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ABSTRACT
This study introduces DrivAerNet, a large-scale high-

fidelity CFD dataset of 3D industry-standard car shapes, and
RegDGCNN, a dynamic graph convolutional neural network
model, both aimed at aerodynamic car design through machine
learning. DrivAerNet, with its 4000 detailed 3D car meshes using
0.5 million surface mesh faces and comprehensive aerodynamic
performance data comprising of full 3D pressure, velocity fields,
and wall-shear stresses, addresses the critical need for extensive
datasets to train deep learning models in engineering applica-
tions. It is 60% larger than the previously available largest public
dataset of cars, and is the only open-source dataset that also
models wheels and underbody. RegDGCNN leverages this large-
scale dataset to provide high-precision drag estimates directly
from 3D meshes, bypassing traditional limitations such as the
need for 2D image rendering or Signed Distance Fields (SDF).
By enabling fast drag estimation in seconds, RegDGCNN facili-
tates rapid aerodynamic assessments, offering a substantial leap
towards integrating data-driven methods in automotive design.
Together, DrivAerNet and RegDGCNN promise to accelerate the
car design process and contribute to the development of more
efficient vehicles. To lay the groundwork for future innovations
in the field, the dataset and code used in our study are publicly
accessible at https://github.com/Mohamedelrefaie/DrivAerNet1.
Keywords: Parametric Design, Computational Fluid Dynamics, Car
Aerodynamics, Surrogate Modeling, Graph Neural Networks

1. INTRODUCTION
Reducing fuel consumption and CO2 emissions through ad-

vanced aerodynamic design is crucial to the automobile industry.
This can help with faster transition towards electric cars, com-
plementing the 2035 ban on internal combustion engine cars and
aligning with the ambitious goal of achieving carbon neutrality
by 2050 to combat global warming [9, 23, 25]. In aerodynamic
design, navigating through intricate design choices involves a de-
tailed examination of aerodynamic performance and design con-

∗Corresponding author: mohamed.elrefaie@mit.edu
1Data will be uploaded on paper acceptance

straints, which is often slowed down by the time-consuming nature
of high-fidelity CFD simulations and experimental wind tunnel
tests. High-fidelity CFD simulations can take days to weeks per
design [6], while wind tunnel testing, despite its accuracy, is lim-
ited to examining only a handful of designs due to time and cost
constraints. Data-driven approaches can alleviate this bottleneck
by leveraging existing datasets to navigate through design and
performance spaces, thereby speeding up the design exploration
process and efficiently assessing aerodynamic designs.

Although recent advancements in data-driven approaches
for aerodynamic design are promising, these typically concen-
trate on simpler 2D cases [14, 38] or lower-fidelity CFD sim-
ulations [7, 22, 36] and overlook the complexities inherent in
real-world 3D designs and the challenges posed by high-fidelity
CFD simulations. According to [17], simplifying car designs by
excluding components like wheels and mirrors, and not modeling
the underbody, leads to a significant underestimation of aerody-
namic drag. Taking these elements into account increased the drag
by more than 1.4 times, highlighting the importance of detailed
modeling for accurate aerodynamic analysis. Additionally, there is
a dearth of publicly available high-fidelity car simulation datasets,
potentially slowing down research in data-driven method devel-
opment, as each researcher may need extensive computational
resources to create their own data and test their methods on them.

Responding to this challenge, our paper introduces DrivAer-
Net, a comprehensive dataset that features full 3D flow field in-
formation across 4000 high-fidelity car CFD simulations. It is
made publicly available to serve as a benchmark for training deep
learning models in aerodynamic assessment, generative design,
and other machine learning applications.

To demonstrate the importance of large-scale datasets, we
also develop a surrogate model for aerodynamic drag prediction
based on Dynamic Graph Convolutional Neural Networks [42].
Our model, RegDGCNN, operates directly on extremely large
3D meshes, eliminating the necessity for 2D image rendering or
Signed Distance Fields (SDF) generation. RegDGCNN’s ability
to swiftly identify aerodynamic improvements opens new avenues
for creating more efficient vehicles by streamlining the evalua-
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Dataset Size
Aerodynamics Data Wheels/Underbody

Parametric Design Parameters Open-source
𝐶𝑑 𝐶𝑙 u 𝑝 Modeling

Baque el al. 2018 [7] 2,000 " % % % % " 21 (3D) %

Umetani et. al 2018 [40] 889 " % " " % % - "

