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ABSTRACT

A picture is worth a thousand words, and in design met-
ric estimation, a word may be worth a thousand features. Pic-
tures are awarded this worth because of their ability to encode
a plethora of information. When evaluating designs, we aim to
capture a range of information as well, information including
usefulness, uniqueness, and novelty of a design. The subjective
nature of these concepts makes their evaluation difficult. Despite
this, many attempts have been made and metrics developed to do
so, because design evaluation is integral to innovation and the
creation of novel solutions. The most common metrics used are
the consensual assessment technique (CAT) and the Shah, Varga-
Hernandez, and Smith (SVS) method. While CAT is accurate and
often regarded as the “gold standard,” it heavily relies on us-
ing expert ratings as a basis for judgement, making CAT expen-
sive and time consuming. Comparatively, SVS is less resource-
demanding, but it is often criticized as lacking sensitivity and ac-
curacy. We aim to take advantage of the distinct strengths of both
methods through machine learning. More specifically, this study
seeks to investigate the possibility of using machine learning to

facilitate automated creativity assessment. The SVS method re-
sults in a text-rich dataset about a design. In this paper we utilize
these textual design representations and the deep semantic rela-
tionships that words and sentences encode, to predict more desir-
able design metrics, including CAT metrics. We demonstrate the
ability of machine learning models to predict design metrics from
the design itself and SVS Survey information. We demonstrate
that incorporating natural language processing (NLP) improves
prediction results across all of our design metrics, and that clear
distinctions in the predictability of certain metrics exist.

INTRODUCTION
A picture is often said to be worth a thousand words because

of the amount of information it can transmit. A picture will cap-
ture not only the object or concept of interest, but also poten-
tially embedded interactions with the environment and, possi-
bly, the preferences of the picture owner [1]. The same can be
said with words in design concept evaluation due to the nature of
languages being complex and context-dependent. For example,
the same word may have different meanings and different words
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may have the same meanings when used in different contexts.
As a result, the amount of features used to capture the dynamic
state of the word increases. This is also what makes creative
design evaluations difficult. The need for creative design evalua-
tions stems from the increased attention in research on creativity
and innovation in engineering, as they are crucial in providing
novel solutions to new and existing problems [2–4]. It has even
been said that creativity is mankind’s most valuable resource, as
innovation and progress rely heavily on creativity [5]. Creativ-
ity and innovation mark an individual’s ability to produce new
ideas, a skill that is crucial in the production of novel technol-
ogy [6–9]. As a result, there has been a surge in research that
examines possible methods to boost student creative and innova-
tive behaviors [10–12].

These methods to engage students in creativity require sep-
arate methods that assess the outcomes. This is because assess-
ments can help identify creative individuals and ideas, as well
as facilitate improvements in both [13–16]. Assessments can
also serve as a way of evaluating the design metrics in terms
of their effectiveness at aiding the process of creative idea gen-
eration [17]. A lack in assessment strategy is not only a setback
to assessing the suitability and effectiveness of these creativity-
enhancing techniques in specific projects, but also may bring into
question their overall effectiveness [9]. Therefore, there is a need
to measure not only if a concept is creative, but also to what de-
gree it is creative [13].

There are a plethora of metrics that aim to measure creativ-
ity today [5, 17, 18]. These metrics include, but are not limited
to, expert panels [19–23], the Consensual Assessment Technique
(CAT) [6,24,25], the Shah, Vargas-Hernandez, and Smith (SVS)
method [17], and the Comparative Creativity Assessment (CCA),
which is built upon the SVS method [26]. Among all of the met-
rics created, the most common are the CAT [6, 24, 25] and the
SVS method [17]. Despite the fact that many metrics exist, mea-
suring creativity is still difficult. One of the reasons could be due
to the multi-faceted nature of creativity and what it entails [27].
In addition, the unique characteristics of the measurement meth-
ods can also result in increased challenges for researchers to es-
tablish an assessment standard [9, 28, 29]. The abundance of
metrics available has resulted in great variability between the
methodology of different studies, which makes comparing find-
ings increasingly difficult [28]. For example, SVS results have
been found to not match expert ratings in design variability [30],
while the heavy dependence of CAT assessments on the expe-
rience, number, and subjectivity of the experts can result in the
experiment being significantly restricted by their time and finan-
cial budget [18].

To address these limitations with the creativity assessment
metrics, this study tries to uncover how machine learning meth-
ods can enable automated assessment of creativity. Specifically,
we investigate how regression models can be used to predict the
CAT ratings for unseen designs using SVS features. A total of

five design metrics relating to creativity will be measured, in-
cluding creativity itself. Creativity can be defined as a measure
of the capacity to generate original work that is useful [6–8]. At
the beginning of the rating process, ideas will be picked out from
the group that represent high, medium, and low creativity [31].
The expert raters will then be trained using these anchoring con-
cepts to evaluate other concepts by comparing them to the an-
choring concepts [32]. This comparative evaluation will be cap-
tured through a 7-point Likert scale [32], and can be an accu-
rate assessment of how relatively creative each concept is. Then,
the expert will examine the concepts further in terms of its use-
fulness (quality and utility of the idea), uniqueness (originality
of the idea), and elegance (well-crafted), which are CAT sub-
metrics [33]. It will also be used to evaluate the drawing of the
concepts as it has been found to be correlated with design out-
come [34].

