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ABSTRACT
Machine learning has recently made significant strides in

reducing design cycle time for complex products. Ship design,
which currently involves years-long cycles and small batch pro-
duction, could greatly benefit from these advancements. By de-
veloping a machine learning tool for ship design that learns from
the design of many different types of ships, trade-offs in ship de-
sign could be identified and optimized. However, the lack of pub-
licly available ship design datasets currently limits the potential
for leveraging machine learning in generalized ship design. To
address this gap, this paper presents a large dataset of 30,000
ship hulls, each with design and functional performance infor-
mation, including parameterization, mesh, point-cloud, and im-
age representations, as well as 32 hydrodynamic drag measures
under different operating conditions. The dataset is structured to
allow human input and is also designed for computational meth-
ods. Additionally, the paper introduces a set of 12 ship hulls
from publicly available CAD repositories to showcase the pro-
posed parameterization’s ability to accurately reconstruct exist-
ing hulls. A surrogate model was developed to predict the 32
wave drag coefficients, which was then implemented in a genetic
algorithm case study to reduce the total drag of a hull by 60%
while maintaining the shape of the hull’s cross section and the
length of the parallel midbody. Our work provides a comprehen-
sive dataset and application examples for other researchers to
use in advancing data-driven ship design.

INTRODUCTION
Recent advancements in machine learning for engineering

design have shown the ability to create novel designs [1], and
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high-performing systems level designs with significantly reduced
cycle time [2]. The design of ships can greatly benefit from these
advancements in machine learning methods as they have years
long design cycles and are produced as one-off designs or in
small batches. A well-designed machine learning tool for ship
design could learn design trade-offs for ships through the contin-
ual design of many different types of ships. This can streamline
the ship design process, which currently requires large teams of
naval architects to balance all the trade-offs in a single ship’s
design. The current lack of a publicly available dataset for de-
signing ships impinges this possibility. In order to create a ma-
chine learning tool capable of generalized ship design, a dataset
of ships is needed that represents the vast array of current ex-
isting ships. Literature review was unable to find engineering
datasets for machine learning for ship design that encompassed
the full spectrum of ship shapes needed to generalize the ship de-
sign process. The lack of available public datasets is likely due
to prior computational limitations, which have now been solved
with time as computation has become cheaper and faster.

This paper presents groundwork for the creation of a dataset
of diverse ship hulls to implement machine learning methods for
ship hull design. Hull design was chosen as a starting point for
the creation of a dataset as this is the traditional starting point
in ship design [3]. The hull shape affects several key aspects of
a ship’s performance, including the buoyancy, upright stability,
hydrodynamics, and general arrangements of the ship. In addi-
tion, the shape of the hull has a direct impact on over 70% of the
cost of a ship [4]. A ship’s hull has a significant impact on many
aspects of an overall ship system, making it a great candidate to
apply machine learning methods to its design to balance overall
design trade-offs with a data driven approach.

The following sections detail the literature review of pre-
vious work, the methodology for generating a dataset of ships,



measures of the dataset, optimization of a ship hull using a
trained surrogate model from the dataset, and a discussion on
the impact of the work. The dataset of hulls is largely dependent
on a parameterization that can represent the broad spectrum of
geometric features seen across many traditional hull forms and
allows for human and computer inputs to exist together in the
same data frame. This parameterization allowed for the creation
of a dataset of ship hulls that includes the .stl mesh, images, and
hydrodynamic resistance measures of these ship hulls. The key
contributions of this paper are:

1. Creation of a novel ship hull parameterization to represent a
broad spectrum of hull geometries.

2. Compilation of a set of twelve ship hulls from publicly avail-
able CAD repositories to showcase the proposed parame-
terization’s ability accurately reconstruct existing ship hulls,
which can be used as a benchmark for future studies in gen-
eralized ship hull design representation.

3. A publicly available dataset of ship hulls to implement data
driven approaches in ship design. Each hull in the dataset
has the parametric representation, meshes, images, and hy-
drodynamics drag measurements.

4. A case study demonstrating surrogate based optimization us-
ing a residual neural network and genetic algorithms for ship
hulls.

PREVIOUS WORK
This section reviews previous work that informed the work

presented in the remainder of the paper. The first subsection pro-
vides a background in generating datasets for engineering prob-
lems, providing inference to the size, scope, and contents of good
engineering datasets. The second subsection investigates prior
work in ship hull design representation, showing that a single de-
sign representation for the diversity of ships needs to be created.
The third subsection reviews methods for machine learning for
hull design, showcasing that current work in the field focuses on
hydrodynamic optimization. To enable the current practices of
the field with this dataset, the final subsection overviews differ-
ent methods of predicting the hydrodynamic resistance, or total
drag, of ships, showcasing that linear potential flow solvers for
predicting wave drag balance accuracy and computational effi-
ciency for use in dataset generation.

Dataset Generation for Engineering Design
The creation of a dataset is paramount for data driven design

and surrogate modeling of a design’s performance. The two crit-
ical components of a dataset for engineering design are a design
representation and performance metrics for each sample in the
dataset. Publicly available engineering datasets found in a liter-
ature search include bicycles [5, 6], linkage systems [7], meta-
materials [8, 9], and ships [10]. The subsection on design rep-

resentation will continue to explore this dataset of ships as well.
Other work has shown that multi-modal information can lead to
improved accuracy in training a machine learning model [11].
In order to provide the best possible results for future work for
machine learning for ship design, multi-modal information on
the representation, shape, and performance will be included in
this dataset. Sample size among these public datasets range from
several hundred [10] to over a hundred million [7]. In order to
create the most impact for the design of ship hulls with machine
learning techniques, a dataset that can encompass most tradi-
tional ship hull designs will need to be construed. The goal of
the number of samples in this paper’s dataset is to provide broad
coverage of the entire feasible domain of ship hulls. An analysis
on this is provided in the Results and Discussion Sections.