Gunpinar et. al 2019 [16] 1,000 " % % % % " 21 (2D) %

Remelli et. al 2020 [28] 1,400 % % % " % % - %

Jacob et. al 2021 [19] 1,000 " " " % " " 15 (3D) %

Usama et. al 2021 [41] 500 " % % % % " 40 (2D) %

Rios et. al 2021 [31] 600 " " % % % % - %

Song et. al 2023 [36] 2,474 " % % % % % - "

Li et. al 2023 [22]
551 " % % " % " 6 (3D) %

611 " % % " % % - %

Trinh et. al 2024 [39] 1,121 % % " " % % - %

DrivAerNet (Ours) 4,000 " " " " " " 50 (3D) "

Table 1: A comparative analysis of various aerodynamics datasets, highlighting key aspects such as number of designs in the dataset (size), the
inclusion of aerodynamic coefficients (drag coefficient 𝐶𝑑 and lift coefficient 𝐶𝑙), the inclusion of velocity (u) and pressure (𝑝) fields, the presence of
wheels/underbody modeling, the capacity for conducting parametric studies, the number of design parameters, and open-source availability.

tion of design adjustments. It marks a significant step towards
optimizing car designs more efficiently.

Overall, the contributions of this paper are:
• The release of DrivAerNet, an extensive high-fidelity dataset

featuring 4000 car designs, complete with detailed 3D models
with 0.5 million surface mesh faces each, full 3D flow fields,
and aerodynamic performance coefficients. The dataset
is 60% larger than the previously available largest public
dataset of cars, and is the only open-source dataset that also
models wheels and underbody, allowing accurate estimation
of drag.

• The introduction of a surrogate model, named RegDGCNN,
based on Dynamic Graph Convolutional Neural Networks
for prediction of aerodynamic drag. RegDGCNN outper-
forms state-of-the-art attention-based models [3, 36] for drag
prediction by 3.57% on ShapeNet benchmark dataset while
using 1000× fewer parameters, and achieves an 𝑅2 score of
0.9 on the DrivAerNet dataset.
In addition, the large size of our dataset is also justified by our

analysis in Section 5.3, which reveals that expanding the training
dataset from 560 to 2800 car designs from DrivAerNet resulted in
a 75% decrease in error, illustrating the direct correlation between
dataset size and model performance. A similar trend is observed
with the dataset from [36], where enlarging the number of training
samples from 1270 to 6352 entries yielded a 56% error reduction,
further validating our model’s efficacy and the inherent value of
large datasets in driving advancements in surrogate modeling.

The structure of our paper is as follows: Section 2 provides
an overview of related work. Section 3 presents the DrivAerNet
dataset, detailing the numerical simulation methods, CFD results,
geometric feasibility analysis, and dataset characteristics. In Sec-
tion 4, we introduce our RegDGCNN approach using the Dynamic
Graph Convolutional Neural Network for regression tasks. Sec-
tion 5 examines the application of the RegDGCNN model for sur-
rogate modeling of aerodynamic drag, comparing its performance

on the DrivAerNet and ShapeNet datasets and underscoring the
benefits of scaling the training dataset. The paper highlights the
limitations of our study and suggests avenues for future research,
followed by a conclusion that summarizes the results and key
findings.

2. RELATED WORK

This section starts with an overview of aerodynamics datasets,
and then transitions to discussing recent progress in 3D learning
for aerodynamics.

2.1 Aerodynamics Datasets

Data-driven aerodynamic design is a methodology that lever-
ages computational models and machine learning algorithms to
optimize car shapes based on large volumes of aerodynamic per-
formance data, aiming to improve efficiency and performance.
A common type of data-driven aerodynamic design is surrogate
modeling, which uses simplified models to approximate the be-
havior of complex aerodynamic phenomena, enabling faster sim-
ulations and iterations in the design process. It is particularly
useful for preliminary design phases where quick evaluations are
necessary. However, a significant portion of existing research on
data-driven aerodynamic design is concentrated on simplified 2D
scenarios such as airfoils/2D geometries [8, 14, 16, 20, 38, 41]
or simplified 3D models [7, 22, 28, 31, 36, 39, 40]. While these
studies are instrumental in understanding the fundamental physics,
they often fall short in terms of applicability to complex 3D real-
world problems. This gap is further widened by the absence of
proprietary data from the industry, posing challenges in replicat-
ing and validating research findings. Moreover, the absence of a
standardized benchmark dataset in the field hampers the ability to
consistently evaluate and compare the efficacy of various machine
learning methodologies. This stands in contrast to fields such as
image processing or 3D shape analysis, where benchmark datasets
like ImageNet [13] or ShapeNet [10] have accelerated significant
advancements in deep learning by providing a common ground
for methods comparison. Although benchmarks for CFD simu-
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Figure 1: The parametric DrivAer model is depicted with morphing boxes applied for geometry transformation in ANSA® software using a total of
50 geometric parameters and 32 morphable entities. The morphing boxes are color-coded to highlight the areas susceptible to parametric modifications,
facilitating the creation of ‘DrivAerNet’ dataset. Utilizing this morphing technique, we generated 4,000 unique car designs.

lations and turbulence modeling [4–6] do exist, their limited size
often renders them inadequate for the demands of deep learning
techniques, underscoring the necessity for a broader and more
comprehensive dataset.