In this study, we will further show how Natural Language
Processing (NLP) based models, which capture semantic rela-
tionships between words, can help overcome the issue of attribute
dependencies in SVS features and improve the prediction results.
NLP is a subset of speech and language processing that aims to
train the computer to interpret the text in a more naturalistic, hu-
man way [35]. Applications of NLP include text sentiment detec-
tion and response generation [35], all of which could be helpful
in completing the goal of this study. More specifically, this study
can help to examine the plausibility of using SVS ratings to pre-
dict and produce CAT ratings; CAT ratings are very resource de-
manding, whereas utilizing SVS ratings would be faster, easier,
and cheaper to gather.

RELATED WORKS
Creativity and innovation are traits that are greatly valued in

the current market, as they are crucial in the formation of new
ideas [2–4]. As a result, there has been an abundance of re-
search on methods that aim to encourage and improve creativity
in students [10–12]. An important step following the promotion
of creativity is the assessment of creativity, which is important
in the identification and evaluation of progress [13–17]. The two
most commonly used metrics for creativity measurement are the
CAT [6, 24, 25] and the SVS method [17]. Although the CAT
method is valued as more accurate in the measurement process,
it is also very resource consuming [18, 36, 37] due to the time
needed to have expert raters code hundreds or thousands of ideas,
plus the time needed to train novice raters if experts are unavail-
able. By comparison, the SVS method is faster and cheaper, as
novice raters can achieve high levels of inter-rater agreement.
However, it lacks sensitivity and accuracy, and does not match
the rating of expert reviewers [30]. Therefore, this study was
constructed to investigate the plausibility of using SVS data to
predict and produce CAT ratings that accurately assess the cre-
ativity of the concepts.
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Creativity Assessment Methods
Creative assessment methods are a crucial after-step of en-

gineering design research, and are often seen as a ”means to
an end” to researchers studying engineering design creativity.
They are an effective tool in identifying and evaluating the ef-
fectiveness of creativity-enhancing techniques, and helping as-
sess the novelty of ideas generated [13–17]. There have been
many metrics designed that aim to measure the creativity of con-
cepts [38] or aspects related to creativity. Research has classified
these assessment methods into two categories: process-based and
outcome-based [39]. More specifically, process-based methods
focus on the cognitive processes that are involved during the
concept generation process [39]. Comparatively, outcome-based
methods examine the outcomes of the ideation process [17, 39].
Of these two categories, the outcome-based methods are more
commonly known and used [39]. This is primarily due to
the complexity and difficulty associated with process-based ap-
proaches [17, 39]. Although research has been done to clas-
sify the different methods, there has not been one method that
is denoted as the standardized method [38]. This is because
each of the metrics available have their respective advantages
and disadvantages. For example, although CAT has been praised
as the “gold standard of creativity assessment,” [40] it is still
flawed because its methods are very time and resource consum-
ing [18, 36, 37]. Therefore, it is up to the researchers to deter-
mine, based on their needs and their resources, which method
their study will employ. For this study, the focus will primarily
be on CAT and SVS, two of the most commonly used metrics.

The CAT was first conceptualized and developed by Teresa
Amabile to assess creativity in a subjective manner [2,24,28,41],
and is often regarded as the best rating method [18, 36, 40, 42].
It measures creativity by employing a panel with appropriate ex-
pertise in the field of interest and asking them to provide their
own ratings on the products or ideas generated based on a Lik-
ert scale [6, 18, 24, 25, 28, 40, 42, 43]. The process for attaining
CAT ratings is as follows: (1) a group of creative concepts are
gathered [18, 28, 40, 42] and (2) raters are then asked to provide
ratings from 1 (low in a factor) to 7 (high in a factor) based on
the definition of each factor [28]. During the assessment, it is
stressed that the experts should make their assessments indepen-
dently, subjectively, and take into consideration other products
under review [18, 28, 40, 42].

The basis for this method is that an idea is only creative to
the extent that experts agree, independently, that it is creative.
[28,36]. Because of this, the accuracy of these assessments heav-
ily depends on the expertise of the reviewer in that field [24, 44].
This is supported by previous research that found expert ratings
to have a higher agreement (higher inter-rater reliability) than
non-expert ratings [18, 24, 44, 45]. Therefore, it could be said
that there is no standard scoring system available for CAT, as
it is entirely based on subjective comparison within a certain
group [37]. This is because concepts designed in the same en-

vironment, same situation, and same predisposition can be eval-
uated with respect to each other [32].

Although CAT ratings are accurate because they are based
on the opinion of experts in the field, they are also relatively
difficult to gather [18]. Experts are often very expensive, rel-
atively hard to find, and extremely busy [18]. This aspect of
CAT makes it more difficult to implement than some of the other
metrics. Human raters have also been shown to be inconsistent
between each other, which can be a result of different expertise
levels, as well as differences in their beliefs about creativity [46].
These are among the reasons why current researches are looking
into alternatives, such as using novice raters [45], quasi-novice
raters [47, 48], or in the case of this paper, machine learning.