Design Representation
A dataset of ship hulls will need a design representation that

is comprehensive enough to cover the broad spectrum of tradi-
tional ship hull forms. A literature review has shown multiple
representations for complex designs, including graphs [2,7], im-
ages [9,12], parameterized vectors [1,8,10,13–21], and free form
deformation techniques [22–26]. The most common representa-
tion found for ship hulls was vectored parameterization. Many
of these human defined parameterizations allow human users to
create their own designs with few (<10) inputs. This created a
lack of diversity among the geometric features found in the de-
sign space of these parameterized representations. Meanwhile,
free-form deformation techniques allow the greatest diversity in
geometry, but they require an initial design to seed the defor-
mation process, limiting shape diversity. In order to allow for
reasonable human input in ship hull design, a parameterization
with a broad definition of geometric features will need to be de-
veloped to represent a large design space that encompasses most
traditional hulls. Dimensionality analysis performed on different
parent hulls by Wang et al. and Kahn et al found that 32 and
27 learned parameters can reasonably reconstruct complex sur-
face features on hulls, respectively. As these two sources only
analyzed the dimensionality of single hull forms, it is likely that
the hull parameterization’s dimensionality will require more than
32 dimensions to cover the desired diversity, although it is likely
within a similar order of magnitude. The Methods Section will
show that the dimensionality of the developed parameterization
for a diverse spread of hull forms is 45 parameters.

Machine Learning for Engineering Design
The goal of releasing the dataset produced in this paper is to

provide it for machine learning researchers train their models for
the improvement in data driven hull design. Outside the realm
of ship hulls, machine learning methods applied for design pur-
poses include classification [27], reinforcement learning [2, 27],
data augmentation [1, 12], and surrogate modeling for optimiza-



tion [1,12,27]. Within applications for ship hull design, machine
learning practices have primarily focused on surrogate modeling
of the hull’s hydrodynamics [10, 15, 16, 22–24, 28]. Additional
work in machine learning for ship hulls noted in the previous
subsection is dimensionality analysis of geometric features on
ship hulls. In order to continue the prominent current direction
of research in machine learning for hull design, hydrodynamic
measures of hulls will be captured in the dataset to enable sur-
rogate modeling of a hull’s hydrodynamics. The next subsection
details the different methods of measuring total drag to weigh
computational effort versus simulation accuracy.

Hydrodynamic Resistance Prediction
Several methods for measuring the hydrodynamic resistance

of ship hulls were considered. This section details these methods.
Traditionally, before the advent of computational tools, the

resistance of a ship hull was measured in a towing tank with a
scaled model of the hull. Guidance by the International Tow-
ing Tank Conference (ITTC) gives the process of scaling the to-
tal drag of a model hull into total drag estimate of a full sized
ship [29]. Measuring the drag of with a scaled physical model
test is the most accurate method of predicting the drag of a full
sized hull as the hull is measured in real water as opposed to a
simulation’s model for water and fluid dynamics. However, this
method is too time and cost intensive to produce a dataset for
machine learning, since each individual hull would need to be
constructed for testing. Towing tank tests, however, are used to
benchmark computational predictions of total drag [30–34]. In-
cluded in this paper are the parameterized reconstruction of two
of these benchmark hulls: The Wigley Hull [31], and the DTMB
5415 Hull [35]. Computational models of ship drag, on the other
hand, provide cost effective and accurate measures of drag.

Computational models vary in computational effort and ac-
curacy. Computational fluid dynamics (CFD) solvers are com-
monly used to create accurate simulations of drag on a ship at the
expense of high computation time. CFD solvers have been used
in several prior works for design optimization [18, 26] and ma-
chine learning for ship design [22]. Other predictions of drag rely
on empirical predictions of drag such as Savitsky’s method [36]
and Hollenbach’s method [37, 38]. These computational models
are not good for a dataset generation as these models are limited
to specific types of ships These models take geometric measures
as inputs, but not the 3D model of the hull itself, limiting the
scope of applicability for dataset generation. Many papers used
empirical regression models in ship design optimization to ar-
rive at principle dimensions of a hull [13, 20, 21, 39–41] and in
machine learning applications to improve performance predic-
tion [28].

Another simulation method, linear wave solvers, provide
accurate results to drag measurement with reduced computa-
tional effort relative to CFD. These solvers use potential flow

to simulate the waves produced by a ship in steady forward mo-
tion to estimate drag from propagating waves. Different linear
wave solvers including Michell’s Integral [42,43], Rankine Panel
Methods [44], Neumann-Kelvin Theory (also called Dawson’s
Method) [45], and Neumann-Michell Theory [30, 32, 34]. These
potential flow solvers input the 3D geometry of a hull and pro-
vide accurate measures of drag at typical operating speeds of a
hull. As seen in the literature review, the balance of compu-
tational speed and accurate results make potential flow solvers
great candidates for both optimization and machine learning
methods for ship hull design [10, 14–16, 19, 23–25] Among the
available solvers, the Michell Integral was chosen as the simula-
tion for hulls in this dataset.

METHODS
This section details methods used to define the hull param-

eterization for the dataset, validate the parameterization’s abil-
ity to construct a diversity of ship forms, and train the surrogate
model for drag prediction.

Hull Parameterization
This section details the hull parameterization and methods

for generating aspects of the data set, such as the meshes and
images of each hull.

Parameterization Terms The proposed parameteriza-
tion encompasses broad features seen in traditional ship hull ge-
ometries. As mentioned in the prior work section, prior param-
eterizations used for ship hull analysis characterized ship hulls
with traditional measures of ships hulls, such as block coeffi-
cient, midship coefficient, and waterplane coefficient. While
these traditional characteristics can allow for the rapid generation
of some geometric aspects of a hull, they cannot fully represent
a diversity of hull forms, nor do they contain enough informa-
tion to generate a final hull form. The proposed parameterization
characterizes geometric features found on traditional hull forms
using measures of angles and length ratios, which are applied to
a set of algebraic equations to define points on the hull’s surface.

