
Anna C. Doris1
Massachusetts Institute of Technology,

77 Massachusetts Avenue,
Cambridge, MA 02139, USA

email: adoris@mit.edu

Daniele Grandi
Autodesk Research,

The Landmark @ One Market, Ste. 400,
San Francisco, CA 94105, USA

Ryan Tomich
MIT Motorsports,

77 Massachusetts Avenue,
Cambridge, MA 02139, USA

Md Ferdous Alam
Massachusetts Institute of Technology,

77 Massachusetts Avenue,
Cambridge, MA 02139, USA

Mohammadmehdi Ataei
Autodesk Research,

661 University Avenue,
Toronto, Ontario M5G 1M1, Canada

Hyunmin Cheong
Autodesk Research,

661 University Avenue,
Toronto, Ontario M5G 1M1, Canada

Faez Ahmed
Massachusetts Institute of Technology,

77 Massachusetts Avenue,
Cambridge, MA 02139, USA

DesignQA: A Multimodal
Benchmark for Evaluating
Large Language Models’
Understanding of Engineering
Documentation
This research introduces DesignQA, a novel benchmark aimed at evaluating the profi-
ciency of multimodal large language models (MLLMs) in comprehending and applying
engineering requirements in technical documentation. Developed with a focus on real-
world engineering challenges, DesignQA uniquely combines multimodal data—including
textual design requirements, CAD images, and engineering drawings—derived from the
Formula SAE student competition. Unlike many existing MLLM benchmarks, DesignQA
contains document-grounded visual questions where the input image and input docu-
ment come from different sources. The benchmark features automatic evaluation metrics
and is divided into segments—Rule Comprehension, Rule Compliance, and Rule Extrac-
tion—based on tasks that engineers perform when designing according to requirements.
We evaluate state-of-the-art models (at the time of writing) like GPT-4o, GPT-4, Claude-
Opus, Gemini-1.0, and LLaVA-1.5 against the benchmark, and our study uncovers the
existing gaps in MLLMs’ abilities to interpret complex engineering documentation. The
MLLMs tested, while promising, struggle to reliably retrieve relevant rules from the For-
mula SAE documentation, face challenges in recognizing technical components in CAD
images, and encounter difficulty in analyzing engineering drawings. These findings un-
derscore the need for multimodal models that can better handle the multifaceted questions
characteristic of design according to technical documentation. This benchmark sets a
foundation for future advancements in AI-supported engineering design processes. De-
signQA is publicly available at: https://github.com/anniedoris/design_qa/.

1 INTRODUCTION
Large language models (LLMs), such as ChatGPT [1], are

chat-bots that can engage in conversations based on user queries.
Trained on data from much of the internet, LLMs are based on
the Transformer architecture [2] and have learned to predict the
next words based on an input sequence of text [3]. ChatGPT is
the fastest adopted technology in history, with more than 100 mil-
lion users two months after its release [4]. LLMs have garnered
significant attention for their conversational abilities, and research
studies have examined and quantified their abilities to answer ques-
tions on a range of topics, from medicine [5, 6] to education [7] to
engineering [8, 9].

With the emergence of LLMs as conversational assistants, an
important question is how they can help humans answer questions
about engineering design problems. A key goal of design automa-
tion has been to have an AI helper that can make it easier and
faster for human designers to create better products. Although
Generative AI has made significant strides, this goal has been dif-
ficult to attain, since engineering design tasks necessitate synthe-
sis of multimodal information across multiple sources. One such
task, critical to engineering design, is designing products based
on technical requirements, which list rules that consist of a metric
and a value (e.g. maximum tire width can be no greater than five
inches) [10]. Matching the complexity of many real-world designs,

1Corresponding Author.

technical specifications can be lengthy and extremely detailed and
often reference critical safety or regulatory specifications. De-
signing according to requirements necessitates that engineers or
designers interpret and synthesize multimodal data across sources
(e.g. the requirements document, CAD, engineering drawings,
documentation, standards, etc.).

Recently, models with multimodal capabilities [11–13], lengthy
documents (long-text) processing capabilities [14, 15], and both
multimodal and long-text capabilities [1, 16] have been developed.
These advances bring us closer to the reality of a multimodal AI
assistant that could help automate engineering design according
to requirement documents. As new MLLMs emerge, evaluating
their capacity to fulfill these essential design-requirement-related
tasks becomes imperative. This begs the question: How good are
contemporary MLLMs at engineering design according to require-
ments? How can we measure tangible improvements in the efficacy
of MLLMs at these tasks? Thus, we propose a novel benchmark
aimed at assessing the proficiency of MLLMs in interpreting and
adhering to the complex and multimodal demands of technical re-
quirements in the design process.

We present DesignQA (Figure 1), the first zero-shot benchmark
for engineering design technical requirements question-answering.
The benchmark consists of 1449 questions and is based on the For-
mula SAE 2024 Rules and data (CAD, documentation, etc.) pro-
vided by the MIT Motorsports team. By developing this bench-
mark in conjunction with the MIT Motorsports team, we prior-

1

https://github.com/anniedoris/design_qa/

Fig. 1 Overview of the three different segments (Rule Extraction, Rule Comprehension, and Rule Compliance) and
six subsets (Retrieval, Compilation, Definition, Presence, Dimension, and Functional Performance) in DesignQA.
Prompts and images shown above are condensed versions of the actual prompts and images used. The bottom right
table shows the metrics and the number of questions for each subset of the benchmark.

itized the generation of a dataset that is characteristic of real-
world design requirement challenges. DesignQA also contains
document-grounded reference-dependent visual question-answers
(VQAs), one of a handful of benchmarks that tests models’ abili-
ties to answer questions that require analysis across long-text doc-
uments and images. Notably, our benchmark assesses a model’s
ability to synthesize information across an image and text from dif-
ferent sources, where the image was not seen by the model during
its original training (pre-training).

In addition to developing the dataset, we used DesignQA
to benchmark several state-of-the-art (at the time of writing2)
MLLMs, GPT-4o [16], GPT-4 [1], Gemini-1.0 3, Claude-Opus
4, and LLaVA-1.5 [17], providing the FSAE rules to the models
either via the context window or via a simple retrieval method.
While GPT-4o is generally the best performer of the models tested
on DesignQA, our findings highlight the need for MLLMs that can
better perform the multifacted tasks of engineering design: for ex-
ample, a model that can better parse long text and analyze images
and apply technical knowledge, simultaneously. Based on obser-
vations of the performances of these models on the benchmark,
we provide suggestions about how models might be modified for
improved results on DesignQA and design requirement questions
generally.

In summary, our contributions are:

(1) A Novel, Multifaceted Benchmark for MLLMs: We in-
troduce DesignQA, a benchmark that tests MLLMs’ under-
standing of design according to an engineering requirement
document. DesignQA is unique in its need for models to an-
alyze and integrate information from both visual and long-
text inputs, emphasizing the complexity and multimodal na-
ture of real-world engineering tasks.

(2) A Granular and Automatic Evaluation Framework: We
create DesignQA to be thorough and easy to use. The bench-
mark is divided into three segments - rule extraction, com-

2All references to “time of writing” refer to the period from April - August 2024.
3https://ai.google.dev/gemini-api/docs/models/gemini?authuser=1
4https://www.anthropic.com/news/claude-3-family

prehension, and compliance - enabling a fine-grained inves-
tigation into a model’s strengths and weaknesses and en-
riching our understanding of AI in technical domains. Each
subset of DesignQA has an automatic evaluation metric, per-
mitting the quick evaluation of future MLLMs.

(3) High Quality, Real-World Question-Answer Pairs: We
develop a high-quality benchmark based on real-world data
and problems. The question-answers in DesignQA are based
on the FSAE competition rules and data provided by the MIT
Motorsports team. Questions are designed and reviewed by
members of the MIT Motorsports team, industry profession-
als, and engineering researchers.

(4) Evaluation of Contemporary MLLMs: We evaluate GPT-
4o, GPT-4, Gemini-1.0, Claude-Opus, and LLaVA-1.5
against DesignQA, unveiling the current limitations of AI
and retrieval methods in handling multimodal data and pro-
cessing engineering requirements. Some difficulties that the
tested models face include reliably extracting rules from the
documentation, recognizing technical components in CAD
images, and analyzing engineering drawings.

2 RELATED WORK
In this section, we first provide an overview of existing work

on AI for engineering design, showcasing that MLLMs have new
potential to assist humans with design and design requirement
problems. We then explore existing benchmarks for LLMs and
MLLMs, highlighting the lack of benchmarks about engineer-
ing design and design requirements. We then categorize exist-
ing benchmarks by reference type. This sets the context for our
contribution, which addresses the need for real-world, document-
grounded benchmarks that comprehensively bridge textual and vi-
sual information.

2.1 AI for Engineering Design. Much of the prior work on
AI for design has focused on single modalities [27], such as images
or text. For text, several studies have investigated natural language
processing (NLP) for technical engineering text. For example,
[28] and [29] describe a technical language processing framework

2

Table 1 Overview of select LLM and MLLM benchmarks, their domains, and reference-dependence. Our benchmark
is unique in its focus on design requirements, and in that it contains multi-source document-grounded VQAs.

Reference Type

Benchmark Domain Self-contained Open-domain Doc-Grounded
Single Source*

Doc-Grounded
Multi Source** VQA

McTest [18] Narrative Children’s Stories ✓ - - - ✗

SQUAD [19] Wikipedia - ✓ - - ✗

WikiQA [20] Wikipedia - ✓ - - ✗

QASPER [21] NLP Papers - - ✓ - ✗

ZeroScrolls [14] Mixed: Wiki, Gov, etc. - - ✓ - ✗

MME [22] COCO ✓ - - - ✓

MM-Bench [23] Mixed: COCO, Llava, etc. ✓ - - - ✓

MMMU [24] College materials - ✓ - - ✓

ScienceQA [25] Open-source science materials - ✓ - - ✓

InfoSeek [26] Wikipedia - - ✓ - ✓

DesignQA (Ours) FSAE Rules Doc & Data - - - ✓ ✓

*Single source: image in question contained within the document; **Multi source: image in question not contained within the document

for circumnavigating the limitations of traditional NLP on unstruc-
tured engineering data. Expanding beyond text, [30] creates a deep
learning architecture for technical document classification that fac-
tors in images as well as text. Despite significant advancements,
many NLP and deep learning methods are specialized to a single
domain and don’t generalize well to other problems within engi-
neering design.

LLMs offer more generalizable solutions to various problems
within engineering design. [31] demonstrates the potential for
LLMs (GPT-2 and GPT-3) to automate early-stage design concept
generation. [8] explores how LLMs can assist engineers across an
array of design and manufacturing tasks. While LLMs are use-
ful for select engineering design tasks, many engineering tasks are
highly multimodal (involving images, CAD, graphs, etc.). There-
fore, recent advancements in MLLMs hold untapped potential for
the automation of engineering design tasks. [9] investigates the
potential of GPT-4 to automate engineering design tasks involving
images, creating a dataset of over 1000 zero-shot queries. However,
this dataset does not focus on engineering documentation. While
a plethora of AI models like Google’s Gemini, Meta’s Llama fam-
ily, and Anthropic’s Claude models have emerged recently, their
effectiveness is almost exclusively evaluated on non-engineering
benchmarks. Critical for characterizing the abilities of MLLMs
for engineering design tasks are benchmarks that can rigorously
quantify their performances, which serves as inspiration for De-
signQA.

2.2 LLM and MLLM Benchmarks. In this section, we ex-
plore existing benchmarks for LLMs and MLLMs based on domain
and reference type. See Table 1 for a concise overview.

2.2.1 Benchmarks for Engineering Design and Design Re-
quirements. Very few benchmarks exist for engineering design
problems or design requirement-related tasks. Despite the plethora
of complex, multimodal QAs that could be generated from tech-
nically rich design requirement documents, very few datasets or
benchmarks have been developed for this domain. PURE (PUb-
lic REquirements) [32] is a dataset composed of 79 requirements
documents scraped from the web. However, the dataset does not
provide QA pairs and thus cannot be easily used for benchmark-
ing. DesignQA harnesses the FSAE competition rules and MIT
Motorsport design data to develop a benchmark of QAs pertaining
to real-world design requirements.