Another common metric that is used is the SVS method [17].
This method is an example of a model using the genealogical
tree approach [4] and is more commonly used and accepted
in engineering [17, 49]. Here, the focus is more on using ef-
fectiveness to quantify creativity of ideation [28]. When using
the SVS approach, the role of the human rater is replaced by
predefined components as an attempt to increase repeatability
and reduce subjectivity [50]. This type of metric usually breaks
down the concepts into components, and quantitatively measures
the creativity of each component based on relative frequencies
[17,28,51]. More specifically, the concepts will be broken down
based on the function of the components [28, 29]. However, this
metric has been criticized as lacking in its sensitivity and ac-
curacy [50]. For example, Linsey’s research reported that SVS
results were inconsistent with the ratings produced by experts in
terms of variety of concepts [30]. Other studies have reported
that SVS results can have decreased accuracy as a result of an
increase in sample size [52, 53]. In addition, one study by Sluis-
Tiescheffer et al. [52] found the SVS approach was unable to
provide comparison between different attributes, only allowing
for comparison between the same attribute.

SVS encompasses four sub-metrics: (1) novelty, (2) variety,
(3) quality, and (4) quantity of ideation [17]. In this case, nov-
elty can be defined as how different the concept is from other
concepts; variety is how different the concept is from other con-
cepts generated by the same designer; quality is a subjective
measure of feasibility and degree of success at meeting desired
requirement; and quantity is the number of concepts generated
[17, 28, 39]. Of these four sub-metrics, quality and novelty are
usually the more focused factors, as novel and appropriateness of
ideas being part of the definition of creativity [6,28]. The novelty
component of SVS examines how similar the idea is with other
ideas from the same group [17,28,39]. Through the genealogical
tree, also known as the feature tree approach, SVS proposes that
novelty can be calculated based on the type of features the con-
cept includes, as well as how each feature is satisfied [17]. There-
fore, concepts that have features in categories with lower overall
frequency will indicate that not many other concepts share their
idea, which would then indicate higher novelty for that idea [28].
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Comparatively, the quality component of SVS measures the fea-
sibility of the concepts in terms of how successful they are at
meeting the desired design requirements [17, 28, 39].

Machine Learning and Creativity Assessment
Data-driving research approaches and methods, like ma-

chine learning, are advantageous for analyzing large amounts of
data for meaning, patterns, relationships, and even development
and formation of theories [54]. In recent years, machine learn-
ing algorithms can even be used to construct models from data
that are not necessarily linearly related [54]. This characteristic
is what gives machine learning the potential to be used in the
analysis of subjective measures. This is supported by prior re-
search, where machine learning has been successfully used to
predict subjective measures, such as mental workload [54]. It
has also been used in objective quality-assessments of videos
that would otherwise demand a much larger-scale and a more
expensive experiment [55]. The result of this study shows that
machine learning was able to significantly reduce the amount of
work needed without compromising the conclusion [55]. Ma-
chine learning also shows promise in contributing to opinion-
based data-mining [56]. It has already been found that opinion
mining can be used to determine whether a sentence or a docu-
ment is expressing positive or negative sentiment [56]. Machine
learning and opinion mining has also been used with natural lan-
guage processing to assess online reviews [?,56,57], where opin-
ion spam detection would be used to separate out reviews while
usefulness measurements [56,57] can be used to identify the use-
fulness and subjectivity of a review [56, 58–61]. Therefore, the
ability of machine learning to assist in the assessment of subjec-
tive measures, like creativity, is investigated in this study. More
specifically, this study focuses on using the natural language pro-
cessing.

NLP is a type of machine learning process that attempts
to teach computers to interpret language in a natural, “human,”
way [35]. More specifically, it seeks to explore how computers
can be used to understand and manipulate natural language to ac-
complish useful tasks [62]. Therefore, it could be said that the
ultimate goal of NLP is to achieve “human-like language pro-
cessing” abilities [63]. NLP has been found to be helpful in the
completion of tasks like understanding the sentiment behind text
and generating responses to questions [35]. For example, NLP
has been used to extract information from narrative text in the
medical field, and has found the results to be reasonable [64]. In
another study by Li et al., NLP was used to assess Chinese sub-
jective answers [65]. Design researchers have used NLP based
methods on a plethora of tasks ranging from identifying man-
ager interventions [66], predicting contest winners [67], senti-
ment analysis of conversations [68] to understanding product re-
views [69]. In this paper, we show how these models, when com-
bined with design feature information, can also enable prediction

of multiple design metrics.

METHODOLOGY
Our goal is to predict expert CAT ratings of a design using

SVS features and a description gathered from that design. We ex-
periment with different methods to predict the five different CAT
ratings: Usefulness, Elegance, Drawing, Uniqueness, and Cre-
ativity. Our different methods stem from using three different
representations of a design, as well as three different regression
models. The different design representations are derived from
data available in the design itself and the unprocessed SVS fea-
tures. The three design representations are:

1. One-hot-encoded SVS Features
2. One-hot-encoded SVS Features + Text Embedded

Description
3. Text Embedded SVS Features and Description

Figure 1 shows how we created each of the three design rep-
resentations and we will discuss this process in detail in the fol-
lowing sections. In addition to the three distinct design represen-
tations, we explore the use of three different regression models:

1. Linear regression
2. Gradient Boosting (GB) Regression
3. Random Forest (RF) Regression

As shown in Figure 1, we originally start with a design. Ini-
tially, we have both a text description and a completed SVS Sur-
vey about the design. In the following sections, we will discuss
our methods of processing the data, our motivation for converting
data into different design representations, which design represen-
tations provided the most predictive power, and how this varied
for different expert CAT ratings.