The proposed hull parameterization is made up of 45 terms.
These terms were construed through analyzing and characteriz-
ing the shape and curvature of many different publicly available
hull geometries. Some of these hulls were chosen to be a part of
the set of target hulls seen in Figure 5. The following breakdown
of the parameters also follows the process of first generalizing
the shape of the hull, breaking down the ship into sections, and
defining specific parameters that encompass the geometric fea-
tures seen in each section. The first seven terms define the main
principal dimensions of the hull. These terms include the length
overall, the beam at the main deck, the beam at the stern, and



the depth of the hull. The next four terms define the cross sec-
tion of the parallel midbody of the hull. The cross section terms
are the deadrise angle, the chine radius, the keel radius, and the
beam of the chine. Twenty terms define the geometry of the bow
and stern taper of the hull. These terms characterize the shape
of the bow and stern rake, the keelrise, the transition from the
taper to the parallel midbody, the drift angle from the bow across
the hull’s depth, and the cross section of the transom. The final
fourteen terms define the geometry of bulbs at the bow and stern,
which were inspired by parameterizations of bulbous bows found
in literature [17, 18]. These parameters characterize the dimen-
sions, vertical asymmetry, and fillet to transition the bulb into the
hull. Overall, these 45 terms are characterized using a human
understanding of ship hull geometry and are labeled to allow for
human input, in addition to having a vectored structure for com-
puter generated input as well. These 45 terms are intended to
characterize a diversity of curvature and shapes seen across large
ships to small recreational boat hulls, so that the design of most
hulls can be all characterized in the same design representation.
A study on the accuracy of reconstructing existing hulls is de-
scribed later in the Methods Section.

These parameters populate a set of algebraic equations that
define the surface of the hull. By characterizing the shape of the
hull with a set of equations, the hull can be characterized and
measured at any fidelity, which allows for a large range of com-
putational opportunities to characterize and measure the hulls.
The section on meshing later in the Methods section details the
construction of the surface of a hull.

FIGURE 1. Seven terms define the principal dimensions of the hull,
including the length, beam, depth, draft, and tapers at the ends of the
hull.

Constraint Definitions While the parameterization can
define a large design space of hull geometries, constraints on the
parameterization are needed to ensure that a feasible hull will be
produced by a specific set of parameters. To satisfy a “feasible”
hull shape, the hull’s surface only needs to satisfy two criteria:

1. The hull is watertight, meaning that there are no holes in the

FIGURE 2. Four terms define the cross section of the hull in the par-
allel midbody. These terms can create cross sections seen on traditional
hulls ranging from chines, bilges, flare, tumblehome, and S-chines.

FIGURE 3. Twenty terms define the tapered regions at the bow and
stern of the hull. These terms define features such as drift angle, keel-
rise, transom cross section, rake, and the transition from the taper to the
parallel midbody.

FIGURE 4. Fourteen terms define the bow and stern bulb geometries,
including terms that define the size, vertical asymmetry, and the fillet
transition of the bulb into the hull.

surface of the hull.
2. The hull surface is not self-intersecting.

As the hull surface is defined by a set of equations with con-
stants dictated by the parameter values, conditions to determine
whether a hull’s surface satisfies the two main feasibility criteria
can be solved algebraically. The advantage to algebraically solv-
ing these conditions is significantly reduced computational ef-
fort to algebraically check hull feasibility compared to feasibility
checks with mesh generation. After searching through the design
space of the hull parameterization and examining the equations
that define the hull surface, a set of 49 constraints were defined
to determine if a hull surface produced from a specific parame-
terization satisfies the two feasibility criteria. Mesh generation
and feasibility checks are computed in O(Nlog(N)), where N is
the number of vertices on the mesh. For comparison, on an Intel
Core i9-10980XE processor, the construction and check of a hull
mesh with approximately 80000 vertices is 1.77 seconds, while



the algebraic constraints check feasibility in 0.000199 seconds.
This is a 104 increase in speed for checking hull feasibility with
the algebraic constraints.

Surface Generation and Meshing In conjunction
with the parameterization terms, a set of equations was devel-
oped to generate the surface of the hull. Terms expressing the
cross section define a set of lines that are tangent to circular
curves to create the keel and chine. With this, terms for the
bow shape, drift angle, and taper endpoints for a given water-
line height give four boundary conditions to define a cubic poly-
nomial to define the (X ,Y ) points along the bow curvature for
a given Z position. This is similarly true for the stern taper,
although there is extra consideration for the transom cross sec-
tion. Additionally, terms for the bulbs define ellipsoid surfaces
that can be controlled with the parameterization terms. The bubs
merge to the hull via fourth order polynomials to fillet the bulb
to the remainder of the hull.

With the set of equations, any point cloud with custom spac-
ing of X ,Y, and Z can define the hull’s surface. The meshes of
the hulls provided in the data set were constructed from these
point clouds of the hulls with even spacing between the X and Z
coordinates. Further provided with the dataset are five images of
each hull mesh:

1. Front View
2. Profile View
3. Plan View
4. Three-Quarter Starboard Bow View
5. Three-Quarter Port Stern View

Dataset Generation
The following section details the generation of the hull pa-

rameterizations in the dataset. The hulls generated in the dataset
were randomly generated and made up of three distinct subsets
of hulls. Each term in the parameterization was sampled uni-
formly from its range of possible values. Many of the terms in
the parameterization are relational and have limits between 0 and
1. Other terms rely on user defined inputs to ensure that the gen-
erated designs are similar to realistic ship hulls. For example, the
term related to the beam-length ratio of the hull was limited to be
between 0.0833 and 0.333 to ensure that the beam-length ratio
of the dataset hulls encompasses that of typical ship hulls. This
is similarly true for the term related to the depth-length ratio,
which was limited to be between 0.05 and 0.25. Additionally,
the term related to the deadrise angle of the cross section was
limited to be between 0◦ and 45◦. After generating a random pa-
rameterization, the forty nine algebraic constraints were checked
for each given random parameterization. If the randomly gen-
erated parameterization led to a feasible hull shape, then it was
added to the dataset. This process was repeated until each sub-

set contained ten thousand hulls, for a total of thirty thousand
hulls in the dataset. The purpose of randomly generating the pa-
rameterized hulls was to create a dataset that fully encompasses
the possible design space of ship hulls that meet the feasibility
criteria so that a machine learning model can learn the relative
performance of a hull’s geometric features in isolation and in
combination. The training of a machine learning model to pre-
dict the drag coefficient of hulls is detailed in a later section of
the paper.

