier feature
mapping to spatial coordinates effectively addresses this limita-
tion. Consequently, we have integrated Fourier feature mapping
into our model’s input coordinates.

Advanced Conditioning Techniques for TO: Neural fields
are capable of adapting to new scenarios through conditioning
on a latent vector C. This vector represents the unique attributes
of a TO problem, including boundary conditions and volume

7

ratio, or forces and domain shape. The concept of Feature-
wise Linear Modulation (FiLM) proposed by Perez et al. [87],
which conditions the model by adjusting the output across var-
ious layers, informs our approach. Specifically, this adjustment
is achieved through two networks, 𝛼(C) and 𝛽(C), that compute
multiplicative and additive modulations for each layer’s output.
Drawing inspiration from techniques surrounding conditioning
through normalization layers like adaptive instance normaliza-
tion (AdaIN) [88], our model conditions neural fields by applying
layer normalization coupled with modulation of the layer norm’s
scale and shift for each output feature.

Synthesizing Components for Topology Optimization:
Putting this all together this framework can be described as:

𝑓𝜃 (x,C) = 𝑓 (𝐿) ◦ 𝑓 (𝐿−1) ◦ · · · ◦ 𝑓 (0) (x,C)) (4)

where 𝑓 (𝑖) for 𝑖 ∈ {1, 2, ..., 𝐿 − 1} indicates the function applied
at each layer of the neural field except the first and last layer.
Each layer takes a hidden input ℎ (𝑖) and sends it through a fully
connected (FC) layer and normalization with modulation based
on the condition vector, which in this case is the latent constraint
vector C:

𝑓 𝑖 (ℎ𝑖 ,C) = sin(𝐿𝑁1,0 (𝑊 𝑖ℎ𝑖 + 𝑏𝑖) × 𝛼(C) + 𝛽(C)), (5)

where 𝐿𝑁1,0 is layer norm with scale=1 and shift=0 and 𝛼 and 𝛽
are FC layers that use the condition C to determine the feature-
wise scale and shift for the normalization. In the first layer, the
input coordinates are transformed by Fourier feature mapping be-
fore being passed to the first FC layer in the neural field. The
final layer lacks the conditioning modulation on layer normaliza-
tion and is activated by a 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 function rather than the sin
activation used in other layers. These neural fields can easily be
adapted to any domain shape or resolution so long as it is speci-
fied in the latent representation C. This stems from the fact that
the input to the neural field is coordinates, which allows for sam-
pling arbitrarily in space making this kind of model well-suited
for generalization to different domains.

Perfecting Generated Topologies with Few-step Refinement:
While generative models and deep learning strategies have shown
promise in TO, the quality of topologies they produce still
lags behind that of traditional optimization baselines. Gian-
none et. al. [22] suggest an innovative solution to bridge this
gap by incorporating a few optimization steps (5-10) using SIMP
on the outputs from generative models, a stark reduction from
the hundreds of iterations typically required for full optimization.
This strategy leverages near-optimal topologies generated by the
models as starting points, allowing SIMP to refine them quickly
and efficiently under given boundary conditions. We adopt this
strategy in our approach, viewing it as an integral part of the
generative model-based topology generation process. This inte-
gration solidifies the NITO-3D framework as a comprehensive
‘deep optimization’ methodology, as depicted in Figure 4.

4. EXPERIMENTS & RESULTS
In this section, we conduct various experiments to demon-

strate, quantify, and compare the capabilities of NITO-3D to

SIMP. As existing CNN-based methods do not generalize to mul-
tiple domain shapes, unstructured meshes, and different mesh res-
olutions, we solely focus on quantifying the performance of our
method by comparing it against the SIMP optimization method.

With the experiments in this section, we provide compelling
evidence that:

1. NITO-3D is scalable, resolution-free, and compact, with a
smaller number of parameters than even state-of-the-art 2D
models, yet it is capable of performing very well and on par
with SIMP.

2. NITO-3D is faster than most 2D state-of-the-art models,
despite operating on 3D data, and is capable of accelerating
the entire TO process in 3D by an order of magnitude in
comparison to conventional iterative optimization schemes
such as SIMP.

3. NITO-3D integrates the speed of deep learning models with
the accuracy and dependability of optimization methods,
establishing a robust ‘deep optimization’ framework. This
approach is a noteworthy avenue for the widespread imple-
mentation and application of deep learning techniques in the
field of engineering design.

4.1 Experimental Details
We first establish some of the details of the experiments we

run to clarify what we measure and how the measurements are
performed.

Topology Optimization Dataset: We use our new dataset of
optimized 3D topologies for the training and testing of our model.
2,000 samples are held out of the training split for testing.

Evaluation Metrics: We evaluate the models in terms of perfor-
mance (i.e., minimum compliance), constraint satisfaction, and
inference time. Initially, to evaluate the effectiveness of the mod-
els in minimizing compliance, we calculate the compliance er-
ror (CE) by determining the difference between the compliance
of a produced sample and the compliance of the SIMP-optimized
solution for the same issue. Additionally, we assess the volume
fraction error (VFE), which represents the absolute discrepancy
between the actual volume fraction of the generated topology and
the target volume fraction designated for the problem. Beyond
these fundamental performance indicators, we also measure infer-
ence time and compare it against the speed of the SIMP optimizer
for context.

Setup: We train NITO-3D for 50 epochs with a uniform sam-
pling of points in space. The batch size used to train NITO-3D
is 32, with 2048 points sampled for each item in the batch. The
optimizer we use for training is AdamW, with a decaying learning
rate on the cosine schedule, which starts at a learning rate of 10−4

and decays by stepping at the end of each epoch to the minimum
learning rate of 10−5. Since the model in this work is not proba-
bilistic and would not yield different results for a given boundary
conditions, we only asses the performance of the trained model on
one sample for each boundary condition. Similar to prior work,

8

when reporting results, we remove outlier samples [22]. Outliers
are defined as samples where NITO-3D fails to add material at
the location of load and causes compliance error over 1000%.
These samples comprise ∼ 2% of the test data. We then seed
SIMP using the NITO-3D-generated topologies and run SIMP
for 5 and 10 steps.

4.2 Qualitative Results & Discussion of
Generalizability

Ground Truth NITO-3D NITO-3D (5) NITO-3D (10)

FIGURE 6: Qualitative visualization of NITO-3D generated
topologies with and without a few steps of direct optimiza-
tion. Column 1: ground truth obtained using our SIMP opti-
mizer. Column 2: The topology produced by the neural field
with BPOM without direct optimization. Columns 3 & 4: the
NITO-3D framework output leveraging 5 and 10 steps of di-
rect optimization. We see that NITO-3D is an effective deep
optimization framework that could enable accelerated topol-
ogy optimization in a generalizable fashion. Note that the raw
output of the neural field includes continuous values that are
not easy to visualize, which is why a few steps of optimiza-
tion are effective [24].

Here we visualize some of the results of our experiments
and discuss some notable observations. Figure 6 shows a few
examples of topologies generated by NITO-3D with and without
additional SIMP optimization steps. In most cases, NITO-3D

produces topologies that are very close to the ground truth topol-
ogy. However, we see that NITO-3D sometimes struggles to
cleanly generate intricate features that are present in the ground
truth topologies. This highlights the value of adding a very small
number of steps of direct optimization. Even with 5 steps of SIMP
on top of NITO-3D, the resulting topologies quickly converge to
detailed topologies, and with 10 steps of direct optimization, the
results start to look even better. This observation is also sup-
ported by our quantitative results (discussed later), where the
median compliance error of NITO-3D reduces from 0.32% to
0.11% in five steps and 0.077% in ten steps.