SVS Data Processing
The original SVS data comes from a survey in which people

are shown a design of a milk frother and asked questions regard-
ing it, such as: “How is the device powered?” There are 91 ques-
tions total; each question and its respective response serves as an
initial feature for the design. An example of two of these survey
questions is shown in Figure 1, labelled by SVS survey. As the
figure shows, the survey responses are categorical. Therefore,
the responses have been pre-processed such that each distinct re-
sponse to a question is given a number. For example, for the
question “How is the device powered?” the provided response
options are (1) Manually powered, (2) Electric, or (3) Other, and
the corresponding number represents the response.

For example, Figure 1 shows that the responses for the two
questions can be mapped to a two dimensional vector, where the
first value of “3” corresponds to the third category “Other” and
the second value “1” corresponds to the first category “Yes” for
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FIGURE 1. The overall architecture of our model. From a design, we initially have a dataset of SVS features in numerical form as well as a written
text description provided by the designer. We convert the numerical SVS features into text and combine that text with the original description to gain an
all-text representation of the design. We encode this text representation in Tensorflow’s Universal Sentence Encoder to gain a numerical text embedding
for each design. We input this text embedding into a regression model to predict five expert CAT ratings: Usefulness, Elegance, Drawing, Uniqueness,
and Creativity.

the second question. Although the responses were given numeri-
cal values, their relationships were not numerical, i.e. the differ-
ence between“1” and “3” is not necessarily greater than the dif-
ference between “1” and “2.” Consequently, we converted these
categorical features through one-hot-encoding into vectors.

One-hot-encoding is a method for converting categorical
data into numerical data that can be used for a machine learning
model. Categorical data often contains labels rather than num-
bers, for example, an image might be labeled “cat” or “dog”.
One-hot-encoding converts these labels into binary features. If
the variable were “Type of pet” and the options were “cat” and
“dog,” then “cat” can be given a value [0,1] and “dog” can be
given a value [1,0].

In the example shown in Figure 1, the first question had three
possible answers, designated “1,” “2,” and “3.” This single ques-
tion became three binary questions, where response “1” is now
[1,0,0], response “2” is now [0,1,0], and response “3” is now
[0,0,1]. Each value is considered a feature, so this overall pro-
cess increased the number of features from the initial 91 to 522.
These 522 dimensional one-hot-encoded SVS features serve as
our first design representation.

Converting SVS values to text embeddings
We were motivated to convert our SVS values into text em-

beddings in order to utilize the relationships between certain fea-
tures. In our first design representation, all of the features are
one-hot-encoded.

One-hot-encoding creates features that are all assumed to
be completely independent of one another, so a design that is
labeled “bolt” is as far away from a design labeled “nail,” as it
is from a design labeled “hammer.” However, humans recognize
that the first two words are semantically closer to each other than
the first and third word. In this sense, one-hot-encoding all of our
features forced us to lose many relationships between designs.

To address this, we converted all information about a design
into text and we combined all of the text such that each design
was defined by a long text string. We demonstrate this process in
Figure 1. Our method used the original SVS survey responses in
numerical form. For each question that had a response other than
“No,” we included both the question and the response as text in
the representation of a design. For example, for the second ques-
tion in Figure 1, “Is there a rod in the design?” the response is
“Yes,” therefore, the question and the response are both included
in the string of text that represents the design.

For the first question in Figure 1, “How is the device pow-
ered?,” the response is “Other.” Whenever a respondent selected
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FIGURE 2. The process of generating text embedding using Tensorflow’s Universal Sentence Encoder. Shown on the left, the text descriptions for
each design are inputted into the autoencoder. The 1 x 512 numerical embeddings for each description are found, and a heat map of the semantic textual
similarity is shown on the right, where a score of 1 indicates maximum similarity.

“Other,” the respondents provided a description themselves. In
this case, the description was “Cattle,” so both the question “How
is the device powered?” and the response “Cattle” are included
in the string of text that represents the design.

Lastly, we add the original text description to the text string
representation. With this new design representation, all of the
features are in text format. The next step is to convert this textual
design representation into numerical continuous embeddings that
can be used in regression models.

Universal Sentence Encoder
Figure 1 shows that we run both the text description and the

SVS features as text through a sentence encoder in order to get
text embeddings. A text embedding is a vector representation
of text in which text with similar meanings are represented with
similar vectors.

We use Tensorflow’s Universal Sentence Encoder, which
maps text into 512-dimensional space [70]. Figure 2 demon-
strates how we use the Universal Sentence Encoder. We input
a string of text such as “spins and heats the milk,” then the Uni-
versal Sentence Encoder maps the text into 512-dimensional text
and outputs a text embedding: a 512-dimensional vector of num-
bers that represents the inputted text.