2.2.2 LLM Reference-Dependent Benchmarks. Text-based QA
benchmarks that require a model to parse additional references to
answer the posed question can be called “reference-dependent”
benchmarks. Reference-dependent benchmarks differ from many
classic reading comprehension benchmarks, like MCTest [18],
which are “self-contained” and can be answered by short-text (ap-
proximately paragraph length) chunks accompanying the question.
Since reference-dependent benchmarks require a model to locate
the relevant information – usually across one or multiple long texts
– and then apply that information to the posed question, they tend to
involve more complex questions. Following the distinction made
by Dasigi et al. [21], reference-dependent benchmarks can fur-
ther be divided into “open-domain” benchmarks and “document-
grounded” benchmarks. An example of an open-domain question,
taken from SQUAD, is: “Where do water droplets collide with ice
crystals to form precipitation?” [19] Open-domain benchmarks,
such as SQUAD [19] and WikiQA [20], test a model’s ability to
answer general-knowledge, factoid-type questions, the answer for
which is usually contained in multiple sources in the model’s pre-
trained corpus.

In contrast, document-grounded benchmarks, like QASPER [21]
and ZeroScrolls [14], test a model’s ability to answer ques-
tions based on information provided in a specific long-text doc-
ument. An example of a document-grounded question, taken from
QASPER, is: “[In reference to a specific NLP paper] Which neu-
ral architecture do they use as a base for their attention conflict
mechanisms?” [21] As noted by Dasigi et al., document-grounded
QAs tend to be more complex than open-domain QAs since they
are anchored in user context and the answers are not widely avail-
able facts [21]. DesignQA, grounded in the FSAE rule document,
fits within this document-grounded category. As a result, the ques-
tions posed in our benchmark are complex and rooted in user needs
rather than common sense. Document-grounded questions are very
characteristic of engineering design problems, as various types of
documents – standards, manuals, documentation, etc. – often con-
tain specific information that cannot be easily found on the internet.

2.2.3 MLLM Benchmarks. Multimodal datasets typically test
an MLLM’s capacity to analyze a non-text element with respect to
question text. At the time of writing, most MLLMs can only accept
images as non-text inputs, so multimodal QA benchmarks tend to
consist of a visual (image) coupled with a question/answer pair.
Visual question-answers (VQAs) can be categorized in the same
way as text-based QA benchmarks. The vast majority of VQA
benchmarks are self-contained. An example of a self-contained

3

VQA question, taken from MME, is: “[Pertaining to a photo show-
ing doubles tennis partners] Are there two people in this image?”
These are questions for which no context (other than the image) is
needed to answer the question. The MME [22] and MMBench [23]
benchmarks – highlighted by Chang and Wang et al.’s review
paper [33] – are both self-contained VQAs. These benchmarks
largely focus on basic tasks – primarily reasoning and perception
– which are usually presented in a multiple choice format for ease
of evaluation [22].

More challenging and less prevalent than self-contained VQAs,
reference-dependent VQAs test a model’s ability to synthesize
image analysis with additional knowledge, either from the open
domain or from specific documents. MMMU [24], which con-
sists of multiple choice questions gathered from college materials,
can be considered an open-domain VQA, as can ScienceQA [25],
which contains elementary to high school-level science multiple
choice questions. The benchmark additionally encourages com-
plete “train-of-thought” reasoning by providing a “lecture” – mul-
tiple sentences of general knowledge pertaining to the question –
and “explanation” – reasoning for selecting a particular answer –
for each VQA. InfoSeek [26] is the first document-grounded VQA,
composed of questions about images in specific Wikipedia articles
that can only be answered by consulting the corresponding article’s
text.

However, there is still a significant need for document-grounded
VQAs that are more characteristic of real-world tasks. InfoSeek has
a direct match between visual and the document (i.e. the visual is
contained within the document), while most visual questions asked
by users would not fit this direct look-up framework (e.g. provided
with an image of a broken machine and a manual for the machine,
the exact image will not be contained within the manual). InfoS-
eek’s images and documents – which both come from Wikipedia
– have also likely been seen by the model during pre-training; for
many of the questions asked by users, either the document or the
visual would not have been seen during pre-training. DesignQA
is constructed to fill these gaps and is more representative of these
real-world scenarios.

3 DesignQA BENCHMARK
3.1 The Dataset. We created DesignQA to be characteris-

tic of real-world engineering problems, in three ways. Firstly,
the benchmark is based on a real rulebook, the 140-page For-
mula SAE Rule document. While designed for a student compe-
tition, the Formula SAE Rule document guides young engineers
in designing, building, testing, and racing a fully functional gas-
powered or electric vehicle. Student engineers repeatedly consult
the rule document while developing their vehicle prior to competi-
tion. Secondly, the benchmark was created with real CAD models
and test data provided by the MIT Motorsports team, the equiva-
lent of which from engineering companies is not readily available.
Thirdly, the QAs were created by a member of the MIT Motor-
sports team, a member of our team from industry (Autodesk), or a
member of our team from academic research. All manually gener-
ated QAs – except those that are derivatives of other questions or
Rule Compliance explanations – were reviewed by the two parties
who hadn’t written the question. The importance of these second
and third points cannot be overstated, as many LLM and MLLM
datasets rely on crowdsourcing or synthetic data [34], which is of-
ten generated by other LLMs. While much more straightforward to
generate, crowdsourcing and synthetic data – especially in highly
technical domains – often comes at the cost of QA quality.

The Formula SAE Rule document is similar to many other en-
gineering design rule documents and standards. In fact, the 2024
Formula 1 Technical Regulations document [35] – which governs
real Formula 1 races – is 178-pages long and has very similar
content sections as the student SAE version. As such, we believe
that DesignQA and its subject matter well capture engineering-
design-type questions. The Formula SAE Rule document is orga-
nized in sections (e.g. V-“Vehicle Requirements,” F-“Chassis and

Structural,” etc.) with numbered rules (e.g. V.1, V.2, etc.) that
are grouped logically. This is a common format for other techni-
cal documentation, such as NASA technical memorandums [36],
which also follow similar enumerated structures. Like the Formula
SAE rule document, many of the rules specified in these other
documents refer to technical terms defined elsewhere within the
document and many of the rules pertain to dimensional constraints
or functional performance.

DesignQA consists of 1449 question-answers (Figure 1) and is
divided into three segments – Rule Extraction, Rule Comprehen-
sion, and Rule Compliance – which build on each other and are
designed to test MLLMs on the process of designing according
to technical documentation. Given a rule document or standard,
engineers repeatedly consult the document throughout the design
process to check for design compliance. Likewise, the Rule Com-
pliance segment of the benchmark assesses an MLLM’s capacity to
check engineering drawings and test data for rule adherence. The
other two segments of the benchmark test models on skills that are
prerequisites for being able to evaluate compliance. For example,
in order for engineers to check for compliance, they must first com-
prehend all of the terms and definitions presented within the rule
document. The Rule Comprehension segment of the benchmark
evaluates an MLLM’s ability to recognize in visual designs tech-
nical jargon from the rule document. Similarly, in order to check
for rule compliance, engineers must be able to extract – from the
rule document – those rules that are relevant to their design task.
In a similar way, the Rule Extraction questions test an MLLM’s
ability to identify relevant information in a lengthy rule document;
without being able to perform these relatively simple identification
tasks, models will be unable to answer any meaningful questions
about a rule-in-question.

To provide more context to the model, each of the QAs begins
with the following preamble:

We are a student engineering team designing a vehicle for the FSAE
competition. Attached is the FSAE rules document.

The rule document was provided to the model when asking
each question. Each of the three benchmark segments is further
divided into two subsets, or specific tasks. Details about each of
the benchmark segments and subsets are presented in the following
section.

3.1.1 Rule Extraction. A key - albeit usually simple - task for
engineers is to locate a specific rule in a requirement document:
answering a question about a rule is predicated on the ability to
locate and extract the relevant rule. The Rule Extraction segment
of the benchmark tests a model’s ability to extract rules from the
140-page FSAE rule document. This benchmark segment is further
divided into two subsets: Retrieval QAs and Compilation QAs.

Retrieval questions test a model’s ability to extract specific in-
formation from a lengthy document. Given the large number of
pages in the original rule document, retrieving the text of the rules
word-for-word is a non-trivial task. While this retrieval task might
become obsolete in the future as better models continue to be de-
veloped, it is critical for models to retrieve accurate information,
as it is a necessary precursor for the other types of questions in this
benchmark.

We programmatically create the Retrieval QAs by first extract-
ing all the text from the PDF document, excluding the headers,
footers, and page numbers. The rule document is well organized
into numbered sections and subsections (which may or may not
have titles) in the format ‘AA.#.#.#’. By using a combination of
manually created scripts and regex patterns to identify the individ-
ual rules, we tabulate the set of rules and label the rule number,
the rule title, and the rule text. Finally, we drop the rules that do
not contain any text (while keeping the child rules) as well as sets
of rules that pertain to other aspects of the race (e.g., Administra-
tive Regulations, Document Requirements) and not to the design

4

Fig. 2 Representing 3D CAD models in 2D images. A) Multi-view CAD image. B) Close-up CAD image. C-D) Engi-
neering drawing images. C) uses the direct dimensioning method and D) uses the scale bar dimensioning method.

specifications that the vehicle must meet.
From the tabulated set of rules, we can then programmatically

formulate the set of Retrieval QAs. To the preamble described in
the previous section, we append the following:

What does rule {𝑟𝑢𝑙𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 } state exactly? Answer with only
the text of the rule and no other words.

Where {𝑟𝑢𝑙𝑒_𝑛𝑢𝑚𝑏𝑒𝑟} is replaced by each of the selected rule
numbers. This process results in 1192 Retrieval QAs.

Compilation questions assess a model’s ability to look for infor-
mation spanning a long document. A common task that designers
might perform when interacting with a design requirement docu-
ment is the compilation of all rules relevant to a specific subject,
such as the ‘suspension’ or ‘critical fasteners’. To create this set of
QAs, we begin with a manually curated set of 30 common terms
present in the rule document (nine of which include their syn-
onyms, acronym, or plurals). This results in 30 questions with the
following format:

Please list all rules relevant to {𝑡𝑒𝑟𝑚}. Answer with only the rule
numbers (i.e.: AA.1.1.1) separated by commas and no other words.
The rules relevant to {𝑡𝑒𝑟𝑚} are:

Where {𝑡𝑒𝑟𝑚} is replaced by each of 30 common terms. To cre-
ate the ground truth answers, we first compile the list of rules that
include the term with a simple search through the tabulated rules,
described in the previous section. We also include the children of
each of the rules found, as well as any other rules that might be
mentioned in both the parent and child rules.

3.1.2 CAD Representation. The Rule Comprehension and
Rule Compliance segments of our benchmark ask questions about
3D CAD models of the designed vehicle. We develop QAs around
four different 3D CAD models provided by MIT Motorsports: the
vehicle, the vehicle plus the aerodynamic package, the rear wheel
package, and the powertrain. Before describing the details of these
QAs, we devote this section to detailing how we provide 3D CAD
model information to MLLMs. Since MLLMs cannot accept typ-
ical 3D CAD model formats (e.g. .stl, .step, etc.) at this time, we

convert the CAD that we would like to show the model into 2D im-
age forms, preserving as much 3D spatial information as possible.
We represent 3D CAD models in 2D using three different kinds of
images: 1) multi-view CAD images, 2) close-up CAD images, and
3) engineering drawing images (Figure 2).

Multi-view CAD images (Figure 2A) show six views of the
CAD model: top, bottom, front, back, left, and isometric. Since
the model cannot rotate a 3D CAD model in a CAD software
GUI, these six views capture information about how the different
views fit together to comprise the 3D model. Each view has a
corresponding coordinate frame, so that it is clear to the viewer
how each of the six views is related to the others.

Close-up CAD images (Figure 2B) show zoomed-in views of
our CAD. The purpose of these images is to show finer detail in
specific regions of the model. The close-up CAD images show
a single view of the model with an orientation (and coordinate
frame) matching one of the views in the corresponding multi-view
CAD image.

Engineering drawing images (Figure 2C&D) display dimen-
sional information about the 3D model. These images are created
using engineering drawing software, so that the dimensions shown
are highly accurate. They show a single view of the model with an
orientation (and coordinate frame) matching one of the views in
the corresponding multi-view CAD image. We used two different
dimensioning systems to indicate the dimensions on these images.
The first method was direct-dimensioning (as in Figure 2C), where
dimensions relevant to a particular rule are explicitly indicated on
the drawing. The second method was scale-bar-dimensioning (as in
Figure 2D), where a scale bar is provided and from which a model
could infer necessary dimensions. We used a mixture of these two
dimensioning methods in our QAs, as we were interested in what
effect the dimensioning method would have on model performance.