Importantly, we see NITO generating topologies in different
domain shapes and resolutions without retraining. As discussed,
most prior works focus on one domain shape at a time and require
retraining on new domains. We demonstrate that generalizable
frameworks like NITO-3D can cover different domain shapes
and resolutions simultaneously without any significant loss of
performance. Notably, NITO-3D has also learned to generate
near-optimal topologies without the need for physical fields as
input for describing boundary conditions, showing that BPOM
is an effective strategy for conditioning deep learning models
on sparse boundary conditions. This is also a critical step for
generalizability, avoiding fixed-domain non-sparse conditioning
strategies. These results showcase NITO-3D’s promise as a gen-
eralizable and foundational framework for topology optimization.

4.3 Performance
In Table 2, we present the performance metrics and constraint

satisfaction outcomes. The table reveals that our TO frame-
work, which leverages neural fields, achieves comparable results
to SIMP in most scenarios, even without implementing the direct
optimization step. This is highlighted by the median compli-
ance error of 0.32%, marked in green in Table 2. However, it’s
noted that in some instances, solely using neural fields results in
significant deviations, pushing the average compliance error to
5.95%, much higher than the median. Yet, incorporating a direct
optimization step significantly enhances the neural field’s density
predictions. Unlike the binary outcomes seen in Figure 6, the
neural field actually produces a probability map that can be finely
tuned through direct optimization, avoiding the need for binary
thresholding. This nuanced approach allows for rapid optimiza-
tion convergence, particularly in areas of uncertainty predicted
by the neural field, as shown by the reduced compliance error
to 0.52% and volume fraction error to below 1% with just five
steps of direct optimization in Table 2. This capability outpaces
approaches that rely on more deterministic starting points [24],
affirming the synergistic potential of neural fields and optimiza-
tion in a ‘deep optimization’ strategy for accelerated TO. Kernel
density estimates of compliance error distributions are also in-
cluded in Figure 7.

Another notable observation we encountered in the quanti-
tative data is that in some cases, NITO-3D outperforms SIMP. In
the 2,000 test samples that we used in our experiments, NITO-3D
with 10 steps of optimization outperformed the ground truth in 86
of the cases, about 4%. This is something that other works have
also observed in some cases [21, 22, 24], which shows that there
may be certain advantages of deep learning-based frameworks in

9

TABLE 2: Quantitative evaluations of NITO-3D with and with-
out direct optimization. This table shows that NITO’s perfor-
mance is very close to SIMP with much less time devoted to
optimization. Even without direct optimization, NITO-3D per-
forms very well on the test data with an average compliance
error of 5.96%. Note that the median value for compliance er-
ror is far lower, which is because a handful of outliers skew
the mean while in most cases vanilla neural fields would per-
haps be close enough to SIMP.

Model CE % Mean CE % Med VFE % Mean VFE % Med

NITO-3D 5.95 0.32 4.38 2.40
NITO-3D (5) (ours) 0.52 0.11 0.96 0.81
NITO-3D (10)(ours) 0.31 0.077 0.67 0.54

2 1 0 1 2 3 4 5 6
Compliance Error (%)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

De
ns

ity

NITO-3D (10)
NITO-3D (5)
NITO-3D (0)

FIGURE 7: Kernel density estimate plot of compliance error
distributions for NITO-3D with 0, 5, and 10 steps of optimiza-
tion. With more optimization, NITO-3D generates compli-
ances with near-zero compliance error. Interestingly, NITO-
3D without optimization yields more designs with lower com-
pliance than SIMP (negative compliance error). This phe-
nomenon is explained by the higher volume fraction error,
causing some of these generated design to use more mate-
rial than SIMP.

improving upon the optimization algorithms they are trained to
emulate.

4.4 Inference Speed & Scalability
One of the key benefits of deep learning for TO is speed. We

therefore measure inference time and speed for different configu-
rations of NITO-3D in Table 3. We measure inference times and
compare them against the inference time for performing the full
optimization using SIMP. We see that the neural field alone only
takes an average of 0.124s to compute topologies, which is an
impressive 1900x improvement in inference, this is also faster
than most CNN-based methods in 2D [22]. However, even with
10 steps of direct optimization to improve accuracy, NITO-3D
still provides a 93% (14x faster) reduction in inference time as
compared to SIMP. With 5 steps of direct optimization, NITO-3D
is 97% faster than SIMP (29x faster). As shown, taking just a
few steps of direct optimization is still many times faster than a

full SIMP optimization and is a potent strategy to reduce total
inference time. Note that these results are based on topologies
with different resolutions and domain shapes and are the average
time measured across the test set. Imporantly, SIMP inference is
measured for 150 steps, which is roughly what we observed as
the average iteration count for convergence when generating the
data (iteration count for topologies in the dataset varied due to
naturally differing convergence rates).

TABLE 3: Average inference time measured for SIMP and
NITO-3D in different configurations. Here we see that NITO-
3D without direct optimization is multiple orders of magni-
tude faster than SIMP, while even with 10 steps of direct op-
timization, NITO-3D is 93% faster than SIMP. Note that times
are averaged for test samples from the dataset which have
different element counts. SIMP time is calculated for 150
steps of optimization, the rough average iteration count to
convergence in generating the dataset. These times are mea-
sured using an RTX 4090 GPU and i9-13900K CPU.

SIMP (150) NITO-3D (0) NITO-3D (5) NITO-3D (10)

Inf. Time (s) 239.14 0.124 8.10 16.06
Acceleration 0% 99.95% 96.61% 93.28%

NITO-3D has several features that allow for natural paral-
lelism and low memory use. NITO trains by sampling batches of
points from a field. This enables easy parallelism, accelerating
training on modern GPUs. Notably, it also avoids problematic
memory scaling trends seen in convolution-based models. To
train on larger and larger dimensionalities, CNNs require more
memory [89]. For example, to train a reasonable 3D diffusion
model on 64x64x64 topologies would require over 24 GB of
GPU memory to train, more than is offered on any consumer-
grade GPU offered on the market at the time of writing. To
handle higher-resolution topologies using CNNs, practitioners
would need large numbers of deep learning-optimized GPUs in
large clusters. In contrast, NITO-3D can handle arbitrarily high-
resolution with the same amount of memory. Despite training on
much larger problems and handling a greater variety of domains,
NITO-3D is much smaller than even convolution-based models
for smaller 2D problems. Table 4 summarizes the adaptability
and scalability of NITO-3D, compared to several select DGTOMs
and neural field-based methods.

5. CONCLUSION & FUTURE WORKS
We propose NITO-3D, a 3D Neural Implicit Topology Opti-

mization framework, marking a departure from traditional neural
TO methods as a pure resolution- and domain-agnostic approach.
Our proposed Boundary Point Order-Invariant MLP (BPOM)
sidesteps the complexities that CNNs face, enabling NITO to
adapt to various resolutions and domain shapes without retrain-
ing. It also has a smaller parameter footprint than 2D models.
The ability of NITO-3D to scale and generalize provides a strong
basis for future models in topology optimization and other areas
involving physics, solving high-dimensional problems that were
not possible with CNN-based methods.