The Semantic Textual Similarity plot shown in Figure 2 il-
lustrates the effectiveness of the Universal Sentence Encoder. In
the plot, the original sentences are represented with letters A-
G. After calculating the text embeddings, we use cosine vector
similarity to find which sentences are more similar. The similar-
ities between the seven sentences are shown by the 7x7 matrix at
the right. A darker square indicates a higher similarity between
two sentences. For example, sentences B-D all include the word
“milk frother,” and these sentences are shown to have some of
the most similarity (darkest squares). In contrast, sentences E-G
are quite different from each other and consequently have low
similarity scores and light squares. We also notice deeper rela-

tionships being captured by the Universal Sentence Encoder. For
instance, the most similar item in this list to “pogo stick frother”
is a “shoe frother,” which relates to the deeper connection be-
tween a “shoe” and a “pogo stick.”

Dimensionality Reduction
In the above sections, we discussed using both one-hot-

encoding and text embeddings to represent our designs. Both of
these methods output vectors of over 500 dimensions, or features.
Because we have 934 designs (each representing a datapoint for
a machine learning algorithm), which further reduces by 20% af-
ter the train-test split, we face the “curse of dimensionality.” We
have too many features for our datapoints, and we need to reduce
the number of dimensions in our feature space.

We utilize principal component analysis (PCA) to reduce the
dimensions of our feature space. PCA is a tool from linear alge-
bra that projects our original features into a lower-dimensional
space. PCA accomplishes this by taking linear combinations of
the original features, thereby creating new features. These new
features are principal components, and they are independent of
one another and also retain most of the information from the orig-
inal features. PCA aims to put the most information possible in
the first component, and the second most in the second compo-
nent, and so on. Finally, PCA drops the principal components
that have the least information, thereby reducing the number of
features we have.

Design Representations
The three different design representations come from apply-

ing various combinations of the data processing methods men-
tioned above. Ultimately, the first design representation is a one-
hot-encoding of all of the SVS features - resulting in 522 features
total. We illustrate the process of generating this representation
in Figure 1, where it is denoted as “1.”
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The second design representation combines one-hot-
encoding, text embedding, and PCA, as illustrated in Figure 1.
This design representation results in 30 features total, 15 from
the one-hot-encoded SVS features after PCA, and 15 from the
embeddings of the text descriptions after PCA.

The third design representation converts all of the informa-
tion available about a design into text - the SVS data as well as
the text descriptions. From that complete text representation, the
third design representation finds a text embedding. This text em-
bedding is reduced via PCA from 512 dimensions to 30, such
that the third design representation includes only 30 features.

Regression Models and Evaluation Metrics

We experimented with generating CAT rating predictions
with three different regression models: linear regression, gradi-
ent boosting (GB) regression, and random forest (RF) regression.

Linear regression attempts to model the relationship be-
tween independent variables and a dependent variable through
a linear equation. We train the linear regression by minimizing
the sum of squared differences between our predicted and actual
values. This method is known as the least-squares method.

The gradient boosting and random forest regression models
are both ensembles of decision trees. An ensemble means that
these models are aggregations of other models. The motivation
behind an ensemble method is to combine predictions from mul-
tiple base models into a prediction that is better than that of any
single model [71]. GB trains multiple decision trees sequentially,
which is an ensemble method called boosting. The first decision
tree is able to predict the majority of the data, and the following
trees work to capture areas of the data that have been missed.

RF utilizes bagging, or training individual models in parallel
on a randomized subset of the data, as the ensemble method [71].
RF takes the average of the predictions. This combination of de-
cision trees yields better predictions because it has lower vari-
ance compared to a single decision tree. We train both GB and
RF using the least-squares method.

We perform supervised learning with an 80-20 train-test split
for each of our models. We have 934 designs total, so we train
using 747 designs, and test using the remaining 187.

We use the R2 value as the evaluation metric of our regres-
sion models. For each model we predict CAT ratings of the de-
signs in the test set. We compare these predictions to the actual
CAT ratings and use this comparison as a means for evaluating
how effective our model is. The R2 value, or coefficient of deter-
mination, quantifies the degree to which our predicted values are
linearly correlated with our actual values. A perfect R2 score is
1, indicating perfect linear correlation, and an R2 score of 0.3 is
generally accepted as indicating a weak positive correlation.

RESULTS
In this section, we discuss how effectively we predicted CAT

expert ratings, with three varying parameters: (1) which CAT rat-
ing we are predicting, (2) which design representation we are
inputting, and (3) which regression model we are using. We
found that all three of these parameters impact the effectiveness
of our predictions, as evaluated by the R2 metric. The following
sections are divided based on design representation, and, within
each section, we explore results for predicting each CAT rating
with each regression model.

Predicting design metrics from One-Hot-Encoded SVS
Features

The left three columns of Table 1 shows the R2 score ob-
tained using the first design representation: one-hot-encoded
SVS features. Overall, linear regression performs the worst,
with consistently large and negative R2 scores. Gradient boosting
and random forest regressions perform comparably, with gradi-
ent boosting slightly outperforming random forest for every CAT
metric. The trends along the design metrics are also distinct. Due
to the poor nature of the linear regression results in this particular
experiment, we will only discuss trends seen within the gradient
boosting and random forest regressions. For the GB and RF mod-
els, the Usefulness design metric shown in the final row of Ta-
ble 1 has the highest R2 value, with Elegance following behind.
Creativity and Uniqueness show some of the worst R2 scores,
Creativity being the worst with negative R2 values across both
the GB and RF models.