The dataset is comprised of three subsets of ten thousand
hulls. The first subset of the dataset contains hull forms gen-
erated from the full possible range of each term in the param-
eterization. These hulls contain all the possible combinations
of all the geometric features defined by the hull parameteriza-
tion. The second subset of hulls is constrained so that they do
not contain bulbs. By allowing the full range of all the terms
except those that define bulbs, geometric features that are typi-
cally seen in smaller hull forms are more prominent in this sub-
set. Smaller hull forms include hulls that are typically less than
fifty meters in length, such as tugboats, fishing trawlers, ferries,
yachts, and recreational watercraft. Such geometric features in-
clude deadrise, concave cross sections, and chines. Meanwhile,
the third subset contains hulls that are biased towards features
seen in larger hulls. These hulls have a keel radius that is strictly
positive and have a zero degree deadrise angle. By eliminat-
ing these features and allowing for the presence or absence of
bulbs, this subset contains hulls with geometric features that are
more prominent in larger hull forms. Larger hull forms include
those seen on warships, cargo ships, cruise ships, and research
vessels. The slight biases introduced within the latter two sub-
sets ensures that there exist samples with features akin to realis-
tic hulls. This will give surrogate models trained on the whole
dataset more information to accurately predict the performance
of realistic hulls. This will ensure surrogate models trained on
this dataset can yield reasonable predictions for any hull and ac-
curate predictions for realistic hulls.

Chamfer Distance Comparison of Hulls
The proposed parameterization is intended to represent a

large diversity of hull forms. However, how does one validate
if a proposed parameterization is sufficiently expressive? One
solution is to collect a diverse set of real-world hull forms and
check if the proposed parameterization is capable of recreating
those hulls. This strategy is used to validate the usefulness of
the proposed parameterization. The proposed method gathers a
small set of realistic hulls and generates their surfaces as point
clouds. Then, custom parameterized hulls are also constructed to
match the point cloud of the target hulls with point clouds gener-
ated by the hull parameterization. The set of twelve target hulls
listed in Table 1.

The first ten hulls were gathered from GrabCAD, an on-



line repository of 3D CAD models. The final two, the Wigley
Hull and the DTMB 5415 Hull, are hulls commonly used as
benchmarks in hydrodynamics computation and tow tank test-
ing [30–33, 35, 43]. These hulls represent a large diversity of
ship hull shapes and scales, including recreational watercraft,
commercial ships, and warships. Parameterized reconstruction
of these twelve hulls is detailed in the Results and Discussion
Sections.

The metric used to evaluate the match between two point
clouds is the bidirectional mean of squared Chamfer distances.
For two point clouds, A and B, the Chamfer distance finds the
distances from each point in A to its nearest neighbor in B. The
distance metric used is the squared Euclidean distance between
two points. Bidirectional Chamfer distance is calculated for all
points in A to B and for all points in B to A. The sum of all the
square distances is then averaged to form the bidirectional mean
of squared Chamfer distances. The formula for this evaluation
metric is shown below:

CD =
1

NA +NB
(

NA

∑
n=1

||An −Bn∗||2 +
NB

∑
n=1

||Bn −An∗||2) (1)

where Bn∗ is the nearest neighbor of the point An in B and An∗
is the nearest neighbor to the point Bn in A. NA and NB are the
total number of points in A and B, respectively. While the param-
eterization is designed to be manipulated by a human designer, it
is difficult to manipulate the parameterization by hand to match
another hull. In order to reconstruct the set of target hulls as pa-
rameterized hulls, a genetic algorithm was written to minimize
the bidirectional mean of the square of Chamfer distances. The
reconstructed target hulls generated from the optimization are
shown in the Results Section.

Hull Resistance Calculation
As noted in the Background Section, the method to simulate

the total drag of each hull in the dataset will be a linear wave
solver to simulate the wave drag and with the ITTC regression
line to predict viscous drag on the hull. The following subsec-
tions detail the method of calculating the wave drag, validating
the simulation, and training a surrogate model to predict the wave
drag coefficient of a hull from its parameterization.

Michell Integral The Michell Integral was chosen to
simulate wave drag over other linear wave methods for its rel-
ative computational efficiency for the accuracy it provides. The
Michell integral is a linear estimate of wave drag of a slender ship
in forward motion. The model performs a Fourier series analysis
on the waves that propagate from the hull and thus, this model is

not time dependent, leading to its computational efficiency. The
Michell Integral is defined by the following equation [42, 43]:

Rw =
Aρg2

πU2

∫
∞

1
(I2 + J2)∗ λ 2

√
λ 2 −1

dλ (2)

where ρ is the density of water, g is gravity, U is the ship speed,
and A, I,andJ are integrated terms relating to the surface normal
across the hull and the direction of wave propagation. Further
insight into these terms is in Michell’s paper form 1898 [42].

Using the Michell Integral, thirty two wave drag coefficients
were calculated for each hull across four different draft and speed
operating conditions. The four drafts were 25%, 33%, 50%,
and 67% of the hull’s total depth. The eight speed conditions
were normalized to Froude numbers between 0.15 through 0.45
in steps of 0.05. These Froude numbers correspond to typical
operating conditions of traditional displacement hulls [29, 33].
The Froude number is the relative scaling between inertial and
gravitational forces described in the equation below:

Fn =
U√
gL

(3)

Where U is the hull speed, g is gravity and L is a length scale.
The length used in simulating the 32 speed-draft conditions of
the hulls was the length of the waterline at the tested draft mark.
This way, thirty two unique conditions were measured. As the
wave drag is a function of the hull geometry and the interfer-
ence a propagating wave makes with the hull, a full spectrum of
speed and draft marks were calculated for the dataset. For the
purposes of applying machine learning to this dataset, including
a full spectrum of speed-drag conditions in the dataset allows a
machine learning model to predict the drag at multiple operating
conditions as opposed to only one operating condition. Providing
all this information allows the model to learn the effects of drag
due to changing submerged geometry with draft and speed. In
addition to scaling the relative speed and draft conditions for the
hulls, the wave drag is also scaled using the following equation:

Cw =
Rw

1
2 ρU2LOA2

(4)

Typical drag coefficients of hulls are scaled by the wetted surface
area of the hull. Within the dataset, however, the wetted surface
area of the hulls can vary greatly. Instead, the Length-Overall
(LOA) is used instead as this is the first term in the parameter-
ization. For the purposes of machine learning with the dataset,
the wave drag coefficient can be characterized by the remain-
ing 44 terms in the parameterization and the hull’s relative speed



FIGURE 5. The set of twelve target hulls used for validating the capability of the hull parameterization to reconstruct a diverse set of realistic hull
forms.

and draft. With the thirty two wave drag coefficients, any speed-
draft condition within the range of the dataset conditions can be
interpolated. The calculation of the thirty two wave drag coeffi-
cients for the thirty thousand hulls in the dataset was performed
in parallel on an Intel Core i9-10980XE processor. The average
computation time for an individual hull was 72 seconds for the
thirty two wave drag coefficients.

Total Resistance For displacement hulls, the principle
characteristics of drag are defined as the sum of residual drag and
skin friction drag. Skin friction is viscous drag due to boundary
layer effects of water across the surface of the hull. In traditional
naval architecture, the skin friction drag is approximated from a
series of regression tests performed by the ITTC [29]. The skin
friction coefficient regression is:

C f =
0.075

(Log10(Re)−2)2 (5)

where Re is the Reynolds number of the hull, scaled with its for-
ward velocity, and length. As the skin friction coefficient scales
with the wetted surface area of the hull, the total skin friction
drag scales with:

R f =
1
2

C f ρU2Aws (6)

where R f is the skin friction resistance and Aws is the wetted sur-
face are of the hull. The other component of ship drag, residual

drag, is the sum of viscous pressure drag and wave drag. As
ships’ hulls are considered slender, the contributions of viscous
pressure drag are negligible relative to the scale of wave drag.
With this consideration, the total Resistance, Rt is the sum of
wave drag and skin friction drag:

Rt = Rw +R f (7)

The following subsection details the validation of this assump-
tion with the DTMB 5415 hull form.

Wave Drag Validation Two validation checks were con-
ducted to ensure that the numerical Michell Integral simulation
used in the dataset of wave drag coefficients is reasonable. The
first test checked the accuracy of the wave drag numerical predic-
tion to the analytical evaluation of wave drag using the Michell
Integral. This check was performed using the Wigley hull, a hull
with parabolic curvature. Figure 6 plots the numerical wave drag
versus several hull speeds calculated by integrating over 301 dis-
crete points along the length of the hull for 51 waterlines along
the displaced volume. Also included in this graph is the analytic
solution to the Wigley hull at the same speed conditions [31].
The graph shows that the numerical solution is well resolved to
the analytic solution to the Michell Integral. For this reason, the
wave drag evaluation for the hull dataset was also computed over
a grid of 301 waterline points and 51 waterlines. The second
validation performed was to compare the wave drag calculated
by the Michell Integral at several speeds to towing tank testing



FIGURE 6. The numerical calculation of the Michell integral mea-
sured using 301 discrete lengthwise points over 51 discrete waterlines
is well resolved to the analytic solution to the Michell integral of the
Wigley hull.

FIGURE 7. The numerical calculation of wave drag coefficient us-
ing the Michell integral is well resolved to towing tank measures of the
residual resistance coefficient of the DTMB 5414 hull at speeds between
Fn = 0.15 AND Fn = 0.45.

results of a real hull form. Figure 7 shows that the residual resis-
tance coefficient of the DTMB 5415 hull [35] is well resolved to
the numerical calculation of the wave drag coefficients using the
Michell Integral.

Surrogate Model for Resistance Prediction A ma-
jor benefit of creating a dataset is that a surrogate model can be
trained to predict the drag of a hull with increased computational
speed for a small loss in accuracy. As opposed to constructing a
3D hull from the parameterization and simulating the wave drag,

a surrogate model predicts the wave drag coefficients directly
from the parameterization vector. The increased speed in drag
prediction enables design optimization of a hull on a time scale
many orders of magnitude faster than directly simulating the hull.
Since the dataset contains hull parameterizations that fall within
the full range of feasible hull forms, any feasible hull can have
its wave drag coefficients predicted by the surrogate model from
its parameterization. The surrogate model used in a regression to
predict wave drag coefficients from a hull’s parameterization was
a residual neural network, chosen for both its speed and the abil-
ity to fully differentiate the model. This means that the derivative
of the wave drag coefficient can be taken against any of the terms
in the parameterization.

In the training of the surrogate model, two considerations
relating to the distribution of the data were implemented in the
training. In the Results Section, Figure 11 shows that the dis-
tribution of wave drag coefficients spans several orders of mag-
nitude. Instead of predicting the wave drag coefficient, the sur-
rogate model will predict the Log10(Cw) for the thirty two speed
and draft conditions to normalize the final prediction layer. The
second consideration implemented in training was to up-sample
the instances of hulls that had a wave drag coefficient less than
one standard deviation below the mean of samples in the dataset
by a factor of four. This up-sampling is intended to increase the
prediction accuracy of wave drag prediction for low drag hulls
during hull optimization using the trained surrogate model.

After experimenting with different neural network struc-
tures, a residual neural network with four hidden layers and 256
nodes in each layer was found to have the greatest prediction ac-
curacy, with an R2 value equal to 0.969. This network structure
is seen in Figure 8. Immediately prior to the final prediction of
the wave drag coefficients, the values in the first hidden layer are
summed with the values in the final hidden layer. This assists in
boosting the gradients across the network during training to im-
prove the accuracy of the network as a regression model. This
residual network (ResNet) predicts the common logarithm of the
thirty two wave drag estimates for a given hull in 0.15 seconds,
a 480x speed up in for the prediction and is fully differentiable.
The ResNet surrogate model is used in a later section of the paper
as a tool in hull optimization to minimize drag.