We also introduce an efficient Python solver for rapid data
generation and a comprehensive dataset of 122K optimized 3D

10

TABLE 4: In this table, we summarize some of the latest works on TO using deep learning. Domain adaptability refers to an
approach’s ability to be trained on multiple domain shapes simultaneously. Resolution-free refers to an approach’s ability to be
trained and inferred at multiple resolutions at the same time. Scalable training refers to the fact that the training does not require
processing information on an entire domain, enabling training on very large domains (e.g., the model does not need physical
fields for training and does not need to generate the solution during training). We see that the best-performing convolution-based
methods are not generalizable while requiring significantly more parameters for 2D than NITO-3D needs for 3D. † IF-TONIR has
no public code and its model size is unknown. ‡ IF-TONIR’s training is resolution-dependent due to field calculations. During
inference, different topologies can be sampled, but the provided physical field must be calculated at the same resolution as the
training data.

Model Domain
Dimensionality

Parameter
Count (M)

Domain
Adaptable

Resolution
Free

Scalable
Training

Base
Architecture

TopoDiff [21] 2D 121 ✗ ✗ ✗ Convolution
TopoDiff-Guided [21] 2D 239 ✗ ✗ ✗ Convolution
DOM [22] 2D 121 ✗ ✗ ✗ Convolution
TopologyGAN [20] 2D ∼ 300 ✗ ✗ ✗ Convolution

IF-TONIR (CNN Based Encoder/Conditioning) [18] 2D N/A† ✓ ✗‡ ✗ Neural Field
NITO [24] 2D 22 ✓ ✓ ✓ Neural Field
NITO-3D 3D 72 ✓ ✓ ✓ Neural Field

topologies to aid future TO model development. While NITO
advances TO, its deterministic nature limits design diversity and
its performance on new problem types. Future research must
focus on this aspect, possibly by incorporating advancements in
probabilistic approaches for neural implicit fields [90, 91]. In
addition, future enhancements should concentrate on refining the
training methods and architecture of NITO to minimize reliance
on direct optimization steps for detail, thereby enhancing the
model’s independence and accuracy in generated topologies.

ACKNOWLEDGMENTS
We acknowledge the help and guidance provided by Giorgio

Giannone in developing the methodology. We would also like to
thank Professor Josephine V. Carstensen for her course on topol-
ogy optimization which provided the necessary background and
guidance to develop the solver used in this work for data gener-
ation. The authors also acknowledge the MIT SuperCloud and
Lincoln Laboratory Supercomputing Center for providing high-
power computing resources that allowed for the timely creation
of our dataset. Finally, we also thank MathWorks for supporting
Amin Heyrani Nobari’s studies while working on this project

REFERENCES
[1] Sigmund, Ole and Maute, Kurt. “Topology optimization

approaches: A comparative review.” Structural and Multi-
disciplinary Optimization Vol. 48 No. 6 (2013): pp. 1031–
1055. DOI 10.1007/s00158-013-0978-6.

[2] Bendsøe, Martin Philip and Kikuchi, Noboru. “Gener-
ating optimal topologies in structural design using a ho-
mogenization method.” Computer Methods in Applied Me-
chanics and Engineering Vol. 71 No. 2 (1988): pp. 197–
224. DOI https://doi.org/10.1016/0045-7825(88)90086-
2. URL https://www.sciencedirect.com/science/article/pii/
0045782588900862.

[3] Rozvany, G. I. N., Zhou, M. and Birker, Torben. “Gener-
alized shape optimization without homogenization.” Struc-
tural optimization Vol. 4 (1992): pp. 250–252.

[4] Woldseth, Rebekka V, Aage, Niels, Bærentzen, J Andreas
and Sigmund, Ole. “On the use of artificial neural networks
in topology optimisation.” Structural and Multidisciplinary
Optimization Vol. 65 No. 10 (2022): p. 294.

[5] Child, Rewon. “Very Deep VAEs Generalize Autoregres-
sive Models and Can Outperform Them on Images.” arXiv
preprint arXiv:2011.10650 (2020).

[6] Brock, Andrew, Donahue, Jeff and Simonyan, Karen.
“Large scale gan training for high fidelity natural image
synthesis.” arXiv preprint arXiv:1809.11096 (2018).

[7] Ho, Jonathan, Jain, Ajay and Abbeel, Pieter. “De-
noising Diffusion Probabilistic Models.” Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M.F. and Lin, H.
(eds.). Advances in Neural Information Processing Sys-
tems, Vol. 33: pp. 6840–6851. 2020. Curran Associates,
Inc. URL https://proceedings.neurips.cc/paper/2020/file/
4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.

[8] Rombach, Robin, Blattmann, Andreas, Lorenz, Dominik,
Esser, Patrick and Ommer, Björn. “High-Resolution Image
Synthesis with Latent Diffusion Models.” arXiv preprint
arXiv:2112.10752 (2021).

[9] Devlin, Jacob, Chang, Ming-Wei, Lee, Kenton and
Toutanova, Kristina. “Bert: Pre-training of deep bidi-
rectional transformers for language understanding.” arXiv
preprint arXiv:1810.04805 (2018).

[10] Brown, Tom B, Mann, Benjamin, Ryder, Nick, Subbiah,
Melanie, Kaplan, Jared, Dhariwal, Prafulla, Neelakantan,
Arvind, Shyam, Pranav, Sastry, Girish, Askell, Amanda
et al. “Language models are few-shot learners.” arXiv
preprint arXiv:2005.14165 (2020).

[11] Raffel, Colin, Shazeer, Noam, Roberts, Adam, Lee, Kather-
ine, Narang, Sharan, Matena, Michael, Zhou, Yanqi, Li,
Wei and Liu, Peter J. “Exploring the limits of transfer
learning with a unified text-to-text transformer.” The Jour-
nal of Machine Learning Research Vol. 21 No. 1 (2020):
pp. 5485–5551.

11

https://doi.org/10.1007/s00158-013-0978-6
https://doi.org/https://doi.org/10.1016/0045-7825(88)90086-2
https://doi.org/https://doi.org/10.1016/0045-7825(88)90086-2
https://www.sciencedirect.com/science/article/pii/0045782588900862
https://www.sciencedirect.com/science/article/pii/0045782588900862
https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf

[12] Ramesh, Aditya, Dhariwal, Prafulla, Nichol, Alex, Chu,
Casey and Chen, Mark. “Hierarchical text-conditional
image generation with clip latents.” arXiv preprint
arXiv:2204.06125 (2022).

[13] Nichol, Alex, Dhariwal, Prafulla, Ramesh, Aditya, Shyam,
Pranav, Mishkin, Pamela, McGrew, Bob, Sutskever, Ilya
and Chen, Mark. “Glide: Towards photorealistic image
generation and editing with text-guided diffusion models.”
arXiv preprint arXiv:2112.10741 (2021).

[14] Blattmann, Andreas, Rombach, Robin, Oktay, Kaan and
Ommer, Björn. “Retrieval-Augmented Diffusion Models.”
arXiv preprint arXiv:2204.11824 (2022).

[15] Ramesh, Aditya, Pavlov, Mikhail, Goh, Gabriel, Gray, Scott,
Voss, Chelsea, Radford, Alec, Chen, Mark and Sutskever,
Ilya. “Zero-shot text-to-image generation.” International
Conference on Machine Learning: pp. 8821–8831. 2021.
PMLR.

[16] Regenwetter, Lyle, Nobari, Amin Heyrani and Ahmed, Faez.
“Deep generative models in engineering design: A review.”
Journal of Mechanical Design Vol. 144 No. 7 (2022): p.
071704.