In the following sections, we describe how these three image
types are employed in our QAs. Often, two of these image types are
appended together to form an image that conveys more information.
While we represent 3D CAD models using various 2D image types,
this 3D model representation should be updated as MLLMs become
more sophisticated and are able to parse inherent 3D model file
formats.

5

3.1.3 Rule Comprehension. In order to understand how the
rules relate to a design, engineers must first understand the terms
presented in the rules and the names of the different components in
the design. The Rule Comprehension segment of the benchmark
evaluates a model’s ability to refer to elements of a 3D model
according to the definitions and terminology presented in the rule
document. This part of the benchmark is further divided into two
subsets: Definition QAs and Presence QAs.

Definition questions test a model’s ability to identify the name of
a highlighted component in a CAD model. From a list of 31 com-
ponents, we created a multi-view CAD image (Figure 2A) where
the component-to-be-identified is highlighted in pink. Component
synonyms were also collected (e.g. frame and chassis) for scoring
purposes. Sometimes, it was necessary to hide some components
in the CAD model so that the highlighted component could be
better visualized. If components were hidden, it was noted in the
prompt. Appended to the preamble is the following prompt, which
resulted in the generation of 31 VQA pairs:

Also attached is an image showing six CAD views of our vehicle
design. What is the name of the component(s) highlighted in pink?
{[If components hidden] Some parts of the design have been hidden
so that the highlighted component(s) can better be visualized.} An-
swer just with the name of the highlighted component(s) and nothing
else.

Presence questions assess a model’s ability to understand
whether a particular component is present or not in a close-up
CAD image. As such, these QAs are an easier variant of the Def-
inition QAs, since they ask the model to provide a yes/no answer
rather than the name of a component. Using the same list of 31
components from the Definition QAs, we generated two close-up
CAD images (like that in Figure 2B), one which contained the com-
ponent and another which did not. These 62 close-up CAD images
were appended to the corresponding multi-view CAD image (like
that in Figure 2A), which provided more 3D context for the close-
up image. This resulted in 62 VQA pairs, each of which had the
following prompt, where {𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡_𝑛𝑎𝑚𝑒} was replaced with
one of the 31 components:

Also attached is an image showing seven CAD views (each boxed
in black) of our vehicle design. The top, big view shows a close-up
view of the design. The six smaller views on the bottom of the image
show different complete views of the CAD of the vehicle and are pro-
vided for context. Note that the close-up view orientation matches
one of the six complete view orientations. The close-up view may
also have some components hidden (with respect to the correspond-
ing complete view) for visualization of specific components. Look-
ing at the close-up view, is/are the {𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡_𝑛𝑎𝑚𝑒} visible
in the close-up view? Answer simply with yes or no.

For the Definition and Presence questions, we also tracked how
the component-in-question was mentioned in the rule document:
if it was mentioned explicitly in a “definition” section of the FSAE
rule document (“definition component”), if it was not in a defi-
nition section but mentioned multiple times throughout the doc-
ument (“multi-mention component”), or if it was not mentioned
in the document at all (“no-mention component”). The intent be-
hind this tracking was to understand whether the frequency and
way in which a component’s name is mentioned in the rule docu-
ment is correlated with the model’s ability to visually identify the
component in the Rule Comprehension questions.

3.1.4 Rule Compliance. Engineers frequently consult require-
ment documents to ensure that their designs comply with specific
specifications. The Rule Compliance segment of the benchmark
characterizes a model’s ability to check that a design conforms with
a specific rule. This part of the benchmark is further divided into
two subsets: Dimension QAs and Functional Performance QAs,
depending on the type of rule in question.

Dimension questions test a model’s ability to check that a design
complies with a rule that stipulates dimensional constraints. From a
list of 20 dimension rules, we generated three engineering drawing
images for each rule:

(1) A direct-dimensioned and rule-compliant image (as in Fig-
ure 2C).

(2) A direct-dimensioned and rule-violating image. These were
generated by editing the dimensions on the first image to
explicitly violate the rule-in-question, or by modifying the
CAD model so that the updated dimensions violated the rule.

(3) A scale-bar-dimensioned and rule-compliant image (as in
Figure 2D).

No scale-bar-dimensioned and rule-violating QAs were created.
Since the CAD provided by MIT Motorsports is inherently rule-
compliant, it is difficult to create negative examples when editing
of direct-dimensions is not possible. Each of these engineering
drawing images was appended to a corresponding multi-view CAD
image (like that in Figure 2A) to provide context about the full
model. This resulted in 60 VQAs with the following prompt,
appended to the preamble:

Also attached is an image that shows an engineering drawing of the
vehicle on the top accompanied by six CAD views of the vehicle
on the bottom. The six CAD views each feature a different orienta-
tion of our design, so that 3D information about our design can be
inferred. The CAD views are provided to contextualize the engineer-
ing drawing, which has the same orientation as one of the six CAD
views. All units displayed in the engineering drawing have units of
mm. Based on the engineering drawing, does our design comply
with rule {𝑟𝑢𝑙𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 } specified in the FSAE rule document?

{[If direct-dimensioned:] Only use dimensions explicitly shown
in the engineering drawing to answer the question. If a dimension
is not explicitly shown, you can assume that it complies with the
rules.}

{[If scale-bar-dimensioned:] To answer the question, use the
scale bar shown at the top of the engineering drawing to compute
necessary dimensions in the drawing.}

First provide an explanation for your answer (begin it with ’Ex-
planation:’). Then provide just a yes/no answer (begin it with ’An-
swer:’) that summarizes your response.

While these questions can be answered with a yes/no response,
we also wanted to assess the model’s ability to explain why the de-
sign was or was not compliant, encouraging chain-of-thought rea-
soning [25]. For each direct-dimensioned question, we (or mem-
bers of the MIT Motorsports team) wrote an explanation justifying
the ground-truth yes/no answer. These explanations were not ex-
tensively reviewed, other than to ensure that they supported the
corresponding ground truth yes/no answer. These human-written
explanations can then be compared to generated model explana-
tions.

From these 60 VQAs, we generated another set of 60 VQAs with
additional context that would help with answering the question. For
the set of original 60 VQAs, we swapped out the multi-view CAD
portion of the image with a different multi-view CAD image with
components highlighted in pink that were relevant to the rule. We
also added a line to the prompt explaining what the highlighted
components were (e.g. “In the CAD views, the lower side im-
pact structure is highlighted in pink”). In total, 120 Dimension
VQAs were generated: 60 without additional context and 60 with
additional context.

Functional Performance questions also test a model’s ability
to check that a design complies with a rule given a relevant image.
For this category however, either the rule, the image, or both is
related to some functional performance of the design. Most ques-
tions involve a rule that imposes a constraint on some functional
criteria of the design, and the image conveys the information re-
quired to check the rule. For example, there could be a restriction
on the material choice for a part (hence the corresponding material

6

strength) in the rule and the visualization of FEA results could indi-
cate the maximum stress found in the part. When applicable, a pair
of positive and negative examples is generated, where a variation
is introduced to either the question or the image such that the first
example would violate the rule while the second example would
not. There is significant variation in the images and rules contained
within this subset, and thus there is no standardized prompt. We
encourage exploration of our code for more details. As these ques-
tions were more difficult to formulate due to limited availability of
functional performance data, this subset has 16 VQAs. Like the
Dimension questions, we generated a human-written explanation
for each VQA.

3.2 Evaluation Metrics. Models tested on DesignQA can be
evaluated completely automatically. For each of the six subsets
of the benchmark, an appropriate automated evaluation metric was
selected and implemented in our code so that a model’s (predicted)
answer can readily be compared to the ground-truth answer. For
several of the evaluation metrics, it can be difficult to intuit what
score a prediction would receive relative to a ground-truth answer.
As such, we’ve provided some examples in Figure 3 of model pre-
dictions (from our Model Evaluation section), their corresponding
ground-truth answers, and the resulting scores. Each of the evalu-
ation metrics is discussed in-depth below.

3.2.1 F1-score. Many subsets of our dataset are scored on
a flavor of the F1-Score. The F1-Score is a popular metric for
evaluating models’ performance on binary classification tasks, as
the metric weighs both precision and recall. It is defined as:
F1-Score = 2 × Precision×Recall

Precision+Recall .
F1 Bag of Words: F1 applied to a Bag of Words (BoW) was

used by [19–21] as an automatic metric for their benchmarks, which
asked a model to pull verbatim phrases from a body of text to an-
swer a question. As defined by [19], the metric first involves a
cleaning step. The predicted answer (model response) and the
ground-truth answer are converted to lower-case characters, extra
white-space is removed, and punctuation and articles are taken
out. They are then each “tokenized” into lists of words – predicted
list (P) and ground-truth list (GT) – where F1-Score can be com-
puted using Precision and Recall, where 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑃∩𝐺𝑇

len(𝑃) and
𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑃∩𝐺𝑇

len(𝐺𝑇) .
Since our Retrieval QAs also ask the model to pull text from

the rule document verbatim, we use this F1 Bag of Words metric
to evaluate the Retrieval subset of the benchmark. We compute
F1 BoW for each QA, and we report a macro-average across all
questions.

F1 Rules: Similar to the Retrieval QAs, our Compilation ques-
tions ask a model to identify text (specifically rule numbers) con-
tained within the rule document. We therefore use a very similar
metric to the F1 Bag of Words used for the Retrieval QAs, except
the lists P and GT are replaced by lists of rule numbers. We com-
pute F1 Rules for each QA, and we report a macro-average across
all questions.

F1 Bag of Characters (BoC): Our Definition QAs ask a model
to identify a component highlighted in a multi-view CAD image,
using the rule document for reference. These QAs seemed like they
should be scored similarly to the Retrieval QAs; however, since the
model was now being asked for component names (several words)
rather than complete rules (sentences), we did not want to penalize
the model for small spelling errors or ending differences. For
example, if the ground truth is “front hoop,” a predicted response
of “front hoope” should be considered more correct than “front
motor.” F1 Bag of Words would score “front hooped” and “front
motor” as equally correct. F1 Bag of Characters reflects the relative
correctness of “front hooped” over “front motor.” It is computed
in the same way as F1 Bag of Words, except tokenization occurs on
the character rather than word level. We compute the F1 BoC for
each Definition QA across all synonyms, and we report the macro
average of the highest score for each QA.

3.2.2 Accuracy. Several subsets of our benchmark – Presence,
Dimension, and Functional Performance questions – ask the model
to provide a yes/no answer. We score these using accuracy (ACC).

3.2.3 Explanation Metrics. For the Rule Compliance ques-
tions, models return explanations as well as yes/no answers. Au-
tomatically scoring model-generated explanation text for semantic
similarity to a human-written reference text is a complex task,
with no perfect solution. A recently developed benchmark testing
large language models on multiple-choice science questions, Sci-
enceQA [25], used three different automated metrics – BLEU [37],
ROUGE [38], and Similarity [39] – to assess similarity between
LLM-generated and human-written explanations. We follow Lu et
al.’s [25] example and use these three metrics to score the MLLM-
generated explanations relative to the human-collected ones in our
benchmark. Each of these metrics is described further below.

BLEU: The BLEU (Bilingual Evaluation Understudy) score was
developed by Papineni et al. [37] for the automatic scoring of ma-
chine translations relative to human, reference translations. To
compute BLEU, predicted and reference sentences are first broken
up into n-grams, which are segments of n (a user-specified num-
ber) words. n-gram matches between the predicted and reference
sentences are then found; once a predicted n-gram is matched to
a reference n-gram, the n-gram is removed from the pool of ref-
erence n-grams in a process called “clipping.” The number of
matching n-grams is then divided by the number of n-grams in
the predicted sentence, producing a modified precision score, 𝑝𝑛.
The authors suggest to compute BLEU-4: 𝑝𝑛 for n = 1 through
n = 4, taking the geometric mean of the four 𝑝𝑛 (since 𝑝𝑛 de-
cays exponentially with increasing n) [37]. However, since we
only use one reference (one explanation), BLEU-4 scores were al-
ways near zero. As such, we report BLEU-2, which has non-zero
scores but still preserves some of the information about adjacency
of words. BLEU-2 (with max n-gram 2) can be computed as:
log(BLEU) = min

(︁
1 − 𝑟

𝑐 , 0
)︁
+∑︁2

𝑛=1
1
2 log(𝑝𝑛)

The min() term is a “brevity penalty” and serves to penalize pre-
dictions (of length c) that are shorter than the ground truth (length
r). For the explanation portions of the Rule Compliance questions,
we report BLEU-2 to quantify the similarity between the model’s
generated explanation and the human-generated explanation.