Converting SVS values to text embeddings
Figure 5 demonstrates the motivation and effectiveness of

using NLP in this context. The figure displays three designs for
milk frothers, from left to right: a Bicycle design, a Cattle de-
sign, and a Rodeo design. The Bicycle design involves attaching
containers of milk to the spokes of a bicycle wheel and frothing
the milk through the motion of riding a bike. The Cattle design
involves putting milk inside a horizontal wheel, cattle will push
the spokes of the wheel as they walk in circles, which froths the
milk. The Rodeo design involves attaching a container of milk to
the back of a mechanical bull, and the motion of riding that bull
will froth milk. For context, many other designs in the dataset are
a variation of whipping milk with a whisk, so these three designs
are qualitatively unique and similar to each other.

Our goal is to create an objective model (as opposed to sub-
jective expert ratings) that captures relationships among designs
in order to more effectively predict their CAT ratings. The results
shown in Figure 5 illustrate that using NLP in design represen-
tation captures these relationships much more effectively than
using discontinuous one-hot-encoding representations.

The bar chart shown in Figure 5 displays the cosine simi-
larity between designs for two design representations: One-Hot-
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One-hot encoded SVS features
One-hot encoded SVS features

+ Description text embeddings

Text-based SVS features

+ Description text embeddings

Linear

Regression

Gradient

Boosting

Random

Forest

Linear

Regression

Gradient

Boosting

Random

Forest

Linear

Regression

Gradient

Boosting

Random

Forest

Creativity -9.54E+25 -0.033 -0.263 -0.023 -0.114 -0.098 -0.014 -0.085 0.034

Uniqueness -7.24E+25 0.070 -0.020 -0.109 -0.099 -0.043 0.016 -0.159 0.057

Drawing -5.57E+24 0.117 -0.031 0.163 0.114 0.113 0.150 0.064 0.099

Elegance -2.53E+25 0.162 0.100 0.140 0.058 0.139 0.179 0.079 0.211

Usefulness -4.05E+26 0.171 0.162 0.149 0.131 0.214 0.209 0.180 0.263

TABLE 1. R2 Score by Regression Model using SVS One-Hot-Encodings as the design representation

FIGURE 3. This graph shows the R2 score for each of the five CAT
metrics with three different design representations (1) one-hot-encoded
SVS features, (2) one-hot-encoded SVS Features as well as text embed-
ded descriptions, (3) text embedded SVS features and descriptions. The
line marked at 0.3 indicates an R2 score threshold of a weak positive
relationship. These results are generated with the random forest regres-
sion model. We observe that, overall, adding text embeddings improves
the regression results, as seen by the increase in R2 scores. The figure
highlights that despite the improvements, the regression results for all
the design metrics are still below the threshold of weak relationship.

Encoded SVS Features, and Text Embedded SVS Features and
Description, which are generated using NLP. Cosine similarity is
a measure of similarity between two vectors, found by calculat-
ing their inner product. Cosine similarities range between 0 to 1
and for two vectors A and B, it is defined as: Sim(A,B) = A·B

‖A‖‖B‖
In the example of the Bicycle and Rodeo designs, the co-

sine similarity between their one-hot-encoded representations is

FIGURE 4. A scatterplot of the predicted Usefulness rating vs. the ac-
tual Usefulness rating found using a Random Forest Regression Model.
A perfect prediction would follow a line with a slope of one and inter-
cept at the origin, represented in the plot by a black line. This prediction
has an R2 score of 0.270.

0.333, whereas the cosine similarity between the text embed-
ded representations is 0.810. This may suggest that the text em-
bedded representations maintained relationships between the de-
signs that are lost when using one-hot-encoded representations.
These results comply with our understanding of the two types
of representation. One-hot-encoded vectors ensure that each fea-
ture has a cosine similarity of 0 with any other feature, since
each feature that exists has a value of 0 in all dimensions except
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FIGURE 5. The top portion shows three student-generated designs for milk frothers, a Bicycle design, Cattle design, and Rodeo design. Under
each design is a handwritten description provided by the designer. We measure the similarity of these designs by finding the cosine similarity of their
representations. We use two different representation methods: one-hot-encoding of their SVS features and text embeddings of their SVS features and
descriptions. Note that the similarities using one-hot-encoded features between Bicycle & Rodeo is lesser than the similarity between Bicycle & Cattle.
However, text embeddings highlight their semantic similarity where riding is involved in both the devices to froth the milk.

Pr
ed

ic
te

d
C

la
ss

Actual Class

Low Medium High

Low 39 20 7

Medium 13 24 15

High 11 18 40

TABLE 2. Confusion matrix for classifying the Usefulness of a de-
sign using a random forest regression and percentile classification. The
precision values for the low, medium, and high classes are 0.619, 0.387,
and 0.645 respectively. The recall values for the low, medium, and high
classes were 0.591, 0.462, and 0.580 respectively.

one, where it has a value of 1. Each one-hot-encoded vector of
a feature is orthogonal to all others. In contrast, text embeddings
found through NLP, such as those we used through Tensorflow’s
Universal Sentence Encoder, map all of the features in a contin-
uous space, which preserves deeper relationships between them.