[17] Song, Binyang, Zhou, Rui and Ahmed, Faez. “Multi-
modal Machine Learning in Engineering Design: A Review
and Future Directions.” arXiv preprint arXiv:2302.10909
(2023).

[18] Hu, Jiangbei, He, Ying, Xu, Baixin, Wang, Shengfa,
Lei, Na and Luo, Zhongxuan. “IF-TONIR: Iteration-free
Topology Optimization based on Implicit Neural Repre-
sentations.” Computer-Aided Design Vol. 167 (2024): p.
103639. DOI https://doi.org/10.1016/j.cad.2023.103639.
URL https://www.sciencedirect.com/science/article/pii/
S0010448523001719.

[19] Wu, Rundi, Xiao, Chang and Zheng, Changxi. “DeepCAD:
A Deep Generative Network for Computer-Aided Design
Models.” (2021). URL 2105.09492.

[20] Nie, Zhenguo, Lin, Tong, Jiang, Haoliang and Kara, Lev-
ent Burak. “Topologygan: Topology optimization using
generative adversarial networks based on physical fields
over the initial domain.” Journal of Mechanical Design
Vol. 143 No. 3 (2021).

[21] Mazé, F. and Ahmed, F. “Diffusion Models Beat GANs on
Topology Optimization.” Proceedings of the AAAI Confer-
ence on Artificial Intelligence (AAAI). 2023. Washington,
DC. URL https://arxiv.org/abs/2208.09591.

[22] Giannone, Giorgio, Srivastava, Akash, Winther, Ole and
Ahmed, Faez. “Aligning Optimization Trajectories with
Diffusion Models for Constrained Design Generation.”
arXiv preprint arXiv:2305.18470 (2023).

[23] Giannone, Giorgio and Ahmed, Faez. “Diffusing the Op-
timal Topology: A Generative Optimization Approach.”
arXiv preprint arXiv:2303.09760 (2023).

[24] Nobari, Amin Heyrani, Giannone, Giorgio, Regenwetter,
Lyle and Ahmed, Faez. “NITO: Neural Implicit Fields for
Resolution-free Topology Optimization.” arXiv preprint
arXiv:2402.05073 (2024).

[25] Behzadi, Mohammad Mahdi and Ilieş, Horea T. “Real-Time
Topology Optimization in 3D via Deep Transfer Learn-

ing.” Computer-Aided Design Vol. 135 (2021): p. 103014.
DOI 10.1016/j.cad.2021.103014. URL https://linkinghub.
elsevier.com/retrieve/pii/S0010448521000257.

[26] Hunter, William et al. “Topy-topology optimization with
python.” (2017).

[27] Liu, Kai and Tovar, Andrés. “An efficient 3D topology
optimization code written in Matlab.” Structural and Mul-
tidisciplinary Optimization Vol. 50 (2014): pp. 1175–1196.

[28] Bendsøe, Martin P. “Optimal shape design as a material dis-
tribution problem.” Structural optimization Vol. 1 (1989):
pp. 193–202.

[29] Abueidda, Diab W., Koric, Seid and Sobh, Nahil A. “Topol-
ogy optimization of 2D structures with nonlinearities using
deep learning.” Computers & Structures Vol. 237 (2020):
p. 106283. DOI 10.1016/j.compstruc.2020.106283.
URL https://linkinghub.elsevier.com/retrieve/pii/
S0045794920300869.

[30] Ates, Gorkem Can and Gorguluarslan, Recep M. “Two-
stage convolutional encoder-decoder network to improve
the performance and reliability of deep learning models
for topology optimization.” Structural and Multidisci-
plinary Optimization Vol. 63 No. 4 (2021): pp. 1927–
1950. DOI 10.1007/s00158-020-02788-w. URL http:
//link.springer.com/10.1007/s00158-020-02788-w.

[31] Ma, Fulei and Zeng, Zhi. “High-risk prediction local-
ization: evaluating the reliability of black box models
for topology optimization.” Structural and Multidisci-
plinary Optimization Vol. 62 No. 6 (2020): pp. 3053–
3069. DOI 10.1007/s00158-020-02648-7. URL https:
//link.springer.com/10.1007/s00158-020-02648-7.

[32] Ulu, Erva, Zhang, Rusheng and Kara, Levent Burak. “A
data-driven investigation and estimation of optimal topolo-
gies under variable loading configurations.” Computer
Methods in Biomechanics and Biomedical Engineering:
Imaging & Visualization Vol. 4 No. 2 (2016): pp.
61–72. DOI 10.1080/21681163.2015.1030775. URL
http://www.tandfonline.com/doi/full/10.1080/21681163.
2015.1030775.

[33] Hertlein, Nathan, Buskohl, Philip R., Gillman, Andrew,
Vemaganti, Kumar and Anand, Sam. “Generative adver-
sarial network for early-stage design flexibility in topol-
ogy optimization for additive manufacturing.” Journal
of Manufacturing Systems Vol. 59 (2021): pp. 675–685.
DOI 10.1016/j.jmsy.2021.04.007. URL https://linkinghub.
elsevier.com/retrieve/pii/S027861252100087X.

[34] Yildiz, A.R., Öztürk, N., Kaya, N. and Öztürk, F. “In-
tegrated optimal topology design and shape optimiza-
tion using neural networks.” Structural and Multidisci-
plinary Optimization Vol. 25 No. 4 (2003): pp. 251–
260. DOI 10.1007/s00158-003-0300-0. URL http://link.
springer.com/10.1007/s00158-003-0300-0.

[35] Banga, Saurabh, Gehani, Harsh, Bhilare, Sanket, Patel,
Sagar and Kara, Levent. “3D Topology Optimization us-
ing Convolutional Neural Networks.” Preprint (2018)URL
http://arxiv.org/abs/1808.07440.

[36] Joo, Younghwan, Yu, Yonggyun and Jang, In Gwun.
“Unit Module-Based Convergence Acceleration for Topol-

12

https://doi.org/https://doi.org/10.1016/j.cad.2023.103639
https://www.sciencedirect.com/science/article/pii/S0010448523001719
https://www.sciencedirect.com/science/article/pii/S0010448523001719
2105.09492
https://arxiv.org/abs/2208.09591
https://doi.org/10.1016/j.cad.2021.103014
https://linkinghub.elsevier.com/retrieve/pii/S0010448521000257
https://linkinghub.elsevier.com/retrieve/pii/S0010448521000257
https://doi.org/10.1016/j.compstruc.2020.106283
https://linkinghub.elsevier.com/retrieve/pii/S0045794920300869
https://linkinghub.elsevier.com/retrieve/pii/S0045794920300869
https://doi.org/10.1007/s00158-020-02788-w
http://link.springer.com/10.1007/s00158-020-02788-w
http://link.springer.com/10.1007/s00158-020-02788-w
https://doi.org/10.1007/s00158-020-02648-7
https://link.springer.com/10.1007/s00158-020-02648-7
https://link.springer.com/10.1007/s00158-020-02648-7
https://doi.org/10.1080/21681163.2015.1030775
http://www.tandfonline.com/doi/full/10.1080/21681163.2015.1030775
http://www.tandfonline.com/doi/full/10.1080/21681163.2015.1030775
https://doi.org/10.1016/j.jmsy.2021.04.007
https://linkinghub.elsevier.com/retrieve/pii/S027861252100087X
https://linkinghub.elsevier.com/retrieve/pii/S027861252100087X
https://doi.org/10.1007/s00158-003-0300-0
http://link.springer.com/10.1007/s00158-003-0300-0
http://link.springer.com/10.1007/s00158-003-0300-0
http://arxiv.org/abs/1808.07440

ogy Optimization Using the Spatiotemporal Deep Neu-
ral Network.” IEEE Access Vol. 9 (2021): pp. 149766–
149779. DOI 10.1109/ACCESS.2021.3125014. URL
https://ieeexplore.ieee.org/document/9599692/.