ROUGE: The ROUGE (Recall-Oriented Understudy for Gisting
Evaluation) metric was developed by Lin et al. [38] to measure the
quality of a computer-generated text summary relative to a human,
reference summary. ROUGE-L, which uses longest common sub-
sequence (LCS), is useful for characterizing similarity in sentence-
level word order. The LCS refers to the longest sequence of words
that appear in the same order but not necessarily consecutively in
the two sentences. ROUGE-L is computed as the F1 score of the
LCS: 𝑅𝐿𝐶𝑆 =

𝐿𝐶𝑆 (𝑅,𝑃)
𝑚 , 𝑃𝐿𝐶𝑆 =

𝐿𝐶𝑆 (𝑅,𝑃)
𝑛 , and 𝑅𝑂𝑈𝐺𝐸𝐿 =

2𝑃𝐿𝐶𝑆×𝑅𝐿𝐶𝑆

𝑃𝐿𝐶𝑆+𝑅𝐿𝐶𝑆
,

where 𝑅 is a reference sentence, 𝑃 is a predicted sentence, 𝑚
is the length of a reference sentence, 𝑛 is the length of a predicted
sentence, 𝑅𝐿𝐶𝑆 is the recall, and 𝑃𝐿𝐶𝑆 is the precision. For the
explanation portions of the Rule Compliance questions, in addition
to reporting BLEU-2, we also report ROUGE-L.

Similarity: The Similarity metric refers to Sentence-BERT-
based sentence embedding cosine similarity [39, 40]. Both the
model-generated explanation and the human-written explanation
are embedded using the sentence-transformers/all-MiniLM-L6-v2
sentence transformer, resulting in two vectors that encode the
meaning of the explanations. Cosine similarity between the two
vectors is then computed to identify how much overlap there is in
meaning between the two explanations.

4 MODEL EVALUATION
We evaluate simple baselines and state-of-the-art MLLMs, at the

time of writing, on our DesignQA benchmark to understand current
AI models’ capabilities in understanding engineering requirement

7

Fig. 3 Sample responses from GPT-4-AllRules, GPT-4-RAG, and LLaVA-1.5-RAG across different subsets of the
benchmark. We show the subsets that have evaluation metrics that can be harder to interpret, to provide references
for various scores. The bolded portions of the predicted responses show what we interpreted to be correct.

documentation. The goal of these evaluations is not to be exhaus-
tive: there are many other models that should be tested, time and
cost permitting. Given the rapid pace of MLLM development, we
ask for the research community’s assistance in benchmarking new
state-of-the-art models as they are developed. The goal of the eval-
uations we conducted is rather to illustrate the gaps in current AI’s
capabilities and to encourage other researchers to build and train
better AI models and frameworks that target these gaps. More-
over, evaluating different MLLM models provides some insight
into the relative difficulty of the questions, and the failure modes
could serve as inspiration for future approaches to benchmarking
design-requirement-type questions.

4.1 Baselines and Models.

4.1.1 Naive Baselines. Similar to [14], we create basic base-
lines that rely on random selection so that it is easier to con-
textualize models’ performances across the different subsets and
metrics of the benchmark. For the Retrieval questions, we ran-
domly choose a rule from the 1192 rules in our rule list. For the

Compilation questions, we randomly pick 10 rules from our list
of 1192. For the Definition questions, we randomly choose two
consecutive words in the rule document. For the questions scored
on accuracy (Presence, Dimension, and Functional Performance
questions), we randomly select yes or no with 50% probability.
Note that these baselines are evaluated to provide a sense of the
lower threshold score (predicting randomly with no learning) for
any machine learning model.

4.1.2 MLLM Models. We consider five recently developed
MLLMs in our evaluation: four closed-source models – OpenAI’s
gpt-4o (GPT-4o) [16], OpenAI’s gpt-4-1106-vision-preview (GPT-
4) [1], Google AI’s models/gemini-1.0-pro-vision (Gemini-1.0) 5,
and Anthropic’s claude-3-opus-20240229 (Claude-Opus) 6 – and
one open-source model: llava-1.5-13b (LLaVA-1.5) [17]. Note
that all future references to GPT-4o, GPT-4, Gemini-1.0, Claude-
Opus, or LLaVA-1.5 refer to these specific model versions un-

5https://ai.google.dev/gemini-api/docs/models/gemini?authuser=1
6https://www.anthropic.com/news/claude-3-family

8

less otherwise stated. GPT-4, Gemini-1.0, and Claude-Opus were
originally selected for their strong performances as closed-source
models on existing multimodal benchmarks [9, 14]. For example,
Gemini-1.0 Ultra, Claude-Opus, and GPT-4V(ision) were the top
three models, as of April 2024, on the MMMU benchmark, which
consists of 11.5k multimodal questions from college curriculum
content [24]. GPT-4o was released towards the end of the time of
this work. It holds the 1st place spot on the MMMU leaderboard
[24], as of August 2024. It was added to our closed-source model
evaluations both because of this notable performance and because
of potential for comparison with GPT-4. In this way, DesignQA
can be used to continue to measure progress of models as they
develop over time. LLaVA-1.5 is selected because of its promise
(and the promise of its derivatives) as an open-source MLLM [41].
While the Retrieval and Compilation questions in the benchmark
could be answered with text-only models, we pose the questions in
this segment with a null image to the MLLMs.

The extracted text from the FSAE rule document PDF is roughly
70,091 tokens in length. As GPT-4o and GPT-4 have 128,000 to-
ken context windows and Claude-Opus has a 200,000 token context
window, these models can ingest the whole rule text in the prompt.
However, LLaVA-1.5 and Gemini-1.0, which only have 4,096 to-
ken and 12,288 token context windows respectively, cannot take
the whole rule text as context input. Thus, these two models re-
quire a Retrieval Augmented Generation (RAG) system to retrieve
the appropriate context relevant to the question from the FSAE rule
document [42]. As our research goal was not to evaluate differ-
ent RAG techniques, we implement a very simple RAG using the
LlamaIndex framework, described in more detail in Section 4.1.3.
In the cases of GPT-4o, GPT-4, and Claude-Opus, ingesting the
whole rule document via the context window proved to be costly,
25 times or more the cost of providing the rule document to the
model via the simple RAG. Of these models, Claude-Opus had
the most expensive cost per input token at the time of writing, so
we only tested Claude-Opus with a RAG system. For GPT-4o and
GPT-4, we tested the models by providing them the full rule doc-
ument via their context windows and also by providing them the
rule document via RAG, so as to enable better comparison with
the other models that received the rules via RAG.

In summary, we tested the following model combinations: GPT-
4o-AllRules (given the full rule document via its context window),
GPT-4-AllRules (given the full rule document via its context win-
dow), GPT-4o-RAG, GPT-4-RAG, LLaVA-1.5-RAG, Gemini-1.0-
RAG, and Claude-Opus-RAG. For all models, we did not specify
a system prompt template, so the default system prompt was used.
We also used the default parameters (top_p and temperature) for
each model, as set by LlamaIndex, the framework from which we
called the MLLMs. More details can be found in the SI.

4.1.3 RAG. RAG is a natural language processing technique
that enhances text generation by incorporating external knowledge,
dynamically retrieving relevant information from a database or cor-
pus to inform and improve the content being produced [42]. It is
especially helpful for models with small context windows, as it
selectively pulls relevant information from an extensive document
to assist in generating more informed and contextually accurate
text outputs. As mentioned before, our goal in this work is not
to study different RAG techniques. As such, we implemented a
very simple RAG system using LlamaIndex and using OpenAI’s
text-embedding-3-large to embed the information in the FSAE rule
document [43]. We index the text from the rule document into
250-token chunks, with a 50-token overlap. From the embeddings,
the cosine similarity between the question and each of the embed-
ded chunks is then computed. The top-15 (top-12 for Compliance
QAs) most relevant pages are then fed into the prompt as con-
text, before posing the question in the benchmark. If including the
top-15 most relevant pages exceeded the model’s context window
size, the top-k value was lowered. While there are a few images in
the FSAE rule document, they were not considered for our evalu-
ation or included in our RAG, as they require further processing,

and LLaVA-1.5 was not trained on multiple image inputs. The
few tables in the FSAE rule document will not receive any special
treatment and will be fed into the models just as simple text from
the PDF text-extracting script, together with the rest of the text on
the page.

For just the Definition question subset of the benchmark, the
*-RAG models were not given any RAG-generated context. This
is because the questions in the Definition subset are the same, i.e.,
“tell me the name of the highlighted component,” even though the
images vary across QAs. As such, RAG always returned the same
portion of the rule document for each question. Since this identical
context is unhelpful, we did not provide it to the models for the
Definition questions. As such, all *-RAG models tested did not
receive document context just for the Definition subset.

4.2 Results and Analysis. Table 2 shows all the baseline and
model results. First, we discuss some overall findings and then we
specifically delve into the results for each subset of the benchmark.

Overall Results. Of the models tested, GPT-4o-AllRules per-
forms the best across almost all metrics in the benchmark. GPT-
4o-AllRules and GPT-4-AllRules, in all but one subset case, per-
form better than their corresponding -RAG models, demonstrating
that the simple LlamaIndex RAG implementation was generally
ineffective at providing relevant rule information to the models. In
contrast, inputting the full rule text into the context window al-
lowed GPT-4o-AllRules and GPT-4-AllRules to access necessary
information. Of the models tested, GPT-4o-AllRules is not the best
performer on the Rule Compliance explanations: Gemini-1.0-RAG
receives higher scores (or ties) on the BLEU and ROUGE metrics,
likely because of the model’s succinct explanations, and Claude-
Opus-RAG ties GPT-4o-AllRules on the Functional Performance
explanation Similarity score. Of the *-RAG models tested, GPT-
4o-RAG tends to be the best performer, with the exception of the
Functional Performance questions, where Claude-Opus-RAG has
the highest Functional Performance accuracy score of the *-RAG
models tested. This finding perhaps indicates that Claude-Opus
has better engineering-design technical reasoning skills than the
other models evaluated.

Despite GPT-4o-AllRules’s notable performance of the models
tested, it does not attain perfect scores (1.0 for each subset of the
benchmark). Even though it receives the full rule document, GPT-
4o-AllRules cannot reliably extract specific rules from the text, a
trivial yet critical task for engineers. MLLMs’ scores on the Com-
pilation, Definition, and Presence subsets of the benchmark also
remain relatively low when compared with the Naive baseline,
possibly because these subsets’ questions don’t point the models to
specific sections of the rule document, resulting in harder search
problems. There remains significant work that must be done to
develop MLLMs equipped with engineering and reasoning knowl-
edge that can solve these problems characteristic of real-world en-
gineering design challenges. We must focus efforts on developing
MLLM methods that excel in engineering contexts, enhancing pre-
cision and reliability in real-world applications.

Rule Extraction: Retrieval. Of the models evaluated, GPT-4o-
AllRules and GPT-4-AllRules significantly outperform the other
models at retrieving the requested rule verbatim (0.881 and 0.747
average F1 BoW score, respectively). When an *-AllRules model’s
answer diverged from the ground truth answer, we noticed that it
was often because the model was reporting a nearby rule rather
than the rule requested (e.g. V.3.2.5 instead of V.3.2.4) or because
the model was reporting a similarly numbered rule (e.g., F.3.2.1)
instead of the requested rule (e.g., V.3.2.1). Sometimes the *-
AllRules models’ answers were different from the ground truth
because they included all child rules in addition to the requested
parent rule (e.g., when asked for V.1, V.1 was reported along with
V.1.1 and V.1.2). While not technically wrong, this result was not

9

Table 2 This table presents a detailed comparison of various MLLM models’ scores on our benchmark. Of the models
tested, GPT-4o-AllRules is the best performer across nearly all metrics. The Compilation, Definition, and Presence
questions have the smallest difference between the best performing model’s score and the Naive baseline’s score.
For all metrics, a perfect score would be 1.0 and larger values are better, as indicated by the up arrows.