Predicting design metrics from One-Hot-Encoded SVS
features + Text Embedded Description

Our second design representation utilizes NLP and repre-
sents designs using one-hot-encoded SVS features as well as

a text embedding of the design’s description. As described in
the Design Representations section of Methodology, we perform
PCA dimensionality reduction on both of these vectors, resulting
in 30 total features for the second design representation.

The middle three columns of Table 1 shows the R2 scores for
each of the CAT ratings with predictions from each of the three
regression models. As compared to Table 1, the linear regression
model performs significantly better with this design representa-
tion. All three regression models perform comparably. The per-
formance of the CAT ratings matches the general trend seen in
the first design representation. Usefulness and Elegance are the
best predicted. With the new design representation, Drawing is
more accurately predicted in both linear regression and random
forest, while gradient boosting’s prediction is comparable to its
prediction from the first design representation.

The overall trend across different design representations is
illustrated in Figure 3 for the random forest regression. The fig-
ure indicates an overall improvement in R2 scores from the first
design representation: One-Hot-Encoded SVS Features, to the
second design representation: One-Hot-Encoded SVS Features
+ Text Embedded Description.

Predicting design metrics from Text Embedded SVS
Features and Description

Our third design representation is a text embedding of both
SVS features and the text description. All of the information
from the SVS Features is converted to text, combined with the
original text description, mapped to a continuous space, and then
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encoded as text embeddings that preserve the semantic relation-
ships from the continuous mapping.

Regression results: The results from using this design repre-
sentation are shown in the right three columns of Table 1, which
shows the R2 score found for each combination of CAT rating
and regression model. The results are consistent with the overall
trend seen in both design representation one and two. Useful-
ness and Elegance are the CAT ratings that are best predicted,
as demonstrated by the highest R2 scores across all three regres-
sion models. For both of these metrics, all three regression mod-
els perform the better with this NLP based design representation
than with the other two design representations. Additionally, for
both the linear regression and random forest models, the perfor-
mance of Usefulness and Elegance have consistently improved
from design representation one to design representation three.
This overall trend can be observed in Figure 3 for the random
forest model.

In agreement with the trend we have observed in the other
two design representations, the Creativity and Uniqueness met-
rics have the lowest R2 scores. We will discuss our hypotheses
explaining why certain CAT metrics are consistently more or less
accurately predicted in the Discussion section to follow.

We show a visual representation of the predicted CAT rat-
ings vs. the actual CAT ratings in Figure 4. This scatter plot
is generated using predictions from the random forest regres-
sion model using the third design representation: Text Embedded
SVS Features and Description, and the Usefulness CAT rating.
A set of perfect predictions would follow the black line with a
one-to-one slope between the Actual and Predicted Ratings.

The plot reveals that most of the Predicted Ratings range
between 2 and 4. This trend appears for other CAT ratings as
well. Remedying the models to more successfully predict CAT
ratings on the high and low extremes, perhaps through increasing
the weight of designs with extreme Actual Ratings, could be an
area of future exploration.

Classification results: In response to the low R2 values we
found with a regression model, we tested how effective our
model is at predicting the relative class of a design metric. Our
classes are determined by the percentile of a design’s rating with
regard to all other designs in a test set. Designs with ratings
between the 1-33 percentiles are in the low class, designs with
ratings between the 34-67 percentiles are in the medium class,
and designs with ratings between the 67-100 percentiles are in
the high class.

The results are demonstrated in the confusion matrix in Ta-
ble 2. The confusion matrix illustrates agreement between pre-
dicted and actual classes. A perfect classification has numbers
only along the diagonal and zeroes elsewhere. Not all errors are
equal in confusion matrices. Predicting a high value when the
true value is low (or vice versa) is an extreme error, which we

aim to minimize the most.
In Table 2, we see that we predict a low class when the real

class is high 7 times, and do the opposite 11 times. This com-
pares to correctly predicting the low class 39 times and the high
class 40 times.

We also observe the precision metric, which indicates how
many positive predictions are true. It is defined as:

Precision =
T P

T P+FP
(1)

For the low, medium, and high classes the precision values are
0.619, 0.387, and 0.645 respectively.

Recall, also known as the true positive rate (TPR), measures
how many of the positive cases our model is able to correctly
predict. Recall is defined as:

Recall =
T P

T P+FN
(2)

For the low, medium, and high classes the recall values were
0.591, 0.462, and 0.580 respectively. The high recall values show
that our regression model is able to effectively classify designs
into low, medium and high categories, which can enable human
raters to use these models for initial filtering of ideas and then
focusing on individual categories to identify the the top ideas.

DISCUSSION AND LIMITATIONS
The goal of this study was to identify how to take advan-

tage of the distinct strengths of both the SVS and CAT method
through machine learning. More specifically, this study sought to
investigate the possibility of using machine learning to facilitate
automated creativity assessment. Our results revealed two major
and consistent trends:

1. Incorporating natural language processing in the representa-
tion of a design consistently improves a model’s ability to
predict expert design metrics.

2. Different design metrics vary distinctly in their predictabil-
ity, with Usefulness and Elegance performing the best, and
Creativity and Uniqueness performing the worst.