[37] Kallioras, Nikos Ath., Kazakis, Georgios and Lagaros,
Nikos D. “Accelerated topology optimization by means
of deep learning.” Structural and Multidisciplinary Op-
timization Vol. 62 No. 3 (2020): pp. 1185–1212. DOI
10.1007/s00158-020-02545-z. URL http://link.springer.
com/10.1007/s00158-020-02545-z.

[38] Sosnovik, Ivan and Oseledets, Ivan. “Neural networks for
topology optimization.” Preprint (2017)URL http://arxiv.
org/abs/1709.09578.

[39] Xue, Liang, Liu, Jie, Wen, Guilin and Wang, Hongxin.
“Efficient, high-resolution topology optimization method
based on convolutional neural networks.” Frontiers of
Mechanical Engineering Vol. 16 No. 1 (2021): pp. 80–
96. DOI 10.1007/s11465-020-0614-2. URL http://link.
springer.com/10.1007/s11465-020-0614-2.

[40] Aulig, Nikola and Olhofer, Markus. “Evolutionary gen-
eration of neural network update signals for the topol-
ogy optimization of structures.” Proceedings of the 15th
annual conference companion on Genetic and evolution-
ary computation: pp. 213–214. 2013. ACM, New York,
NY, USA. DOI 10.1145/2464576.2464685. URL https:
//dl.acm.org/doi/10.1145/2464576.2464685.

[41] Olhofer, Markus, Oñate, E, Oliver, J, Huerta, A and
Aulig, Nikola. “TOPOLOGY OPTIMIZATION BY PRE-
DICTING SENSITIVITIES BASED ON LOCAL STATE
FEATURES.” Technical report no. 2014. URL https:
//www.researchgate.net/publication/265593998.

[42] Barmada, Sami, Fontana, Nunzia, Formisano, Alessan-
dro, Thomopulos, Dimitri and Tucci, Mauro. “A Deep
Learning Surrogate Model for Topology Optimization.”
IEEE Transactions on Magnetics Vol. 57 No. 6 (2021):
pp. 1–4. DOI 10.1109/TMAG.2021.3063470. URL https:
//ieeexplore.ieee.org/document/9367238/.

[43] Sasaki, Hidenori and Igarashi, Hajime. “Topology Opti-
mization Accelerated by Deep Learning.” IEEE Transac-
tions on Magnetics Vol. 55 No. 6 (2019): pp. 1–5. DOI
10.1109/TMAG.2019.2901906. URL https://ieeexplore.
ieee.org/document/8673771/.

[44] Elingaard, Martin Ohrt, Aage, Niels, Bærentzen, Jakob An-
dreas and Sigmund, Ole. “De-homogenization using con-
volutional neural networks.” Computer Methods in Applied
Mechanics and Engineering Vol. 388 (2022): p. 114197.
DOI 10.1016/j.cma.2021.114197. URL https://linkinghub.
elsevier.com/retrieve/pii/S0045782521005284.

[45] Napier, Nicholas, Sriraman, Sai-Aksharah, Tran, Huy T. and
James, Kai A. “An Artificial Neural Network Approach for
Generating High-Resolution Designs From Low-Resolution
Input in Topology Optimization.” Journal of Mechanical
Design Vol. 142 No. 1 (2020). DOI 10.1115/1.4044332.
URL https://asmedigitalcollection.asme.org/
mechanicaldesign/article/doi/10.1115/1.4044332/955332/
An-Artificial-Neural-Network-Approach-for.

[46] Yoo, Soyoung, Lee, Sunghee, Kim, Seongsin, Hwang,
Kwang Hyeon, Park, Jong Ho and Kang, Namwoo. “In-
tegrating deep learning into CAD/CAE system: generative
design and evaluation of 3D conceptual wheel.” Structural
and Multidisciplinary Optimization Vol. 64 No. 4 (2021):
pp. 2725–2747. DOI 10.1007/s00158-021-02953-9. URL
https://link.springer.com/10.1007/s00158-021-02953-9.

[47] Chen, Hongrui, Whitefoot, Kate S and Kara, Levent Burak.
“Concurrent build direction, part segmentation, and topol-
ogy optimization for additive manufacturing using neu-
ral networks.” International Design Engineering Techni-
cal Conferences and Computers and Information in Engi-
neering Conference, Vol. 86229: p. V03AT03A029. 2022.
American Society of Mechanical Engineers.

[48] Chandrasekhar, Aaditya, Sridhara, Saketh and Suresh,
Krishnan. “GM-TOuNN: Graded Multiscale Topology
Optimization using Neural Networks.” arXiv preprint
arXiv:2204.06682 (2022).

[49] Chandrasekhar, Aaditya and Suresh, Krishnan. “Multi-
Material Topology Optimization Using Neural Networks.”
Computer-Aided Design Vol. 136 (2021): p. 103017.
DOI 10.1016/j.cad.2021.103017. URL https://linkinghub.
elsevier.com/retrieve/pii/S0010448521000282.

[50] Deng, Hao and To, Albert C. “A Parametric Level Set
Method for Topology Optimization based on Deep Neural
Network (DNN).” Preprint (2021)URL http://arxiv.org/abs/
2101.03286.

[51] Shin, Seungyeon, Shin, Dongju and Kang, Namwoo.
“Topology optimization via machine learning and deep
learning: A review.” Journal of Computational Design
and Engineering Vol. 10 No. 4 (2023): pp. 1736–1766.

[52] Cheng, Yu, Gong, Yongshun, Liu, Yuansheng, Song,
Bosheng and Zou, Quan. “Molecular design in drug dis-
covery: a comprehensive review of deep generative mod-
els.” Briefings in bioinformatics Vol. 22 No. 6 (2021): p.
bbab344.

[53] Chen, Chun-Teh and Gu, Grace X. “Generative deep neural
networks for inverse materials design using backpropaga-
tion and active learning.” Advanced Science Vol. 7 No. 5
(2020): p. 1902607.

[54] Sanchez-Lengeling, Benjamin and Aspuru-Guzik, Alán.
“Inverse molecular design using machine learning: Gen-
erative models for matter engineering.” Science Vol. 361
No. 6400 (2018): pp. 360–365.

[55] Wang, Liwei, Chan, Yu-Chin, Ahmed, Faez, Liu, Zhao,
Zhu, Ping and Chen, Wei. “Deep generative modeling for
mechanistic-based learning and design of metamaterial sys-
tems.” Computer Methods in Applied Mechanics and Engi-
neering Vol. 372 (2020): p. 113377.

[56] Shu, Dule, Cunningham, James, Stump, Gary, Miller, Si-
mon W, Yukish, Michael A, Simpson, Timothy W and
Tucker, Conrad S. “3d design using generative adversarial
networks and physics-based validation.” Journal of Me-
chanical Design Vol. 142 No. 7 (2020): p. 071701.