RESULTS
This section details the results of the dataset generation and

evaluation. This first subsection provides results for optimizing
the parameterization terms to match a set of target hulls. The
second subsection provides some statistics and analysis on the
dataset of thirty thousand hulls. Finally, the third subsection pro-
vides the results of the optimization of the hull parameterization
to minimize drag on a hull.



FIGURE 8. The residual neural network trained to predict 32 wave
drag coefficients contains 4 hidden layers with 256 nodes in each layer.
The input to the ResNet is the hull parameterization and the output is
the 32 wave drag coefficients.

Hull Matching Validation
This subsection provides the results of the parameterized

hull matching to the set of twelve target hulls. Figure 9 shows
twelve parameterized hulls that were constructed by minimizing
the bidirectional mean of the squared Chamfer distance between
each parameterized hull and its corresponding target hull from
Figure 5. Table1 lists each of these reconstructed hulls and the
normalized square root of the bidirectional mean squared Cham-
fer distance (RMS of CD). The results of each of these recon-
structed hulls vary greatly in scale, so the RMS of CD is listed as
a percentage of the LOA of each reconstructed hull.

Dataset of Parameterized Hulls
After generating thirty thousand hulls and computing the

thirty two wave drag coefficients, some analysis was performed
on the dataset to better understand the parameterization distribu-
tion across the feasible region in the design space and extreme
minimum values associated with measurements of drag. One
measure of the distribution of the spread of hull samples is the
average Euclidean distance each hull parameterization vector is
to its nearest neighbor. Figure 10 shows this measure with in-

1https://grabcad.com/library/general-cargo-ship-1
2https://grabcad.com/library/ddg-1000
3https://grabcad.com/library/fast-passenger-monohull-ferry-mh35-1
4https://grabcad.com/library/10-meters-fishing-boat-1
5https://grabcad.com/library/littoral-combat-ship-1
6https://grabcad.com/library/hull-of-carrier-of-nimitz-class-1
7https://grabcad.com/library/36-meter-sailing-yacht-1
8https://grabcad.com/library/renko-dangar-marine-steel-boat-project-1
9https://grabcad.com/library/uss-indianapolis-ca-35-1

10https://grabcad.com/library/x-bow-hull-1
11http://www.simman2008.dk/5415/5415 geometry.htm

Label Target Hull Name RMS of CD

A) Container Ship 1 0.343%

B) USS Zumwalt 2 0.252%

C) Fast Ferry 3 0.277%

D) Recreational Fishing Boat 4 0.505%

E) USS Freedom 5 0.402%

F) USS Nimitz 6 0.342%

G) Sailing Yacht 7 0.397%

H) Tug Boat 8 0.559%

I) USS Indianapolis 9 0.308%

J) X-Bow Ship 10 0.390%

K) Wigley Hull [31] 0.0802%

L) DTMB 5415 Hull 11 0.401%

TABLE 1. List of twelve hulls used for reconstruction validation and
their corresponding normalized root-mean-square of Chamfer distances.
These values are all less than 0.51% of the hull length, measuring accu-
rate reconstruction. Original hulls are shown in Figure 5. Reconstructed
hulls are shown in Figure 9

creasing sample size in the dataset. Further analysis of the spread
of samples in the dataset is provided in the Discussion Section.

Another measure of the dataset of hulls is to measure the
spread of the wave drag coefficients of the samples. Figure 11
shows the distribution of the wave drag coefficients across the
three subsets in the dataset. It is important to note that the scale of
the Y-axis of this chart is on a logarithmic scale as the distribution
of wave drag coefficients spans multiple orders of magnitude.
Please see the Discussion Section for an analysis of this result.

Minimum values of different measures of drag in the dataset
were also collected. One measure of the dataset of hulls was to
find the hulls with the minimum total drag when scaled to differ-
ent volumetric displacements. Table 2 showcases that two differ-
ent hulls standout among the dataset as having the lowest total
drag. These two hulls can be seen in Figure 13. Hull 1-3715 has
the lowest total drag for displacements ranging from 5000 cubic
meters to 100000 cubic meters, while Hull 1-1340 has the low-
est drag for displacements of 500 cubic meters and 1000 cubic
meters. As scale decreases, viscous forces increase suggesting
why different hulls at different scaled displacements have min-
imum drag. In addition to looking at total drag, hulls from the
dataset with the lowest coefficients were also found. The first
case was the hull with the lowest drag at a speed-draft condition
of (FN = 0.3,T/Dd = 0.5). This hull had a wave drag coefficient
equal to 1.53 ∗ 10−5. The second measure of minimum wave



FIGURE 9. The set of twelve parameterized hulls visualize accurate reconstruction of the twelve target hulls.

FIGURE 10. Mean Euclidean distance to nearest neighbor with in-
creasing sample size. The shaded region shows 2 standard deviations
from the mean collapses with increasing sample size.

drag was to aggregate the wave drag coefficients across all tested
speeds at a T/Dd = 0.5 condition. Both hulls are shown in Fig-
ure 12. Analysis of the dataset as it pertains to drag is provided
in the Discussion Section.

Hull Form Optimization Via ResNet Surrogate for Wave
Drag Coefficient

Optimization of the hull parameters saw significant reduc-
tions in total drag for three test cases. The first optimization of

DISP. VOLUME RT HULL LOA

500m3 67.04kN Set 1, #1340 109.38m

1000m3 96.97kN Set 1, #1340 137.81m

5000m3 284.0kN Set 1, #3715 225.09m

10000m3 338.2kN Set 1, #3715 283.59m

100000m3 1046kN Set 1, #3715 611.0m

TABLE 2. Tabulated data of the dataset hulls with minimum total drag
when scaled to different volumetric displacements. Skin friction and
wave drag scale differently, leading to different minimal drag hulls at
different scales.

the parameters was constrained so that the hull had a volumetric
displacement of 100000 cubic meters and a speed of 25 knots.
The optimized hull had a total drag of 785kN, which is a 25%
Reduction in total drag compared to the hull in the dataset with
the lowest drag. Results were computed with NSGA2 to mini-
mize both Rt and the interpolated Cw for the speed/draft condi-
tion. The hulls in the final population were then constructed and
total drag was measured with the Michell Integral for the cal-
culation of wave drag. The hull shown in Figure 14 shows this
optimized hull, which had a total length of 685.24 meters. It is
important to note that this hull is not the hull with the minimum
drag predicted by the ResNet, but it did belong to the final popu-
lation of optimized hulls.