Subset
(Metric)

Baseline Model
Naive GPT-4o-AllRules GPT-4-AllRules GPT-4o-RAG GPT-4-RAG LLaVA-1.5-RAG Gemini-1.0-RAG Claude-Opus-RAG

RULE EXTRACTION

Retrieval
(F1 BoW ↑) 0.082 0.881 0.747 0.185 0.183 0.112 0* 0.173

Compilation
(F1 rules ↑) 0.137 0.424 0.298 0.376 0.362 0.281 0.283 0.288

RULE COMPREHENSION

Definition
(F1 BoC ↑) 0.358 0.540 0.470 0.525 0.420 0.393 0.488 0.423

Presence
(ACC ↑) 0.5 0.726 0.629 0.710 0.532 0.484 0.548 0.5

RULE COMPLIANCE

Dimension
(ACC ↑)
(BLEU/ROUGE/Similarity ↑)

0.5
-

0.825
0.175/0.344/0.777

0.533
0.118/0.296/0.728

0.675
0.111/0.255/0.642

0.300
0.091/0.235/0.592

0.408
0.097/0.241/0.578

0.525
0.176/0.344/0.644

0.508
0.137/0.295/0.698

Functional Performance
(ACC ↑)
(BLEU/ROUGE/Similarity ↑)

0.5
-

0.938
0.230/0.408/0.745

0.563
0.167/0.342/0.697

0.750
0.181/0.367/0.736

0.563
0.121/0.306/0.698

0.536
0.163/0.321/0.650

0.438
0.266/0.444/0.725

0.875
0.172/0.354/0.745

*Gemini-1.0-RAG received a score of 0 on the Retrieval question because of a “RECITATION” error that caused it to stop response generation.

scored differently by our evaluation metric and may be a result we
would want to handle specifically in the future.

Providing the rules to GPT-4o or GPT-4 via RAG instead of via
context resulted in a much lower average F1 BoW score (0.185
and 0.183, respectively). For a number of questions (like the GPT-
4-RAG Retrieval example shown in Figure 3), GPT-4o-RAG and
GPT-4-RAG replied that they could not produce the text for the rule
because it was not included in the rule text given to it, indicating
that the simple LlamaIndex RAG failed to provide the relevant
portion of the rule document to the models. When GPT-4o-RAG
and GPT-4-RAG did provide an answer to the question, they had
similar responses to that of their respective *-AllRules models.
Claude-Opus-RAG had a similar average F1 BoW score (0.173)
to that of GPT-4o-RAG and GPT-4-RAG, and Claude-Opus-RAG
also noted when the rule was not present in the provided RAG
context.

LLaVA-1.5-RAG received the same portion of the rule doc-
ument as the other *-RAG models, but its average F1 BoW
score was even lower (0.112). Unlike GPT-4o-RAG, GPT-4-RAG,
and Claude-Opus-RAG, LLaVA-1.5-RAG would hallucinate rules
rather than indicate that the requested rule was not contained within
the portion of the document it received via RAG. Furthermore,
instead of returning rules verbatim, LLaVA-1.5-RAG would fre-
quently offer an interpretation of the requested rule (as in the
LLaVA-1.5-RAG Retrieval example in Figure 3).

Gemini-1.0-RAG received a score of zero on the Retrieval sub-
set of the benchmark because the model encountered a “RECITA-
TION” error for each question. The model has been programmed
to stop content generation if the generated content repeats parts
of the input data. While in some cases this behavior is useful,
it is not useful for the purpose of this subset of the benchmark
where we request verbatim repetition. We can imagine many other
similar queries – where direct quotation is desired by a user – for
which this repetition blocking would be problematic. Since this is
a closed-source model, there is no way for us to alter this behavior.

Rule Extraction: Compilation. GPT-4o-AllRules performs best
(0.424 F1 rules) on the Compilation questions of the models tested.
However, the Compilation questions are one of the benchmark
categories (along with the Definition and Presence questions) ex-
hibiting a relatively small difference between the best performing
model score (GPT-4o-AllRules) and the naive random baseline
score. What inhibits GPT-4o-AllRules – the best performer – from
having a higher score? We noticed that the model repeatedly fails

to include rules in its answer that contain the search term verba-
tim. For example, in the first Compilation question, which asks the
model for rules that pertain to “aerodynamic or aerodynamics,”
the model neglects to include T.7.2.1, T.7.2.2, and T.7.5, which
all include “aerodynamic” verbatim in their rule text. Improving
MLLMs’ basic text extraction skills is essential to their perform-
ing better on design-requirement-type tasks. We also observed
that GPT-4o-AllRules frequently neglects to report rules that are
mentioned by rules that include the search term. For example,
in the aerodynamic question, GPT-4o-AllRules doesn’t mention
GR.6.4.1, V.1.1, and V.1.4.1, all of which are referenced by other
rules that contain the word “aerodynamic.” While perhaps our
prompt should explicitly state that rules referred to by rules that
contain the search term are relevant, MLLMs must have the capa-
bility to follow chains of rules across disconnected portions of a
document.

In terms of the *-RAG models, GPT-4o-RAG and GPT-4-RAG
performed similarly on the Compilation questions, while the other
*-RAG models didn’t perform as well. Claude-Opus-RAG’s lower
score (compared with GPT-4o-RAG’s) could be attributed to its
failure to follow the provided instructions. The prompt specifically
asked for a list rules separated by commas, using no other words in
the response. Claude-Opus-RAG includes other words in each of
its answers, starting each answer with “The rules relevant...” and
occasionally separating rules by spaces instead of commas. Since
automated evaluations were used, this lack of instruction following
resulted in lower scores. Gemini-1.0-RAG and LLaVA-1.5-RAG
also had lower scores (0.283 and 0.281, respectively) than GPT-4o-
RAG. The models’ answers to 6/30 (Gemini-1.0-RAG) and 5/30
(LLaVA-1.5-RAG) of the questions had a score of zero (no overlap
with the ground truth rule list). In contrast, GPT-4o-RAG had a
score of zero for just one out of the 30 questions.

Rule Comprehension: Definition. Of the models tested, GPT-
4o-AllRules performs the best on the Definition subset of the
benchmark. The Definition questions had the smallest difference
between the best-performing model score and the naive random
baseline score of any subset of the benchmark, indicating that they
are challenging for MLLMs to answer. Contributing to GPT-4o-
AllRules’s relatively low score on the Definition questions were
visual component recognition errors. For example, when shown
independent images where the steering wheel, steering column,
and steering rack were each highlighted in pink, GPT-4o-AllRules
never mentioned something related to “steering” as the highlighted

10

Table 3 Results from the GuaranteedRAG experiment. We compare LLaVA-1.5’s performance on the benchmark
when given FSAE rule document sections via smiple LlamaIndex RAG and when given GuranteedRAG.

Subset
(Metric)

Model
LLaVA-1.5-RAG LLaVA-1.5-GuaranteedRAG

RULE EXTRACTION

Retrieval (F1 BoW ↑) 0.112 0.697 ± 0.00555
Compilation (F1 rules ↑) 0.281 0.357 ± 0.0205
RULE COMPREHENSION

Definition (F1 BoC ↑) 0.393 0.471 ± 0.0255
Presence (ACC ↑) 0.484 0.543 ± 0.0353
RULE COMPLIANCE

Dimension (ACC ↑)
(BLEU/ROUGE/Similarity ↑)

0.408
0.097/0.241/0.578

0.482 ± 0.0473
0.121 ± 0.008/0.266 ± 0.0105/0.652 ± 0.0158

Functional Performance (ACC ↑)
(BLEU/ROUGE/Similarity ↑)

0.536
0.163/0.321/0.650

0.375 ± 0.159
0.152 ± 0.0165/0.316 ± 0.0269/0.650 ± 0.0154

component in-question. Instead, it answered “impact attenuator”
twice and “front hoop” once. These components are very differ-
ent parts of the vehicle from the steering system. As such, visual
component recognition capabilities, especially when it comes to
technical components, needs to be improved for MLLMs. Without
good component understanding, MLLMs will struggle to answer
Rule Compliance questions that pertain to those components.

Rule Comprehension: Presence. GPT-4o-AllRules performed
the best (0.726 accuracy) on the Presence questions of the mod-
els tested. The *-RAG models all had lower average accuracies
likely because these models had access to limited (15 or fewer)
rule document pages that reference the component in question.
Notably, Claude-Opus-RAG and LLaVA-1.5-RAG perform equiv-
alent to and worse than the naive baseline, respectively. For 28/30
of the questions, Claude-Opus-RAG answered “no” to the posed
question, perhaps reflecting a cautious stance. Since only half of
the questions had a ground truth answer of no, consistently an-
swering no amounts to the same as randomly guessing (the naive
baseline). LLaVA-1.5-RAG had no noticeable trends in yes/no
prediction, but performed worse than random choice.

Rule Compliance: Dimension. Of the models tested, GPT-4o-
AllRules performs the best in terms of accuracy on the Dimension
questions. It performs well, with an accuracy score of 0.825. We
looked closer at where GPT-4o-AllRules struggled in answering the
basic (no additional context, see Section 3.1.4) Dimension ques-
tions, to gain insight into its failure modes. For five questions that it
answered incorrectly, GPT-4o-AllRules struggled to compute accu-
rate dimensions using a scale bar. Models’ understanding of scale
bar versus directly dimensioned engineering drawings is explored
further in Section 5. Two of the questions that GPT-4o-AllRules
answered incorrectly featured engineering drawings that displayed
two dimensions; the correct answer to the question required that
the model take a sum or difference between the two dimensions.
The model struggled on these questions because it scraped a single
dimension as the answer, rather than scraping both dimensions and
combining them to get the answer. In another two questions GPT-
4o-AllRules answered incorrectly, it mistakenly identified which
vehicle components the dimensions were spanning in the engineer-
ing drawings. We also observed an instance of the model extracting
an incorrect number from the engineering drawing image (9 instead
of 0.9) and an instance of the model referencing the wrong rule
from the rule document. These findings indicate that MLLMs’ still
have room for improvement when it comes to skills – like visual
component recognition, OCR, and dimensional computation – that
are needed to answer questions pertaining to engineering drawings.

Of the models tested, GPT-4o-AllRules has the highest Sim-
ilarity score for its Dimension explanations, matching its best-
performer accuracy score. However, it is not the best-performer on
the BLEU and ROUGE metrics, where Gemini-1.0-RAG has the
higher (or tied, in the case of ROUGE) scores. We observe that
many of the MLLMs’ explanations are significantly longer than the
reference explanations we collected (see Figure 3). We suspect that
Gemini-1.0-RAG’s high scores on the BLEU and ROUGE metrics
are because its explanations tended to be shorter, more compara-
ble in length to the human-generated, reference explanations. It
is therefore challenging to capture the correctness of explanations
through the BLEU and ROUGE scores. The interpretability of
these scores would be improved by obtaining more human refer-
ence explanations, so as to better capture the distribution of possi-
ble explanations that could be considered correct.

Rule Compliance: Functional Performance. GPT-4o-AllRules
once again performed the best of the models tested on this subset
of the benchmark. Its accuracy score was quite high, answering
only one of the 16 questions incorrectly. The question the model
answered incorrectly pertains to an anthropomorphic data chart
showing requirements for human size (height, weight, etc.) for
the vehicle and another chart that shows the human sizes the built
vehicle can actually accommodate. The model only compares one
row of each chart (heights) before deciding that the vehicle is in
compliance, even though the weight row of the vehicle’s actual ca-
pabilities violates the corresponding weight row of the requirement
chart.

When comparing the *-RAG models, we find that, in a de-
parture from other benchmark subsets where GPT-4o-RAG is the
best performer, Claude-Opus-RAG performs the best on Functional
Performance accuracy, with a score of 0.875. The model also
ties GPT-4o-AllRules’s high score on explanation Similarity, fur-
ther underscoring its good understanding of these questions. This
subset of the benchmark required significant technical expertise,
perhaps indicating that Claude-Opus has one of the stronger engi-
neering backgrounds of the MLLMs tested. It would be interesting
to test and compare Claude-Opus-AllRules to GPT-4o-AllRules,
but given the cost constraints of running Claude-Opus-AllRules
mentioned previously, this will be left to future work.

5 Discussion
In testing various state-of-the-art models (at the time of writing)

on DesignQA, we developed questions about what factors impact
models’ scores on the benchmark. For example, to what extent
is a model’s score on DesignQA influenced by the RAG system

11

Table 4 Analysis of MLLMs’ performances on the Rule Comprehension questions, broken-down by vehicle-
component-mention type. Def refers to definition-components, those defined explicitly within the rule document.
MultM refers to multi-mention components, those that appear multiple times within the rule document but are not
explicitly defined. NoM refers to no-mention components, those that don’t appear verbatim in the rule document.
Trends appear in that all models score the highest on definition-components questions within the Definition subset,
while all models score the highest on the multi-mention component questions within the Presence subset.