Trend 1 is displayed visually in Figure 3. Each design rep-
resentation, from one to three, incorporates more text added. On
the figure this is visually displayed with the lightest bar incorpo-
rating the least NLP and the darkest bar incorporating the most.
Across all design metrics a general trend emerges. In design rep-
resentation three, Text Embedded SVS Features and Description
tends to outperform both other design representations, while de-
sign representation two tends to outperform design representa-
tion one.
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We propose that this trend is due to Universal Sentence En-
coder’s ability to capture relationships between features by map-
ping them in a continuous space. Universal Sentence Encoder’s
ability to do this is in contrast to one-hot-encoding vectoriza-
tions, which assume all features are independent. We note that
the overall R2 values are low. Our predictions have much room
for improvement, as visualized in Figure 4. However, the emerg-
ing trends still provide insight that we find valuable in how we
can predict classically subjective ratings of designs objectively.

The other emerging trend that we found compelling is the
consistent difference in the ability to predict certain CAT rat-
ings. We found that Usefulness and Elegance metrics were con-
sistently the most predictable. This trend could result from the
objective nature of Usefulness and Elegance. More raters may
agree on what characteristics of a design qualifies as useful. Fur-
thermore, elegance is tied to the simplicity of a design, which
can be more objectively agreed upon than, say, creativity. To
that note, Creativity and Uniqueness were the least predictable
across all regression models. We attribute this to the subjectivity
of these ratings. In fact, Creativity is often not agreed upon by
experts, and expert ratings are the basis of our regression models.

This finding opens another discussion centered around the
availability of expert vs. novice design ratings. Novice design
ratings are less expensive and more easily acquired than expert
design ratings. However, expert design ratings naturally hold
more weight - novices must be trained to be ’expert-proxies’ us-
ing some sample set from expert ratings. Even when you can
train novices to be ’expert-like,’ they still lack the mental models
and experiences of experts which ultimately impact rating perfor-
mance. However, some areas do exist where experts and novices
tend to agree such as in the novelty of design ratings [28]; thus,
one could argue that there are instances where novice ratings can
supplement or replace expert ones.

Future work will focus on combining language features with
sketch understanding and computer vision methods for improved
prediction of design metrics. We believe that a sketch contains
rich information, which may get lost when a rater tries to identify
SVS features from it or the designer tries to write a description.
Another direction of research will be training models to iden-
tify design features from the sketch and text description. Such
a model can augment our understanding of sketches and help in
automated categorization and assessment of design sketches.

CONCLUSION
Creativity and innovation are important steps in the devel-

opment of novel solutions to existing and new problems and
for making important technological progress [2–4]. As a re-
sult, both creativity and innovation have often been viewed to
be man-kind’s most valuable resources [5]. As a result, there
have been many attempts to help boost creativity of students to
better prepare them for the markets [10–12]. One important step

that comes after the implementation of improvement methods is
assessment, since it can help identify whether progress has been
made [13–17].

The need for creative design evaluations stems from the in-
creased attention in research on creativity and innovation in en-
gineering, as they are crucial in providing novel solutions to
new and existing problems [2–4]. Creativity and innovation
mark an individual’s ability to produce new ideas, something
that is crucial in the production of novel technology [6–9]. As
a result, there has been a surge in research that examines pos-
sible methods to boost student creative and innovative behav-
iors [10–12]. Like improvement methods, there have also been
a plethora of assessment metrics, the most common of which is
the CAT [6, 24, 25] and the SVS method [17]. However, both
techniques have their advantages and disadvantages. While CAT
has been widely accepted as the ”gold standard” [18,36,40,42],
it relies heavily on the subjective judgement of human experts in
that domain [6, 18, 24, 25, 28]. This resulted in CAT being very
resource consuming, both in terms of time and cost [18]. On the
other hand, the SVS technique minimizes the need for experts
by basing their ratings on the component-level functions of the
concepts [4, 28, 29]. This makes SVS ratings faster and less ex-
pensive to produce. However, it has been criticized for lacking
sensitivity and accuracy [4, 52]. Therefore, to help address this
problem, this study was created to investigate the possibility of
using machine learning to facilitate automated creativity assess-
ment. More specifically, this study seeks the possibility of taking
advantage of both methods by incorporating machine learning to
use SVS ratings, which are easier to collect, to predict CAT rat-
ings. This is done by using regression models in the prediction
process, and also by exploring the possibility of using NLP based
models to improve the results.

Our results, although preliminary, show that incorporating
NLP in the prediction process can improve the model’s predic-
tion of CAT ratings. This study also found that the predictability
of different aspects of the CAT ratings vary, with Usefulness and
Elegance having the best predictability. These findings can serve
as empirical evidence supporting the investigation of novice vs
expert usage in creativity assessment. In addition, the results
also can serve as empirical evidence on the plausibility of using
machine learning to facilitate creativity assessment. The prelim-
inary success in using NLP to predict CAT ratings can help to
show the wide application of NLP, and also support its usage
in modeling subjective ratings like creativity. In conclusion, we
hope that the study can shed some light on the ongoing debate
of using novices vs experts in creativity assessments. We also
hope that this study can help to support future investigation by
providing a direction at a new possibility of concept evaluation.
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