Table 1 provides an overview of existing datasets in the liter-
ature for data-driven aerodynamic design. It compares their size,
the inclusion of aerodynamic information such as drag coefficient
(𝐶𝑑), lift coefficient (𝐶𝑙), velocity field (u), pressure (𝑝), whether
they are parametric, the number of design parameters, and their
availability as open-source. In addition, we consider the mod-
eling of the rotating wheels and underbody for evaluation. Our
dataset stands out with the largest size of 4,000 samples, compre-
hensive aerodynamic information, parametric details, modeling
of the wheels and underbody, and open-source accessibility.

Below, we discuss recent advancements in 3D learning for
aerodynamics.
2.2 Advancements in 3D Learning for Aerodynamics

The study from [39] presented a super-resolution model aimed
at refining the estimated, yet coarsely resolved, flow fields around
vehicles from deep learning predictions to a higher resolution, cru-
cial for aerodynamic vehicle design. By incorporating a residual-
in-residual dense block (RRDB) within the generator structure and
employing a relativistic discriminator for enhanced detail capture,
coupled with a novel distance-weighted loss and physics-informed
loss to ensure physical accuracy, the methodology demonstrated
a marked improvement in flow field enhancement around vehi-
cles, outperforming previous approaches in this domain. Jacob
et. al [19] demonstrated that deep learning, particularly a mod-
ified U-Net architecture using SDF, can accurately predict drag
coefficients for a specific car design without the need for explicit
parameterization.

In recent advancements in computational design, many stud-
ies have leveraged the ShapeNet [10] dataset for shape optimiza-
tion and surrogate modeling in aerodynamics. ShapeNet is a
dataset consisting of millions of 3D models spanning 55 com-
mon object categories, designed to support research in computer

vision, robotics, and geometric deep learning. Using ShapeNet,
[28] enhanced shape optimization by employing MeshSDF, of-
fering a more flexible alternative to traditional hand-crafted pa-
rameterizations. Song et. al [36] introduced a novel 2D rep-
resentation for 3D shapes, coupled with a surrogate model for
aerodynamic drag, showcasing the potential for AI-driven design
optimizations. Rios et. al [31] compared various design repre-
sentation methods, including PCA, kernel-PCA, and a 3D point
cloud autoencoder, highlighting the autoencoder’s capability for
localized shape modifications in aerodynamic optimizations. The
fourth study introduced the geometry-informed neural operator
(GINO) [22], leveraging SDF, point clouds, and neural operators
for efficient large-scale simulations, achieving significant speed-
ups and error rate reductions in predicting surface pressure and
drag coefficients on different car geometries.

Limitations of Existing Studies and the Impact of Compre-
hensive Modeling: Despite the novel methodologies employed
in these studies, they faced limitations stemming from the inherent
drawbacks of the ShapeNet dataset, such as lower mesh resolution,
lack of watertight geometries, small dataset size, and oversim-
plifications like modeling cars as single-bodied entities without
detailed considerations for components like wheels, underbody,
and side mirrors, which can significantly impact real-world aero-
dynamic performance. This oversimplification can significantly
impact real-world aerodynamic performance; according to [17],
including these details in the DrivAer fastback model, increased
the drag value from 0.115 to 0.278 in CFD simulations and from
0.125 to 0.275 in wind tunnel experiments. These increases rep-
resent a substantial increase in drag by approximately 142% and
120% respectively, underscoring the critical role of comprehen-
sive modeling in achieving accurate aerodynamic assessments.
Another common hurdle in both surrogate modeling and design
optimization is the scarcity of data, which complicates efforts to
replicate results or benchmark various models and approaches.
Addressing this challenge, our contribution introduces DrivAer-
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(a) Fastback configuration of the DrivAer baseline model with de-
tailed underbody, mirrors, and wheels.