Subset Mention
Type

Model

GPT-4o-
AllRules

GPT-4-
AllRules

GPT-4o-
RAG

GPT-4-
RAG

LLaVA-
1.5-

RAG

Gemini-
1.0-

RAG

Claude-
Opus-
RAG

Definition
(F1 BoC ↑)

Def 0.78 0.74 0.69 0.56 0.50 0.51 0.48
MultM 0.47 0.42 0.47 0.39 0.37 0.48 0.40
NoM 0.54 0.35 0.54 0.35 0.37 0.48 0.46

Presence
(ACC ↑)

Def 0.67 0.58 0.5 0.50 0.42 0.50 0.50
MultM 0.73 0.68 0.78 0.55 0.53 0.63 0.50
NoM 0.80 0.50 0.70 0.50 0.40 0.30 0.50

used? How does the way in which a component is mentioned
in the rule document affect a model’s ability to answer questions
about the component? Are models able to better answer questions
about engineering drawings when dimensions are shown via scale-
bars or when they are directly indicated on the drawing? Does
additional image and textual context help models answer questions
about rule compliance? We explore these questions in this section,
and we propose general suggestions for how to develop models
that are better suited to answering the questions presented within
DesignQA.

Impact of RAG System on Models’ DesignQA Scores The
focus of our work was to develop a benchmark to assess MLLMs’
understandings of technical documentation and to utilize the bench-
mark to illustrate strengths and weaknesses of state of the art mod-
els, at the time of writing. Thus, we did not tune or develop RAG
solutions designed specifically for DesignQA; development of use-
ful RAG methods is a science within itself. [44] However, one of
our findings in the previous section was that the simple LlamaIn-
dex RAG used for the *-RAG models often did not provide the
MLLM with useful context from the FSAE rule document.

To help disentangle RAG efficacy from inherent model perfor-
mance, we generated GuaranteedRAG for each question in the
benchmark. Created using a series of scripts with key-word match-
ing, GuaranteedRAG is guaranteed to contain context that is rel-
evant to the question at hand. For example, in the case of the
Retrieval questions, GuaranteedRAG context is designed to con-
tain the rule-in-question. More details about the implementa-
tion of GuaranteedRAG can be found in Appendix B. Due to
the cost of running the closed-source models, we only tested the
open-source model, LLaVA-1.5, with GuaranteedRAG (LLaVA-
1.5-GuaranteedRAG). We generated our GuaranteedRAG five dif-
ferent times (to account for randomness, see Appendix B), and
we tested LLaVA-1.5 with each of these five GuaranteedRAGs,
reporting averages and standard deviations across the five Guaran-
teedRAGs.

The results of this experiment can be seen in Table 3. While
we expected LLaVA-1.5’s score to improve substantially when
tested with GuaranteedRAG instead of simple RAG, LLaVA-
1.5-GuaranteedRAG – across most subsets of the benchmark –
performs only slightly better than LLaVA-1.5-RAG. When com-
pared with all the other models tested (Table 2), LLaVA-1.5-
GuaranteedRAG does not perform the best across any subset of the
benchmark. This finding underscores that much of the DesignQA
score, at least in the case of LLaVA-1.5, is a result of inherent
model capabilities (and lack thereof) rather than RAG efficacy.

The biggest improvement in score between LLaVA-1.5-RAG and
LLaVA-1.5-GuaranteedRAG is for the Retrieval questions (0.112
versus 0.697 F1 BoW). Given useful rule document context, the
Retrieval questions become straightforward. However, despite re-

ceiving the rule-in-question verbatim within an 8716-character
text snippet (about 3% of the total rule document), LLaVA-
1.5-GuaranteedRAG still struggles to reliably return the rule-in-
question for the Retrieval questions. LLaVA-1.5-GuranteedRAG
still performs worse on the Retrieval questions than the best per-
former, GPT-4o-AllRules, which has to search for the relevant rule
in the much longer, complete rule text. This finding illustrates
LLaVA-1.5’s ability, compared with GPT-4o’s, to extract relevant
information from a body of text.

While receiving relevant context helps LLaVA-1.5 perform (on
the whole) better on DesignQA, this experiment underscores that
high quality RAG may not be the most important factor for im-
proving MLLM scores on the benchmark. LLaVA-1.5 would need
significant improvements in inherent model skills – image analy-
sis, engineering knowledge, extraction of relevant information from
sections of text – in order to improve its score further on DesignQA.
We hope that GuaranteedRAG – which helps isolate the testing of
inherent model skills from the testing of RAG implementation –
can serve as a useful diagnostic tool for researchers seeking to
improve foundation models.

Effect of Vehicle Component Mention-Type on the Rule
Comprehension Score

We were curious to understand if the manner in which and the
number of times a vehicle component is mentioned in the rule docu-
ment impacts a model’s ability to answer questions about that com-
ponent. For the Rule Comprehension questions, the component-
in-question in each QA was tracked based on how it was men-
tioned in the rule document (definition-component, multi-mention
component, or no-mention component), as explained previously in
Section 3.1.3. Table 4 breaks down each model’s score for the Rule
Comprehension questions (both Definition and Presence questions)
by the three different component-mention types.

There is a clear trend: for the Definition questions, where the
model is asked to identify the name of a highlighted vehicle com-
ponent in an image, each model always scores the highest on the
definition components. Recall that for the Definition questions,
the *-RAG models did not receive any context from the rule doc-
ument, since the simple RAG implemented always returned the
same section of the rule document (as the text of the prompt was
identical for each Definition question). The models’ higher scores
on the definition-component questions within the Definition sub-
set might then be explained by the fact that the models have seen
similar images of highlighted definition-components during their
pre-training. For example, images exist online that highlight the lo-
cation of vehicle components like the main hoop and the front hoop.
Since the definition-components are somewhat specific terms to the
Formula SAE competition, they tend to be the focus of the online
content and visuals that discuss the Formula SAE rules.

For the Presence questions – where the model is asked to identify

12

Table 5 Effect of dimensioning system used in engineering drawings on model accuracy on Dimension QAs. These
results highlight the fact that the MLLMs tested are generally better able to answer questions about engineering
drawings that are direct-dimensioned rather than those that have a scale-bar. An exception is Gemini-1.0-RAG, which
performs better on the scale-bar-dimensioned drawings.

ACC by
Dimension

System

Model

GPT-4o-
AllRules

GPT-4-
AllRules

GPT-4o-
RAG

GPT-4-
RAG

LLaVA-
1.5-

RAG

Gemini-
1.0-

RAG

Claude-
Opus-
RAG

Direct 0.79 0.66 0.66 0.45 0.41 0.51 0.54
Scale-bar 0.75 0.28 0.70 0 0.40 0.55 0.45

(yes/no) whether the specified component is present in an image –
the models exhibit a different trend. Almost all models score high-
est on the multi-mention components (except for GPT-4o-AllRules
and Claude-Opus-RAG, which scores equivalently on all compo-
nent types). These questions show the models views of the vehicle
– zoomed views – for which there are no similar images online. As
such, the models are best able to visually identify the multi-mention
components, which tend to be more common vehicle terms (like
pedal assembly, brake system, and rocker arms).

Regardless of the specific reason for this observed pattern, the
results presented in Table 4 reflect that there are trends associated
with component-mention type in the rule document and model
score on the Rule Comprehension questions. It would be interesting
to explore this trend further in future work.

Effect of Engineering Drawing Dimensioning System on
Models’ DesignQA Scores

As explained in Section 3.1.2, one-third of the questions com-
prising the Dimension QAs used scale-bars in the engineering
drawings, while the other two-thirds used direct dimensions. We
were curious to see what impact these two different dimensioning
systems had on model performance. As seen in Table 5, most
models perform better on the direct-dimensioned drawings than on
the scale-bar drawings. The models seemed to struggle with the
scale-bar. For example, GPT-4 sometimes indicated in its expla-
nations that it was using the scale bar for “estimated” dimensions
rather than precise ones and in some cases explained that its “im-
age capabilities...do not include measuring dimensions.” GPT-4’s
difficulty with image measurement seems to have been improved
in the newer version of the model, GPT-4o. GPT-4o-RAG actually
had a higher accuracy score for the scale-bar-dimensioned images
than for the direct-dimensioned images. Gemini-1.0-RAG was also
an outlier, in that it performed better on the scale-bar dimensioned
questions than on the direct dimensioned questions. Its ability to
answer some of the scale-bar questions correctly likely contributed
to the fact that it was the second best performer of the *-RAG mod-
els tested. Future research and model development must prioritize
this feature, ensuring models can accurately interpret and apply
dimensional data across various engineering tasks. This focus will
enhance the precision and applicability of MLLMs in complex,
real-world engineering environments.

Effect of Additional Context on Models’ Dimension Subset
Scores

We explained in Section 3.1.4 that half of the Dimension ques-
tions were given additional context that we believed would help in
answering the question while the other half were not. This addi-
tional context was in the form of highlights in the multiview CAD
images – on vehicle components pertaining to the rule-in-question
– and corresponding prompt text that revealed the name of the high-
lighted component (e.g., “the front hoop is highlighted in pink”).
Surprisingly, we did not see any obvious trends in model perfor-
mance associated with the additional context. GPT-4o-AllRules,
GPT-4-AllRules, and LLaVA-1.5-RAG performed worse with addi-
tional context, while GPT-4o-AllRules, GPT-4-RAG, Gemini-1.0-
RAG, and Claude-Opus-RAG performed better. More investigation
into the effect of additional context is needed.

Future Work: Recommendations for Models for This Bench-
mark

In the results presented thus far, we have demonstrated how
state-of-the-art models, at the time of writing, perform against
our benchmark. Here, we present some observations on how one
might modify these models to achieve improved performance on
our benchmark.

Firstly, inherent MLLM model skills must be improved in or-
der to achieve higher scores on DesignQA. The models we tested
with *-AllRules and *-GuaranteedRAG illustrate that even when
given the relevant rule context, MLLMs have skills that need to
be strengthened in order to improve their performances on design-
requirement-type tasks. We observed that the models tested strug-
gle to reliably reference rules in the Formula SAE rule document.
Rule extraction is a critical skill that models should be able to per-
form flawlessly; failure to do so could result in catastrophic con-
sequences for subsequent rule compliance questions. Fine-tuning
methods, like LoRA [45], QLoRA [46], or InstructLAB [47], could
be performed on models using the Retrieval QAs. This process may
help MLLMs better understand and “memorize” the rule document,
resulting in improved performances across the entire benchmark.
While computationally intensive when images are invovled, fine-
tuning could also be used to improve MLLMs’ visual recognition of
technical components and to strengthen their abilities to analyze en-
gineering drawings. However, in our context, fine-tuning has sev-
eral limitations. It requires a large amount of data that is not always
available, typically struggles with tasks requiring precise recall,
and becomes ineffective when design documents are frequently
updated. Approaches like leveraging expanded context windows
of newer models [48] or improving retrieval-augmented generation
may align better with the needs of some design-requirement tasks.

As such, improvement of the RAG model is critical so that
relevant portions of the rule document can be accessed. We saw
that GPT-4o-AllRules and GPT-4-AllRules, given all the context,
almost always performed better than their respective -RAG models,
which were given the selected rule document pages through simple
retrieval. While one might argue that these findings illustrate that
models with longer context lengths should be developed and used,
it is important to note that using models with longer context inputs
is significantly more expensive, as of the time of writing. The cost
to feed the entire rule document into the context for each question
was more than 25 times the cost of selecting relevant pages via
RAG. As such, effective RAG could help reduce the computational
burden and provide useful context to the model regarding relevant
sections in the original documents.

While MLLMs coupled with GuaranteedRAG showed improve-
ments over those paired with simple RAG, the GuarnateedRAG
solution – which was custom-developed for the questions in De-
signQA using key-word matching scripts – is not generalizable
to other kinds of design-requirement-type questions. Multimodal
RAG might be an interesting avenue for exploration, since the im-
ages in the VQAs could help in selecting the relevant portion of the
rule document. The RAG could also perhaps be improved by ex-
perimenting with different chunking methods. As models become
cheaper, more computationally efficient, and trained with larger

13

context windows, RAG approaches might become less useful.
Engineering design, inherently grounded in practical applica-

tions, necessitates a deep understanding of technical documents
to ensure that designs not only meet but also adhere to stringent
requirements and standards. One of the critical insights emerging
from our benchmark evaluations is the realization that modern AI
models are still in the early stages of truly understanding engineer-
ing documentation. This limitation highlights a significant gap in
the path toward fully automated design processes. There is there-
fore substantial future work to be done to improve MLLM models’
abilities to solve engineering design and design requirement prob-
lems.