[57] Regenwetter, Lyle, Curry, Brent and Ahmed, Faez.
“BIKED: A Dataset for Computational Bicycle Design With

13

https://doi.org/10.1109/ACCESS.2021.3125014
https://ieeexplore.ieee.org/document/9599692/
https://doi.org/10.1007/s00158-020-02545-z
http://link.springer.com/10.1007/s00158-020-02545-z
http://link.springer.com/10.1007/s00158-020-02545-z
http://arxiv.org/abs/1709.09578
http://arxiv.org/abs/1709.09578
https://doi.org/10.1007/s11465-020-0614-2
http://link.springer.com/10.1007/s11465-020-0614-2
http://link.springer.com/10.1007/s11465-020-0614-2
https://doi.org/10.1145/2464576.2464685
https://dl.acm.org/doi/10.1145/2464576.2464685
https://dl.acm.org/doi/10.1145/2464576.2464685
https://www.researchgate.net/publication/265593998
https://www.researchgate.net/publication/265593998
https://doi.org/10.1109/TMAG.2021.3063470
https://ieeexplore.ieee.org/document/9367238/
https://ieeexplore.ieee.org/document/9367238/
https://doi.org/10.1109/TMAG.2019.2901906
https://ieeexplore.ieee.org/document/8673771/
https://ieeexplore.ieee.org/document/8673771/
https://doi.org/10.1016/j.cma.2021.114197
https://linkinghub.elsevier.com/retrieve/pii/S0045782521005284
https://linkinghub.elsevier.com/retrieve/pii/S0045782521005284
https://doi.org/10.1115/1.4044332
https://asmedigitalcollection.asme.org/mechanicaldesign/article/doi/10.1115/1.4044332/955332/An-Artificial-Neural-Network-Approach-for
https://asmedigitalcollection.asme.org/mechanicaldesign/article/doi/10.1115/1.4044332/955332/An-Artificial-Neural-Network-Approach-for
https://asmedigitalcollection.asme.org/mechanicaldesign/article/doi/10.1115/1.4044332/955332/An-Artificial-Neural-Network-Approach-for
https://doi.org/10.1007/s00158-021-02953-9
https://link.springer.com/10.1007/s00158-021-02953-9
https://doi.org/10.1016/j.cad.2021.103017
https://linkinghub.elsevier.com/retrieve/pii/S0010448521000282
https://linkinghub.elsevier.com/retrieve/pii/S0010448521000282
http://arxiv.org/abs/2101.03286
http://arxiv.org/abs/2101.03286

Machine Learning Benchmarks.” Journal of Mechanical
Design Vol. 144 No. 3 (2022).

[58] Deshpande, Shrinath and Purwar, Anurag. “Computational
creativity via assisted variational synthesis of mechanisms
using deep generative models.” Journal of Mechanical De-
sign Vol. 141 No. 12 (2019).

[59] Chen, Wei and Ahmed, Faez. “MO-PaDGAN: Reparame-
terizing Engineering Designs for augmented multi-objective
optimization.” Applied Soft Computing Vol. 113 (2021): p.
107909.

[60] Heyrani Nobari, Amin, Chen, Wei and Ahmed, Faez.
“PcDGAN: A Continuous Conditional Diverse Generative
Adversarial Network For Inverse Design.” 2021. ACM.
DOI 10.1145/3447548.3467414. URL http://dx.doi.org/10.
1145/3447548.3467414.

[61] Fujita, Kikuo, Minowa, Kazuki, Nomaguchi, Yatuka, Ya-
masaki, Shintaro and Yaji, Kentaro. “DESIGN CONCEPT
GENERATION WITH VARIATIONAL DEEP EMBED-
DING OVER COMPREHENSIVE OPTIMIZATION.” In-
ternational Design Engineering Technical Conferences and
Computers and Information in Engineering Conference,
IDETC-21. 2021. ASME, Virtual, Online.

[62] Sun, Hongbo and Ma, Ling. “Generative Design by Us-
ing Exploration Approaches of Reinforcement Learning in
Density-Based Structural Topology Optimization.” Designs
Vol. 4 No. 2 (2020): p. 10. DOI 10.3390/designs4020010.
URL https://www.mdpi.com/2411-9660/4/2/10.

[63] Oh, Sangeun, Jung, Yongsu, Kim, Seongsin, Lee,
Ikjin and Kang, Namwoo. “Deep Generative Design:
Integration of Topology Optimization and Genera-
tive Models.” Journal of Mechanical Design Vol.
141 No. 11 (2019). DOI 10.1115/1.4044229. URL
https://asmedigitalcollection.asme.org/mechanicaldesign/
article-pdf/141/11/111405/6578473/md_141_11_111405.
pdf, URL https://doi.org/10.1115/1.4044229. 111405.

[64] Sharpe, Conner and Seepersad, Carolyn Conner. “Topol-
ogy Design With Conditional Generative Adversarial
Networks.” Vol. Volume 2A: 45th Design Automation
Conference (2019). DOI 10.1115/DETC2019-97833.
URL https://asmedigitalcollection.asme.org/IDETC-CIE/
proceedings-pdf/IDETC-CIE2019/59186/V02AT03A062/
6453126/v02at03a062-detc2019-97833.pdf, URL https:
//doi.org/10.1115/DETC2019-97833. V02AT03A062.

[65] Parrott, Corey, Abueidda, Diab and James, Kai A. “Multi-
Head Self-Attention GANs for Multiphysics Topology Op-
timization.” AIAA AVIATION 2022 Forum: p. 3726. 2022.

[66] Rawat, Sharad and Shen, M. H. Herman. “A novel topol-
ogy design approach using an integrated deep learning net-
work architecture.” Preprint (2018)URL http://arxiv.org/
abs/1808.02334.

[67] Yu, Yonggyun, Hur, Taeil, Jung, Jaeho and Jang, In Gwun.
“Deep learning for determining a near-optimal topologi-
cal design without any iteration.” Structural and Mul-
tidisciplinary Optimization Vol. 59 No. 3 (2019): pp.
787–799. DOI 10.1007/s00158-018-2101-5. URL https:
//doi.org/10.1007%2Fs00158-018-2101-5.

[68] Rawat, Sharad and Shen, M.-H. Herman. “A Novel Topol-
ogy Optimization Approach using Conditional Deep Learn-
ing.” CoRR Vol. abs/1901.04859 (2019). URL 1901.04859,
URL http://arxiv.org/abs/1901.04859.

[69] Li, Baotong, Huang, Congjia, Li, Xin, Zheng, Shuai
and Hong, Jun. “Non-iterative structural topol-
ogy optimization using deep learning.” Computer-
Aided Design Vol. 115 (2019): pp. 172–180. DOI
https://doi.org/10.1016/j.cad.2019.05.038. URL
https://www.sciencedirect.com/science/article/pii/
S001044851930185X.

[70] Nie, Zhenguo, Lin, Tong, Jiang, Haoliang and Kara, Lev-
ent Burak. “TopologyGAN: Topology Optimization Using
Generative Adversarial Networks Based on Physical Fields
Over the Initial Domain.” Journal of Mechanical Design
Vol. 143 No. 3 (2021). DOI 10.1115/1.4049533. URL
https://asmedigitalcollection.asme.org/mechanicaldesign/
article-pdf/143/3/031715/6633125/md_143_3_031715.
pdf, URL https://doi.org/10.1115/1.4049533. 031715.