The second and third optimizations were modeled after
problems found in the literature. The goal was to optimize a



FIGURE 11. Violin plots of wave drag coefficients of dataset hulls
for a draft of 1/2 the depth of the hull and a Froude number = 0.3 ((FN =

0.3,T/Dd = 0.5)). Results are separated into the dataset subsets

FIGURE 12. Hulls from the dataset with the minimum wave drag
coefficients. The left hull has the lowest wave drag coefficient at the
(FN = 0.3,T/Dd = 0.5) condtions. The right hull has the lowest aggre-
gated wave drag coefficients across all speed conditions at T/Dd = 0.5.

FIGURE 13. Hulls from the dataset with the lowest total drag for U =

25knots when scaled to different volumetric displacements. The left hull
has the lowest total drag when scaled to displacement volumes of 5000,
10000, and 100000 cubic meters. The right hull has the lowest total drag
when scaled to displacement volumes of 500 and 1000 cubic meters.

hull while maintaining the aspect of the geometry of an initial
hull form. This initial hull the container ship hull from Figure 9
was re-proportioned to have an LOA of 200 meters and a bow
and stern taper over the forward-most and aft-most 30% of the
hull. The total drag on this hull with an operating speed of 25
knots and a draft of 12.5 meters is 2.694∗107N. With the same

FIGURE 14. Optimized hull that displaces 100000 cubic meters has
25% reduction in drag compared to the hull in the dataset with the min-
imum drag in the same conditions

optimization process described above, two optimizations were
performed. The first optimization only manipulated the param-
eters related to the bulb geometries. This optimization reduced
the total drag on the hull by 54.3% in the same speed and draft
condition. A second optimization manipulated the parameters
associated with the bow, stern, and bulbs while maintaining the
body of the midship. This optimization reduced the total drag of
the hull by 60.7% for the same speed and draft condition. Fig-
ure 15 shows the original container ship hull, the same hull with
optimized bulbs, and the optimized hull with the same parallel
midbody as the initial hull. Further analysis of the hull optimiza-
tion with the ResNet is provided in the Discussion Section.

DISCUSSION
This section analyzes the findings from the Results Section.

The first subsection provides insight into the reconstruction of
target hulls as parameterized hulls. The second subsection an-
alyzes the dataset of parameterized hulls and the distribution of
information provided in the set. The third subsection provides an
analysis on the training of the ResNet to predict the wave drag
coefficients of a hull at multiple operating conditions. In con-
junction with the third subsection, the fourth subsection analyzes
the ResNet’s ability as a regression model to be used with an
optimization algorithm to minimize drag.

Parameterized Reconstruction of Target Hulls
Based on the visual and computational results of this study,

the parameterization scheme proposed in this paper can accu-
rately reconstruct a large variety of classical hull forms. The cre-
ation of this parameterization was specifically aimed at closing
two specific gaps found in the literature:

1. A comprehensive design representation of ship hulls that en-
compasses a large diversity of geometric features seen on
hulls

2. A design representation for ship hulls that allows for human
manipulation and computational design methods

The parametric scheme was designed to allow human input in
terms of concrete geometric features seen in ship hulls. Addition-



FIGURE 15. Optimization of the modified container ship created constrained to only optimizing the bulbs on the hull lead to a 54.3% reduction in
total drag. Optimization parameters relating to the shape of the bow taper, stern taper, and bulbs lead to a 60.7% reduction in total drag.

ally, this scheme allows for computer generated inputs so that a
ship hull can be computationally designed in the same data frame
as the human defined design. Due to this, future machine learn-
ing models leveraging this parametric scheme for ship hull de-
sign can learn from both human and computer generated inputs.
These results will serve as a model for future benchmark studies
for comprehensive parametric reconstruction of ship hulls.

The parametric scheme is certainly not a panacea to para-
metric ship hull design, as there are a few features seen in the
target hulls that this parameterization is able to reasonably re-
construct. Most notably, the target hull for a fishing boat (image
D in Figures 5 and 9) has a stepped hull and longitudinal strakes
for assisting in the hull’s hydrodynamics. The surface of the re-
constructed parameterized hull of the fishing boat is smooth as
the parameterization cannot create these features. Another ex-
ample, the target hull for the USS Nimitz(image F in Figures 5
and 9) has a flared, non-pointed, bow to support structure for the
aircraft runway on the ships’s deck. This geometric feature is
impossible with the proposed parameterization. The optimized
reconstructed parameterized hull of the USS Nimitz minimized
the Chamfer distance over a majority of the hull surface but had
a pointed bow form as defined with the parameterization. A
third notable feature is that the parameterization had difficulty
reconstructing the bulb in the DTMB 5415 (image L in Figures 5
and 9) target hull has the bulb protruded below the baseline of
the hull. This positioning of the bulb is not possible with the
parameterization. It is important to note that the reconstructed
parameterized DTMB hull does not contain a bulb at all.

Overall, this parameterization can comprehensively design
diverse hulls for human and machine learning design processes.
The 45 parameters defined in this parameterization provide suffi-
cient information to reconstruct a large array of hull geometries,
yet does not over-complicate the design space in a way that in-
hibits its usefulness in a computational model due to the curse
of dimensionality. This parameterization is shown to design hull

geometries seen across the full spectrum of traditional hull de-
signs and scales, from small recreational watercraft to large naval
hulls. One note to add is that the geometry of a hull is defined by
44 parameters and the final parameter is the hull’s length overall.
This way, in theory, the geometry of the recreational fishing boat
(Hull D) could exist as any length by only changing the length
overall parameter. Additionally, the parameterization allows for
future machine learning work performed on the dataset to fo-
cus on tools and methods for performance prediction and design
generation without the need to create models for representing the
design of a hull given only its mesh. Future work in the hull rep-
resentation will look at reconstructing minute features that are
specific to certain types of ships.