Limitations
While this benchmark presents a first step into formally evalu-

ating a model’s ability to interpret and understand design require-
ment documentation, DesignQA does focus on just a single rule
document, and it is unknown how the results on DesignQA would
vary if a different technical document was used for dataset cura-
tion. Unfortunately, benchmark development costs (requiring ex-
pert manual QA creation and validation) pose limitations on scal-
ing the size of the dataset or the number of technical documents
referenced. Our benchmark is also limited to six types of design-
requirement-based tasks, while there are certainly others that are
worth exploring. However, we believe that the six subsets of our
benchmark are reflective of the primary ways in which engineers
consult design requirement documentation. We also necessarily
made choices about prompt format and CAD/engineering-drawing
image presentation in creating our benchmark. DesignQA results
may not generalize to similar questions where the prompts or im-
ages are tweaked. Exploring the effect of other prompt and image
formats on models’ scores on DesignQA could be the subject of
future studies. Overall, generalizability (to other similar questions
not contained within the test dataset) is a common limitation of
LLM benchmarks [49]. While generalizability may be a limita-
tion, DesignQA is an attempt to track MLLMs’ abilities to answer
questions about design requirements.

In terms of the validity of DesignQA, the automatic evaluation
metrics we used could be viewed as a limitation. There are cases
where a model response’s score on an automatic evaluation metric
may not match the validity a human would assign to the same re-
sponse. For example, instances where a model doesn’t follow the
specified response format (e.g. not separating Compilation ques-
tion rules with commas) result in artificially low scores for the
model on that metric. There were also cases, for the Retrieval
questions, where models returned rules that included child rules
(which is not technically wrong), whereas our ground truth refer-
ence did not include child rules. Evaluating semantic equivalence
is a difficult problem, and the BLEU and ROUGE scores used
to evaluate model explanations have known limitations. Collecting
more human-generated reference explanations, while time consum-
ing, would allow for more accurate scoring of model explanations.
While automated evaluation metrics may slightly artificially penal-
ize models, the alternative – manually scoring responses – would
be extremely resource-intensive for thousands of questions and may
also have many biases. In fact, automatic evaluation is necessary
for a benchmark dataset that is meant to be used by the community
to continuously test models developed in the future.

Another limitation of DesignQA that may affect benchmark va-
lidity is the small size of certain benchmark subsets. While there
are more than a thousand Retrieval questions – since they could
be generated automatically – the other subsets had to be manu-
ally generated and thoroughly reviewed and are therefore smaller
in size. In particular, the Functional Performance questions only
have 16 QAs due to the difficulty of obtaining vehicle testing data
that was immediately relevant to the requirement document. While
some of the benchmark subsets may be small, we prioritized man-
ual, high-quality expert QA creation and validation over alternative
methods – like synthetic data generation or crowdsourcing – which
may compromise dataset quality.

6 CONCLUSION
This study introduces DesignQA, a novel MLLM benchmark

with 1449 questions and answers based on data from MIT Motor-
sports and the FSAE competition rule document. The benchmark
is designed to assess large language models’ abilities to answer
questions about design according to technical requirements. The
benchmark is divided into six subsets - Retrieval, Compilation,
Definition, Presence, Dimension, and Functional Performance -
representative of tasks performed by engineers when designing ac-
cording to technical specifications. Each subset of the benchmark
has its own automatic evaluation metric, so that new MLLMs can
be seamlessly tested. The questions in the benchmark are designed
by humans - MIT Motorsports members, industry professionals,
and researchers - to ensure a high-quality benchmark. Differ-
ent from many existing MLLM benchmarks, DesignQA contains
document-grounded VQAs, in which the input image and docu-
ment come from differing sources, characteristic of many real-
world scenarios.

Using DesignQA, we conducted a rigorous evaluation on vari-
ants of several state-of-the-art (at the time of writing) MLLMs:
GPT-4o, GPT-4, Claude-Opus, Gemini-1.0, and LLaVA-1.5.
While GPT-4o was the best performing model of the MLLMs
tested, we uncovered significant limitations in MLLMs’ current
abilities to accurately interpret complex technical documents,
specifically in referencing relevant requirements and in analyzing
technical images. These findings illustrates that analyzing and
designing according to technical documentation requires a diverse
skill-set, and that there is a need to develop MLLMs better suited to
the multifaceted-nature of engineering design. Our research high-
lights the need for advancements in AI models to enhance their
comprehension of engineering requirements and documentation,
suggesting directions for future efforts. Our work aims to bridge
the gap in AI’s capability to support engineering design processes
more effectively, paving the way for sophisticated AI-assisted en-
gineering solutions.

Acknowledgments
The authors wish to express their gratitude to Henry Smith and

the MIT Motorsports team for their critical contribution to dataset
creation and verification, which significantly enhanced the quality
of this research. This material is based upon work supported by the
National Science Foundation Graduate Research Fellowship under
Grant No. 2023345746. Any opinion, findings, and conclusions
or recommendations expressed in this material are those of the
authors(s) and do not necessarily reflect the views of the National
Science Foundation.

Nomenclature
Claude-Opus = Refers specifically to claude-3-opus-20240229

Gemini-1.0 = Refers specifically to
models/gemini-1.0-pro-vision

GPT-4 = Refers specifically to gpt-4-1106-vision-preview
GPT-4o = Refers specifically to gpt-4o

FSAE = Formula SAE
LLaVA-1.5 = Refers specifically to llava-1.5-13b

LLM = Large Language Model
MLLM = Multimodal Large Language Model

RAG = Retrieval-Augmented Generation
-RAG = Models tested with LlamaIndex’s simple RAG

framework
VQA = Visual Question Answer (Benchmark)

References
[1] OpenAI. “GPT-4V(ision) system card.” (2023).
[2] Vaswani, Ashish, Shazeer, Noam, Parmar, Niki, Uszkoreit, Jakob, Jones, Llion,

Gomez, Aidan N, Kaiser, Łukasz and Polosukhin, Illia. “Attention is all you
need.” Advances in neural information processing systems Vol. 30 (2017).

14

[3] Bubeck, Sébastien, Chandrasekaran, Varun, Eldan, Ronen, Gehrke, Johannes,
Horvitz, Eric, Kamar, Ece, Lee, Peter, Lee, Yin Tat, Li, Yuanzhi, Lundberg,
Scott et al. “Sparks of artificial general intelligence: Early experiments with
GPT-4. arXiv.” arXiv preprint arXiv:2303.12712 (2023).

[4] Barbhuiya, Rejaul Karim. “Introduction to Artificial Intelligence: Current De-
velopments, Concerns and Possibilities for Education.” Indian Journal of Edu-
cational Technology Vol. 5 No. 2 (2023): p. 266.

[5] Thirunavukarasu, Arun James, Ting, Darren Shu Jeng, Elangovan, Kabilan,
Gutierrez, Laura, Tan, Ting Fang and Ting, Daniel Shu Wei. “Large language
models in medicine.” Nature medicine Vol. 29 No. 8 (2023): pp. 1930–1940.

[6] Clusmann, Jan, Kolbinger, Fiona R, Muti, Hannah Sophie, Carrero, Zunamys I,
Eckardt, Jan-Niklas, Laleh, Narmin Ghaffari, Löffler, Chiara Maria Lavinia,
Schwarzkopf, Sophie-Caroline, Unger, Michaela, Veldhuizen, Gregory P et al.
“The future landscape of large language models in medicine.” Communications
Medicine Vol. 3 No. 1 (2023): p. 141.

[7] Kasneci, Enkelejda, Seßler, Kathrin, Küchemann, Stefan, Bannert, Maria, De-
mentieva, Daryna, Fischer, Frank, Gasser, Urs, Groh, Georg, Günnemann,
Stephan, Hüllermeier, Eyke et al. “ChatGPT for good? On opportunities and
challenges of large language models for education.” Learning and individual
differences Vol. 103 (2023): p. 102274.

[8] Makatura, Liane, Foshey, Michael, Wang, Bohan, HähnLein, Felix, Ma,
Pingchuan, Deng, Bolei, Tjandrasuwita, Megan, Spielberg, Andrew, Owens,
Crystal Elaine, Chen, Peter Yichen et al. “How Can Large Language Models
Help Humans in Design and Manufacturing?” arXiv preprint arXiv:2307.14377
(2023).

[9] Picard, Cyril, Edwards, Kristen M, Doris, Anna C, Man, Brandon, Giannone,
Giorgio, Alam, Md Ferdous and Ahmed, Faez. “From Concept to Manufac-
turing: Evaluating Vision-Language Models for Engineering Design.” arXiv
preprint arXiv:2311.12668 (2023).

[10] Ulrich, Karl T and Eppinger, Steven D. Product design and development.
McGraw-hill (2016).

[11] Zeng, Yan, Zhang, Hanbo, Zheng, Jiani, Xia, Jiangnan, Wei, Guoqiang, Wei,
Yang, Zhang, Yuchen and Kong, Tao. “What Matters in Training a GPT4-Style
Language Model with Multimodal Inputs?” arXiv preprint arXiv:2307.02469
(2023).

[12] Wang, Lei, Hu, Yi, He, Jiabang, Xu, Xing, Liu, Ning, Liu, Hui and Shen,
Heng Tao. “T-SciQ: Teaching Multimodal Chain-of-Thought Reasoning via
Large Language Model Signals for Science Question Answering.” arXiv preprint
arXiv:2305.03453 (2023).

[13] Liu, Haotian, Li, Chunyuan, Wu, Qingyang and Lee, Yong Jae. “Visual in-
struction tuning.” Advances in neural information processing systems Vol. 36
(2024).

[14] Shaham, Uri, Ivgi, Maor, Efrat, Avia, Berant, Jonathan and Levy, Omer. “Ze-
roSCROLLS: A Zero-Shot Benchmark for Long Text Understanding.” arXiv
preprint arXiv:2305.14196 (2023).

[15] Xiong, Wenhan, Liu, Jingyu, Molybog, Igor, Zhang, Hejia, Bhargava, Prajjwal,
Hou, Rui, Martin, Louis, Rungta, Rashi, Sankararaman, Karthik Abinav, Oguz,
Barlas et al. “Effective long-context scaling of foundation models.” arXiv
preprint arXiv:2309.16039 (2023).

[16] OpenAI. “GPT-4o System Card.” (2024).
[17] Liu, Haotian, Li, Chunyuan, Wu, Qingyang and Lee, Yong Jae. “Visual Instruc-

tion Tuning.” (2023).
[18] Richardson, Matthew, Burges, Christopher JC and Renshaw, Erin. “Mctest: A

challenge dataset for the open-domain machine comprehension of text.” Pro-
ceedings of the 2013 conference on empirical methods in natural language
processing: pp. 193–203. 2013.

[19] Rajpurkar, Pranav, Zhang, Jian, Lopyrev, Konstantin and Liang, Percy. “Squad:
100,000+ questions for machine comprehension of text.” arXiv preprint
arXiv:1606.05250 (2016).

[20] Yang, Yi, Yih, Wen-tau and Meek, Christopher. “Wikiqa: A challenge dataset
for open-domain question answering.” Proceedings of the 2015 conference on
empirical methods in natural language processing: pp. 2013–2018. 2015.

[21] Dasigi, Pradeep, Lo, Kyle, Beltagy, Iz, Cohan, Arman, Smith, Noah A and Gard-
ner, Matt. “A dataset of information-seeking questions and answers anchored in
research papers.” arXiv preprint arXiv:2105.03011 (2021).

[22] Fu, Chaoyou, Chen, Peixian, Shen, Yunhang, Qin, Yulei, Zhang, Mengdan, Lin,
Xu, Qiu, Zhenyu, Lin, Wei, Yang, Jinrui, Zheng, Xiawu et al. “MME: A Com-
prehensive Evaluation Benchmark for Multimodal Large Language Models.”
arXiv preprint arXiv:2306.13394 (2023).

[23] Liu, Yuan, Duan, Haodong, Zhang, Yuanhan, Li, Bo, Zhang, Songyang, Zhao,
Wangbo, Yuan, Yike, Wang, Jiaqi, He, Conghui, Liu, Ziwei et al. “Mm-
bench: Is your multi-modal model an all-around player?” arXiv preprint
arXiv:2307.06281 (2023).