[71] Behzadi, Mohammad Mahdi and Ilieş, Horea T. “GANTL:
Toward Practical and Real-Time Topology Optimization
With Conditional Generative Adversarial Networks and
Transfer Learning.” Journal of Mechanical Design
Vol. 144 No. 2 (2021). DOI 10.1115/1.4052757. URL
https://asmedigitalcollection.asme.org/mechanicaldesign/
article-pdf/144/2/021711/6806350/md_144_2_021711.
pdf, URL https://doi.org/10.1115/1.4052757. 021711.

[72] Wang, Dalei, Xiang, Cheng, Pan, Yue, Chen, Airong,
Zhou, Xiaoyi and Zhang, Yiquan. “A deep convo-
lutional neural network for topology optimization with
perceptible generalization ability.” Engineering Opti-
mization Vol. 54 No. 6 (2021): pp. 973–988. DOI
10.1080/0305215X.2021.1902998. URL https://doi.org/
10.1080/0305215X.2021.1902998, URL https://doi.org/10.
1080/0305215X.2021.1902998.

[73] Xie, Yiheng, Takikawa, Towaki, Saito, Shunsuke, Litany,
Or, Yan, Shiqin, Khan, Numair, Tombari, Federico, Tomp-
kin, James, Sitzmann, Vincent and Sridhar, Srinath. “Neu-
ral Fields in Visual Computing and Beyond.” (2022). URL
2111.11426.

[74] Zehnder, Jonas, Li, Yue, Coros, Stelian and Thomaszewski,
Bernhard. “NTopo: Mesh-free Topology Optimiza-
tion using Implicit Neural Representations.” Ran-
zato, M., Beygelzimer, A., Dauphin, Y., Liang, P.S.
and Vaughan, J. Wortman (eds.). Advances in Neu-
ral Information Processing Systems, Vol. 34: pp.
10368–10381. 2021. Curran Associates, Inc. URL
https://proceedings.neurips.cc/paper_files/paper/2021/file/
55d99a37b2e1badba7c8df4ccd506a88-Paper.pdf.

[75] Joglekar, Aditya, Chen, Hongrui and Kara, Levent Bu-
rak. “DMF-TONN: Direct Mesh-free Topology Optimiza-
tion using Neural Networks.” Engineering with Com-
puters (2023)DOI 10.1007/s00366-023-01904-w. URL
https://doi.org/10.1007/s00366-023-01904-w.

[76] Chandrasekhar, Aaditya and Suresh, Krishnan. “TOuNN:
Topology Optimization using Neural Networks.” Structural
and Multidisciplinary Optimization Vol. 63 No. 3 (2021):

14

https://doi.org/10.1145/3447548.3467414
http://dx.doi.org/10.1145/3447548.3467414
http://dx.doi.org/10.1145/3447548.3467414
https://doi.org/10.3390/designs4020010
https://www.mdpi.com/2411-9660/4/2/10
https://doi.org/10.1115/1.4044229
https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/141/11/111405/6578473/md_141_11_111405.pdf
https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/141/11/111405/6578473/md_141_11_111405.pdf
https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/141/11/111405/6578473/md_141_11_111405.pdf
https://doi.org/10.1115/1.4044229
https://doi.org/10.1115/DETC2019-97833
https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2019/59186/V02AT03A062/6453126/v02at03a062-detc2019-97833.pdf
https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2019/59186/V02AT03A062/6453126/v02at03a062-detc2019-97833.pdf
https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2019/59186/V02AT03A062/6453126/v02at03a062-detc2019-97833.pdf
https://doi.org/10.1115/DETC2019-97833
https://doi.org/10.1115/DETC2019-97833
http://arxiv.org/abs/1808.02334
http://arxiv.org/abs/1808.02334
https://doi.org/10.1007/s00158-018-2101-5
https://doi.org/10.1007%2Fs00158-018-2101-5
https://doi.org/10.1007%2Fs00158-018-2101-5
1901.04859
http://arxiv.org/abs/1901.04859
https://doi.org/https://doi.org/10.1016/j.cad.2019.05.038
https://www.sciencedirect.com/science/article/pii/S001044851930185X
https://www.sciencedirect.com/science/article/pii/S001044851930185X
https://doi.org/10.1115/1.4049533
https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/143/3/031715/6633125/md_143_3_031715.pdf
https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/143/3/031715/6633125/md_143_3_031715.pdf
https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/143/3/031715/6633125/md_143_3_031715.pdf
https://doi.org/10.1115/1.4049533
https://doi.org/10.1115/1.4052757
https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/144/2/021711/6806350/md_144_2_021711.pdf
https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/144/2/021711/6806350/md_144_2_021711.pdf
https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/144/2/021711/6806350/md_144_2_021711.pdf
https://doi.org/10.1115/1.4052757
https://doi.org/10.1080/0305215X.2021.1902998
https://doi.org/10.1080/0305215X.2021.1902998
https://doi.org/10.1080/0305215X.2021.1902998
https://doi.org/10.1080/0305215X.2021.1902998
https://doi.org/10.1080/0305215X.2021.1902998
2111.11426
https://proceedings.neurips.cc/paper_files/paper/2021/file/55d99a37b2e1badba7c8df4ccd506a88-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/55d99a37b2e1badba7c8df4ccd506a88-Paper.pdf
https://doi.org/10.1007/s00366-023-01904-w
https://doi.org/10.1007/s00366-023-01904-w

pp. 1135–1149. DOI 10.1007/s00158-020-02748-4. URL
http://link.springer.com/10.1007/s00158-020-02748-4.

[77] Chandrasekhar, Aaditya, Mirzendehdel, Amir, Behandish,
Morad and Suresh, Krishnan. “FRC-TOuNN: Topology op-
timization of continuous fiber reinforced composites using
neural network.” Computer-Aided Design Vol. 156 (2023):
p. 103449.

[78] Chandrasekhar, Aaditya and Suresh, Krishnan. “Length
Scale Control in Topology Optimization using Fourier
Enhanced Neural Networks.” Preprint (2021)URL http:
//arxiv.org/abs/2109.01861.

[79] Keshavarzzadeh, Vahid, Alirezaei, Mitra, Tasdizen, Tolga
and Kirby, Robert M. “Image-Based Multiresolution
Topology Optimization Using Deep Disjunctive Normal
Shape Model.” Computer-Aided Design Vol. 130 (2021):
p. 102947. DOI https://doi.org/10.1016/j.cad.2020.102947.
URL https://www.sciencedirect.com/science/article/pii/
S0010448520301408.

[80] Dittmer, Sören, Erzmann, David, Harms, Henrik and Maass,
Peter. “Selto: Sample-efficient learned topology optimiza-
tion.” arXiv preprint arXiv:2209.05098 (2022).

[81] Wang, Chao, Zhao, Zhi, Zhou, Ming, Sigmund, Ole
and Zhang, Xiaojia Shelly. “A comprehensive review
of educational articles on structural and multidisciplinary
optimization.” Structural and Multidisciplinary Opti-
mization Vol. 64 No. 5 (2021): pp. 2827–2880. DOI
10.1007/s00158-021-03050-7. URL https://doi.org/10.
1007/s00158-021-03050-7.

[82] Erzmann, David, Dittmer, Sören, Harms, Henrik and Maaß,
Peter. “DL4TO : A Deep Learning Library for Sample-
Efficient Topology Optimization.” Nielsen, Frank and Bar-
baresco, Frédéric (eds.). Geometric Science of Information:
pp. 543–551. 2023. Springer Nature Switzerland, Cham.