Data Set Generation
The dataset of thirty thousand ship hulls was generated to

cover the full range of feasible samples for the hull parameteri-
zation. In order to ensure that the total feasible design space of
ship hulls is encompassed in the dataset, the Euclidean distance
to the nearest neighbor of each parameterized hull was measured
with increasing dataset size. Figure 10 shows that as the num-
ber of samples approaches thirty thousand the slope of this curve
and the standard deviation significantly decays, suggesting that
the entire design space of hulls is well sampled with thirty thou-
sand samples. More samples will certainly yield better results;
however the current sampling achieved a point of diminishing
returns, where any further reduction in the mean distance will
require a significant increase in the number of samples.

While the dataset covers the design space of feasible hulls
well, this produced a large range of wave drag coefficients in
the performance space, spanning several orders of magnitude.
Figure 11 shows the distribution of wave drag coefficients across
the three subsets of hulls in the dataset, showing that they all
have similar means. It is important to note that the distribution
of wave drag coefficients for subset 3 is narrower and skewed



higher than that of subsets 1 and 2. From a design perspective,
this is a reasonable outcome. The hulls in subset 3 are intended
to represent large hulls, especially for shipping. The design of
larger hulls is dependent on both the hydrodynamics the ability
to carry large amounts of cargo. Due to this required balance,
it makes sense that a set of designs skewed to represent cargo
ships would have higher drag coefficients as there are additional
design criteria for these hull forms. In addition, subset 2 was
skewed to represent hull forms seen on smaller ships. So, it also
makes sense that these hulls might have lower drag coefficients
as the design of smaller craft is dominated by speed, whether this
is for competition, leisure, or other purposes.

The design space coverage and large distribution of wave
drag coefficients led to the successful training of the ResNet to
learn how the geometric features of a hull defined by the parame-
terization can accurately predict the drag of a hull. The next sub-
section discusses the implications of the surrogate model training
for design evaluation and optimization.

Hull Form Optimization for Drag via ResNet Using
the ResNet to quickly predict drag within an optimization of a
hull led to the generation of hulls with significantly reduced drag.
Minimizing total drag with few constraints produces a hull with a
25% reduction in drag compared to the hull in the dataset with the
minimal drag with a displaced volume of 100000 cubic meters.
Unfortunately, the optimized hull is too long to be a real ship.
For reference, one of the target hulls provided in the paper, the
USS Nimitz, has a displacement of approximately 1000000 cubic
meters, but is only 332 meters in length. Due to constraints on the
global infrastructure of ports, very few ships exceed 350 meters
in length. This optimized hull is more than double the length of
the USS Nimitz, yet displaces approximately the same volume,
suggesting that there are harder constraints on the design of real
ships than only drag. This same argument was detailed in the
analysis of the distributions of data across the three subsets in
the previous section. An additional consideration in the design
of a ship with the optimized hull is the increased structural need
of supporting bending moments on this hull, further limiting its
mission capabilities. Neglecting that the optimization produced a
practically infeasible hull, the optimization with the ResNet had
two important findings:

1. The ResNet was able to learn how geometric features of
hulls affect drag

2. Hull optimization with the ResNet was able to find geomet-
ric features in combination and was able to reduce drag more
than any of the hulls existing in the training data.

Additionally, constrained optimization of an initial hull form
showed that wave drag coefficient predictions with the ResNet
were able to consider the individual geometric features of the
hull parameterization and optimize parameters to produce ship

hulls with significantly reduced drag compared to the initial hull
form. This is true for optimizing local features such as bulbs,
or global features such as the entire bow and stern of the hull.
It is important to note that the optimization of a bulbous bow is
a delicate balancing act. The bulb creates destructive interfer-
ence in a hull’s wave, reducing the wave drag; however, this is
at the cost of increasing skin friction. The optimization with the
ResNet balanced this trade-off. A reduction in 5-10% of total
drag is no small feat for a human hull designer to accomplish.
Computational tools reducing the drag of a hull upwards of 60%
will certainly produce greatly improved outcomes in the cost of
shipping and fossil fuel emissions. The current limit in this po-
tential is in creating ship hulls that are practically feasible for
real-world use.

CONCLUSION
This paper describes the creation of a ship hull dataset for

computational and data-driven design. The dataset was gen-
erated using a novel parameterization method that comprehen-
sively covers the vast design space of ship hulls, including tra-
ditional geometries. This parameterization method allows for
both human and computer-generated designs to exist within the
same data frame. It accurately reconstructs 12 distinct ship hulls
with a diversity of geometric features, with a normalized root-
mean-square of Chamfer distance of less than 0.51% of the tar-
get hull’s length. The resulting dataset contains 30,000 ship hulls
covering the full design space of feasible hull geometries, with
some bias towards realistic hull features. This dataset is over 42
times larger than any other publicly available ship hull dataset
and characterizes more geometric features. A surrogate model
based on ResNet architecture is trained on this dataset that ac-
curately predicts the wave drag coefficients for 32 speed/draft
conditions, with an R-squared value of 0.969. A case study of
surrogate-based optimization to minimize total drag of a hull in
constrained conditions demonstrates the model’s ability to pre-
dict the influence of individual geometric features and the influ-
ence of high-quality geometric features in combination, resulting
in reductions of up to 60% in total hull drag.

Future work will involve characterizing the performance of
ship hulls using additional performance metrics, including ge-
ometric, hydrostatic, and hydrodynamic measures. In addition,
a future study into surrogate modeling with multi fidelity simu-
lation will explore surrogate prediction accuracy and computa-
tional effort to produce datasets for early stage data driven de-
sign. Another consideration for future work is that many hulls
in the current dataset have high drag. This indicates that the ran-
dom sampling of parameters may not be an effective approach
for generating high-performing hulls. Future work will aim to
generate a larger dataset that considers hull performance in ad-
dition to geometric feasibility, enabling the training of surrogate
models with greater accuracy in the regions of the total design



space containing high-performing hulls similar to existing real
hull forms.
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