[24] Yue, Xiang, Ni, Yuansheng, Zhang, Kai, Zheng, Tianyu, Liu, Ruoqi, Zhang, Ge,
Stevens, Samuel, Jiang, Dongfu, Ren, Weiming, Sun, Yuxuan et al. “Mmmu:
A massive multi-discipline multimodal understanding and reasoning benchmark
for expert agi.” arXiv preprint arXiv:2311.16502 (2023).

[25] Lu, Pan, Mishra, Swaroop, Xia, Tanglin, Qiu, Liang, Chang, Kai-Wei, Zhu,
Song-Chun, Tafjord, Oyvind, Clark, Peter and Kalyan, Ashwin. “Learn to
explain: Multimodal reasoning via thought chains for science question answer-
ing.” Advances in Neural Information Processing Systems Vol. 35 (2022): pp.
2507–2521.

[26] Chen, Yang, Hu, Hexiang, Luan, Yi, Sun, Haitian, Changpinyo, Soravit, Ritter,
Alan and Chang, Ming-Wei. “Can Pre-trained Vision and Language Models An-
swer Visual Information-Seeking Questions?” arXiv preprint arXiv:2302.11713
(2023).

[27] Song, Binyang, Zhou, Rui and Ahmed, Faez. “Multi-modal machine learning
in engineering design: A review and future directions.” Journal of Computing
and Information Science in Engineering Vol. 24 No. 1 (2024): p. 010801.

[28] Dima, Alden, Lukens, Sarah, Hodkiewicz, Melinda, Sexton, Thurston and
Brundage, Michael P. “Adapting natural language processing for technical text.”
Applied AI Letters Vol. 2 No. 3 (2021): p. e33.

[29] Brundage, Michael P, Sexton, Thurston, Hodkiewicz, Melinda, Dima, Alden
and Lukens, Sarah. “Technical language processing: Unlocking maintenance
knowledge.” Manufacturing Letters Vol. 27 (2021): pp. 42–46.

[30] Jiang, Shuo, Hu, Jie, Magee, Christopher L and Luo, Jianxi. “Deep learn-
ing for technical document classification.” IEEE Transactions on Engineering
Management (2022).

[31] Zhu, Qihao and Luo, Jianxi. “Generative transformers for design concept gener-
ation.” Journal of Computing and Information Science in Engineering Vol. 23
No. 4 (2023): p. 041003.

[32] Ferrari, Alessio, Spagnolo, Giorgio Oronzo and Gnesi, Stefania. “Pure: A
dataset of public requirements documents.” 2017 IEEE 25th International Re-
quirements Engineering Conference (RE): pp. 502–505. 2017. IEEE.

[33] Chang, Yupeng, Wang, Xu, Wang, Jindong, Wu, Yuan, Zhu, Kaijie, Chen, Hao,
Yang, Linyi, Yi, Xiaoyuan, Wang, Cunxiang, Wang, Yidong et al. “A survey on
evaluation of large language models.” arXiv preprint arXiv:2307.03109 (2023).

[34] Wang, Yizhong, Kordi, Yeganeh, Mishra, Swaroop, Liu, Alisa, Smith, Noah A,
Khashabi, Daniel and Hajishirzi, Hannaneh. “Self-instruct: Aligning language
models with self-generated instructions.” arXiv preprint arXiv:2212.10560
(2022).

[35] de l’Automobile, 2023 Federation Internationale. “2024 Formula 1 Techni-
cal Regulations.” https://www.fia.com/sites/default/files/fia_2024_formula_1_
technical_regulations_-_issue_1_-_2023-04-25.pdf.

[36] Kovich, Christine N. “Human Landing System (HLS) Program Extravehicular
Activity (EVA) Compatibility Interface Requirements Document (IRD).” Tech-
nical report no. 2023.

[37] Papineni, Kishore, Roukos, Salim, Ward, Todd and Zhu, Wei-Jing. “Bleu: a
method for automatic evaluation of machine translation.” Proceedings of the
40th annual meeting of the Association for Computational Linguistics: pp. 311–
318. 2002.

[38] Lin, Chin-Yew. “Rouge: A package for automatic evaluation of summaries.”
Text summarization branches out: pp. 74–81. 2004.

[39] Reimers, Nils and Gurevych, Iryna. “Sentence-bert: Sentence embeddings using
siamese bert-networks.” arXiv preprint arXiv:1908.10084 (2019).

[40] Zhang, Tianyi, Kishore, Varsha, Wu, Felix, Weinberger, Kilian Q and Artzi,
Yoav. “Bertscore: Evaluating text generation with bert.” arXiv preprint
arXiv:1904.09675 (2019).

[41] Liu, Haotian, Li, Chunyuan, Li, Yuheng and Lee, Yong Jae. “Improved baselines
with visual instruction tuning.” arXiv preprint arXiv:2310.03744 (2023).

[42] Lewis, Patrick, Perez, Ethan, Piktus, Aleksandra, Petroni, Fabio, Karpukhin,
Vladimir, Goyal, Naman, Küttler, Heinrich, Lewis, Mike, Yih, Wen-tau, Rock-
täschel, Tim et al. “Retrieval-augmented generation for knowledge-intensive nlp
tasks.” Advances in Neural Information Processing Systems Vol. 33 (2020): pp.
9459–9474.

[43] Liu, Jerry. “LlamaIndex.” (2022). doi: 10.5281/zenodo.1234. URL https:
//github.com/jerryjliu/llama_index.

[44] Li, Huayang, Su, Yixuan, Cai, Deng, Wang, Yan and Liu, Lemao. “A survey on
retrieval-augmented text generation.” arXiv preprint arXiv:2202.01110 (2022).

[45] Hu, Edward J, Shen, Yelong, Wallis, Phillip, Allen-Zhu, Zeyuan, Li, Yuanzhi,
Wang, Shean, Wang, Lu and Chen, Weizhu. “Lora: Low-rank adaptation of
large language models.” arXiv preprint arXiv:2106.09685 (2021).

[46] Dettmers, Tim, Pagnoni, Artidoro, Holtzman, Ari and Zettlemoyer, Luke.
“Qlora: Efficient finetuning of quantized llms.” Advances in Neural Information
Processing Systems Vol. 36 (2024).

[47] Sudalairaj, Shivchander, Bhandwaldar, Abhishek, Pareja, Aldo, Xu, Kai, Cox,
David D and Srivastava, Akash. “Lab: Large-scale alignment for chatbots.”
arXiv preprint arXiv:2403.01081 (2024).

[48] “Prompt engineering overview - Anthropic — docs.anthropic.com.” https://docs.
anthropic.com/en/docs/build-with-claude/prompt-engineering/overview. [Ac-
cessed 23-08-2024].

[49] McIntosh, Timothy R, Susnjak, Teo, Liu, Tong, Watters, Paul and Halgamuge,
Malka N. “Inadequacies of large language model benchmarks in the era of
generative artificial intelligence.” arXiv preprint arXiv:2402.09880 (2024).

Appendix A: Model Parameters
All MLLMs evaluated by the authors were run through the Lla-

maIndex framework. We used the default parameters, set in Lla-
maIndex, for each model tested. For LLaVA-1.5, the default pa-
rameters are temperature of 0.75 and top_p of 0.9.7 For GPT-4o,
GPT-4, Gemini-1.0, and Claude-Opus, the default temperature set
by the LlamaIndex framework is 0.1.8 For these models, LlamaIn-
dex doesn’t set defaults for top_p, so each model should retain

7https://github.com/run-llama/llama_index/blob/main/llama-
index-integrations/multi_modal_llms/llama-index-multi-modal-llms-
replicate/llama_index/multi_modal_llms/replicate/base.py

8https://github.com/run-llama/llama_index/blob/main/llama-index-
core/llama_index/core/constants.py

15

https://www.fia.com/sites/default/files/fia_2024_formula_1_technical_regulations_-_issue_1_-_2023-04-25.pdf
https://www.fia.com/sites/default/files/fia_2024_formula_1_technical_regulations_-_issue_1_-_2023-04-25.pdf
https://doi.org/10.5281/zenodo.1234
https://github.com/jerryjliu/llama_index
https://github.com/jerryjliu/llama_index
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/overview
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/overview

its own default top_p value. For the Rule Extraction questions,
max_new_tokens was set to 250 for all models. For the Rule
Comprehension questions, max_new_tokens was set to 100. For
the Rule Compliance questions, max_new_tokens was set to 1500.

Appendix B: GuaranteedRAG
GuaranteedRAG for Retrieval Questions: For each Retrieval

question, an 8716-character 9 portion of the text was extracted from
the full rulebook. This portion was specifically selected to contain
the rule-in-question; the location of the rule-in-question within the
excerpt was randomized.

GuaranteedRAG for Compilation Questions: The ground
truth answer to each Compilation question is a list of rule numbers.
For each Compilation question, we extracted the text for each of
these ground truth rules from the rule document. If the total sum of
these rule texts was less than 8716 characters, we randomly added
in other rules until we reached the 8716 limit. If, on the other hand,
the total sum of the ground truth rule texts was greater than 8716
before adding additional, random rules, we iteratively removed the
longest rule from the list until we met the character limit. The rule
texts were randomly shuffled (before appending them together) so
that they were presented in no specific order.

GuaranteedRAG for Definition and Presence Questions: As
explained in Section 3.1.3, each Definition and Presence question
tests the model’s understanding of a vehicle component. The com-
ponents are either: 1) mentioned explicitly in the definition section
of the rule document (“definition component”), 2) mentioned mul-
tiple times throughout the document but are not explicitly in the
definition section (“multi-mention component”), or 3) are not men-
tioned in the rule document at all (“no-mention component”). For
each Definition or Presence question, we generate GuaranteedRAG
in accordance with the component’s mention type. For definition

component questions, we extract the two “Definition” sections of
the rule document and randomly place them in between two other
randomly selected segments of rule text, such that the total ex-
tracted text length is 8716 characters. For multi-mention compo-
nent questions, we find every mention of the component within
the rule document. For each mention, we extract a constant length
text excerpt from the rule document with the mention centered in
the excerpt. When appended together, the total length of these
text excerpts is 8716 characters. For no-mention component ques-
tions, we randomly select an 8716-character segment from the rule
document.

GuaranteedRAG for Dimension and Functional Perfor-
mance Questions: Each of these questions asks the model whether
a design conforms with a specific rule number. For each of these
questions, an 8716-character portion of the text was extracted from
the rulebook. This portion is guaranteed to contain the rule text of
the rule in question; the location of the rule-in-question within the
excerpt was randomized. In some cases, the rule in question refer-
ences another rule in the FSAE rule document. In these cases, the
GuaranteedRAG is split into two even chunks that are appended
together to form the full 8716-character GuaranteedRAG: the first
half is guaranteed to contain the rule text for the rule (at a random
location) and the second half is guaranteed to contain the rule text
for the referenced rule (at a random location).

9Note that in generating the simple LlamaIndex RAG for most of the questions,
except the Rule Compliance questions, the top 15 most relevant document chunks
were used. These top 15 most relevant chunks had an average character count of
10895 characters. Initially, we tried generating 10895 character count excerpts for
GuaranteedRAG, but these contexts, coupled with the prompts, often exceeded the
token limit for LLaVA. This happened due to diffrences in character counts and token
counts. So as to not run up against token limits, we reduced the GuaranteedRAG
context length to 8716 characters for all questions. 8716 characters corresponds
with the average length of the top 12 most relevant document chunks in the simple
LlamaIndex RAG implementation.

16

,

	1 INTRODUCTION
	2 RELATED WORK
	2.1 AI for Engineering Design
	2.2 LLM and MLLM Benchmarks
	2.2.1 Benchmarks for Engineering Design and Design Requirements
	2.2.2 LLM Reference-Dependent Benchmarks
	2.2.3 MLLM Benchmarks

	3 DesignQA BENCHMARK
	3.1 The Dataset
	3.1.1 Rule Extraction
	3.1.2 CAD Representation
	3.1.3 Rule Comprehension
	3.1.4 Rule Compliance

	3.2 Evaluation Metrics
	3.2.1 F1-score
	3.2.2 Accuracy
	3.2.3 Explanation Metrics

	4 MODEL EVALUATION
	4.1 Baselines and Models
	4.1.1 Naive Baselines
	4.1.2 MLLM Models
	4.1.3 RAG

	4.2 Results and Analysis

	5 Discussion
	6 CONCLUSION