[83] Chen, Hongrui, Joglekar, Aditya and Burak Kara, Lev-
ent. “Topology Optimization Using Neural Networks
With Conditioning Field Initialization for Improved
Efficiency.” Journal of Mechanical Design Vol. 146
No. 6 (2023): p. 061702. DOI 10.1115/1.4064131. URL
https://asmedigitalcollection.asme.org/mechanicaldesign/
article-pdf/146/6/061702/7220216/md_146_6_061702.
pdf, URL https://doi.org/10.1115/1.4064131.

[84] Ma, Xu, Qin, Can, You, Haoxuan, Ran, Haoxi and Fu, Yun.
“Rethinking Network Design and Local Geometry in Point
Cloud: A Simple Residual MLP Framework.” (2022). URL
2202.07123.

[85] Sitzmann, Vincent, Martel, Julien N. P., Bergman, Alexan-
der W., Lindell, David B. and Wetzstein, Gordon. “Implicit
Neural Representations with Periodic Activation Func-
tions.” (2020). URL 2006.09661.

[86] Tancik, Matthew, Srinivasan, Pratul P., Mildenhall, Ben,
Fridovich-Keil, Sara, Raghavan, Nithin, Singhal, Utkarsh,
Ramamoorthi, Ravi, Barron, Jonathan T. and Ng, Ren.
“Fourier Features Let Networks Learn High Frequency
Functions in Low Dimensional Domains.” (2020). URL
2006.10739.

[87] Perez, Ethan, Strub, Florian, De Vries, Harm, Dumoulin,
Vincent and Courville, Aaron. “Film: Visual reason-

ing with a general conditioning layer.” arXiv preprint
arXiv:1709.07871 (2017).

[88] Huang, Xun and Belongie, Serge. “Arbitrary Style Trans-
fer in Real-time with Adaptive Instance Normalization.”
(2017). URL 1703.06868.

[89] Dhariwal, Prafulla and Nichol, Alexander. “Diffusion mod-
els beat gans on image synthesis.” Advances in Neural
Information Processing Systems Vol. 34 (2021).

[90] You, Tackgeun, Kim, Mijeong, Kim, Jungtaek and Han,
Bohyung. “Generative Neural Fields by Mixtures of Neural
Implicit Functions.” (2023). URL 2310.19464.

[91] Kosiorek, Adam R., Strathmann, Heiko, Zoran, Daniel,
Moreno, Pol, Schneider, Rosalia, Mokrá, Soňa and Rezende,
Danilo J. “NeRF-VAE: A Geometry Aware 3D Scene Gen-
erative Model.” (2021). URL 2104.00587.

APPENDIX A. ADDITIONAL DETAILS ON DATASET
GENERATION

In this section, we discuss further details on the generation
of the dataset. Details on the 210 configurations are shown in
Table 5. For each configuration, the resolution, support place-
ment, and support types are exactly fixed. For each configuration,
a single load is randomly applied at one point on the surface of
the domain. Loads are applied exclusively in one of the three
principal directions with 10% chance each, in one of the three
principal planes with 15% chance each and in all three directions
with 25% chance. We refer readers to our codebase for more
details.

TABLE 5: Configurations for 3D topology dataset. Seven res-
olution settings were defined, spanning from 32k to 48k ele-
ments. Five boundary conditions types were defined. Each
case calls for 3-5 supports, with each support constraining
displacement in one, two or three directions (e.g. ‘xz’ sup-
ports load in x and z directions). Finally, six support place-
ment options were defined, defining where the 3-5 supports
shall be placed, respectively (e.g. xl means the support shall
be placed on the x = 1 plane, while xu means the support
shall be placed on the x = resx plane where resx is resolu-
tion of the domain in the x direction). Each combination of
the seven, five and six choices were selected for 210 config-
urations total. The exact support locations are set determin-
istically and repeatably across all datapoints for a particular
configuration

Domain
Resolution

Support
Type

Support
Location

120x20x20 xyz, xyz, xyz xu, yu, zu, xl, yl
32x32x32 xyz, xy, yz, xz yu, zu, xl, yl, zl
60x40x20 xyz, xyz, xy, yz, xz zu, xl, yl, zl,xu
40x40x20 xyz, xyz, xyz, xyz xl, yl, zl,xu, yu
120x40x10 xyz, xyz, x, y, z yl, zl,xu, yu, zu
80x40x15 zl, xu, yu, zu, xl
64x32x16

15

https://doi.org/10.1007/s00158-020-02748-4
http://link.springer.com/10.1007/s00158-020-02748-4
http://arxiv.org/abs/2109.01861
http://arxiv.org/abs/2109.01861
https://doi.org/https://doi.org/10.1016/j.cad.2020.102947
https://www.sciencedirect.com/science/article/pii/S0010448520301408
https://www.sciencedirect.com/science/article/pii/S0010448520301408
https://doi.org/10.1007/s00158-021-03050-7
https://doi.org/10.1007/s00158-021-03050-7
https://doi.org/10.1007/s00158-021-03050-7
https://doi.org/10.1115/1.4064131
https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/146/6/061702/7220216/md_146_6_061702.pdf
https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/146/6/061702/7220216/md_146_6_061702.pdf
https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/146/6/061702/7220216/md_146_6_061702.pdf
https://doi.org/10.1115/1.4064131
2202.07123
2006.09661
2006.10739
1703.06868
2310.19464
2104.00587

APPENDIX B. COMPUTING HARDWARE USED
NITO-3D was trained on a Nvidia RTX 4090 GPU with Intel

i9-13900k processor. The dataset was generated on 64 nodes of
the MIT SuperCloud cluster, each with 48 cores and 96 threads.

APPENDIX C. SOLVER DEMONSTRATION

Number of Elements: 364,500

Total Run Time: 344s (RTX 4090)

FIGURE 8: The solution of our optimizer for the bridge prob-
lem.

Number of Elements: 364,500

Total Run Time: 352s (RTX 4090)

FIGURE 9: The solution of our optimizer for the cantilever
beam problem.

In this section, we run our GPU implementation of our
solver (using an RTX 4090) on a common bridge problem and a
classic cantilever beam problem to demonstrate the solver’s effi-
cacy. We use a mesh size of 180x45x45. Figures 8 and 9 show the
solutions for each of the problems from the solver with a volume
fraction of 0.1.

16

	1 Introduction
	2 Background & Related Works
	2.1 Structural Topology Optimization
	2.1.1 Deep Learning for Topology Optimization

	2.2 Deep Generative Models for Topology Optimization
	2.2.1 GAN-based DGTOMs
	2.2.2 Diffusion-based DGTOMs

	2.3 Topology Generation using Neural Fields
	2.3.1 Neural Fields
	2.3.2 Neural Fields for TO

	2.4 Datasets and Data-driven Solvers for 3D TO

	3 Methodology
	3.1 Dataset Generation & Solver
	3.1.1 Solver
	3.1.2 Randomization Process and Dataset

	3.2 Introduction to Hybrid 3D Neural Implicit Topology Optimization
	3.2.1 Implicit Neural Representation For Learning Material Density
	3.2.2 Beyond Physical Fields: Latent Constraint Representation
	3.2.3 Building Blocks of Neural Implicit Fields

	4 Experiments & Results
	4.1 Experimental Details
	4.2 Qualitative Results & Discussion of Generalizability
	4.3 Performance
	4.4 Inference Speed & Scalability

	5 Conclusion & Future Works
	APPENDICES
	A Additional Details on Dataset Generation
	B Computing Hardware Used
	C Solver Demonstration