(b) Computational grid in the 𝑦-normal symmetry plane displays four distinct regions of
refinement. The addition of layers around the car body is also evident, all designed to
accurately capture both the wake dynamics and the boundary layer development.

Figure 2: DrivAer Fastback model, complete with detailed features, alongside its computational mesh, illustrating the mesh refinement zones and
additional layers aimed at accurately modeling aerodynamic phenomena.

Net, a comprehensive benchmark dataset tailored for data-driven
aerodynamic design, aiming to facilitate comparison and valida-
tion of future methodologies.
3. DRIVAERNET DATASET
Introduction to DrivAerNet Dataset and Model Background:
DrivAer model [18] is a well-established conventional car refer-
ence model developed by researchers at the Technical University
of Munich (TUM). It is a combination of the BMW series 3 and
Audi A4 car designs in order to be representative of most conven-
tional cars. The DrivAer model was developed to bridge the gap
between open-source oversimplified models like the Ahmed [2]
and SAE [11] bodies and the complex designs of the manufactur-
ing companies, which are not publicly available. To accurately
assess real-world aerodynamic designs, we selected the fastback
configuration with a detailed underbody, wheels, and mirrors (FD-
wWwM) as our baseline model, as shown in Figure 2a. This choice
of the FDwWwM model was driven by the substantial impact of
wheels, mirrors, and underbody geometry on aerodynamic drag,
a conclusion supported by the findings in [17]. Specifically, the
detailed underbody geometry adds 32-34 counts to the drag, the
inclusion of mirrors introduces an additional 14-16 counts, and
the presence of wheels elevates the total drag coefficient by 102
counts 2.

Selecting the Baseline Parametric Model: In order to create
a comprehensive dataset for training deep learning models for
surrogate modeling and design optimization, we first created a
parametric model of the DrivAer model. This approach was ne-
cessitated by the limitations of the original model, which was
provided as a single, non-parametric .stl file. To adequately
capture the geometric variations and design modifications rele-
vant to real-world automotive design challenges, we developed
a version of the DrivAer model that is defined by 50 geometric
parameters and includes 32 morphable entities (see Figure 1) us-
ing the commercial software ANSA®. This parametric model
allows for a more detailed exploration of the design space, fa-
cilitating the generation of 4,000 unique design variants through

2In aerodynamic evaluations, “drag counts” are used as a unit of measurement
to denote small changes in the drag coefficient (𝐶𝑑). One drag count is defined as
a 0.0001 increment in 𝐶𝑑 .

the application of the Optimal Latin Hypercube sampling method,
specifically employing the Enhanced Stochastic Evolutionary Al-
gorithm (ESE) as outlined by [12].

Figure 3: Mesh resolution comparison across various datasets; first row
features the Ahmed body mesh from Li et al. (2023) [22], demonstrating
a coarse resolution. Second row shows medium-resolution mesh from
the ShapeNet dataset, as utilized by Song et al. (2023) [36]. Final row
presents our high-resolution mesh, providing greater detail for in-depth
aerodynamic design.

Techniques for Generating Diverse Car Designs: The para-
metric model, along with the constraints and the bounds applied
during the Design of Experiments (DoE), significantly enriches
the dataset, making it a robust foundation for the development
and training of advanced deep learning models aimed at surrogate
modeling and design optimization tasks. We provide access to
the parametric model with the incorporated morphing features for
further reference and utilization3.

Diverging from the approach taken in [19], we implemented
a broader range of morphing techniques, enabling us to explore
a more diverse array of car designs. This approach aims to en-
hance the adaptability of deep learning models, allowing them to

3The parametric model is available at https://github.com/Mohamedelrefaie/
DrivAerNet/ParametricModel
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Figure 4: Car models from the DrivAerNet dataset, illustrating a range of aerodynamic designs. The far left model exhibits the maximum volume
within the dataset, while the far right model represents the design with the smallest volume, highlighting the diversity and scope of aerodynamic profiles
studied.

generalize across various car designs instead of being limited to
minor geometric modifications within a single design. Figure 3
depicts the variation in mesh quality, ranging from coarse to high-
resolution across various datasets. Our original mesh with 540k
mesh faces, provides a denser and more detailed representation
compared to the mesh resolutions in the studies by [22] and [36],
thereby revealing more detailed geometric and design features.

Additionally, Figure 4 presents a spectrum of car shapes from
the DrivAerNet dataset, illustrating the variability in design di-
mensions and features. This range from the largest to the smallest
volume model underscores the dataset’s capacity to cover a com-
prehensive span of aerodynamic profiles.

3.1 Numerical Simulation

3.1.1 Domain and Boundary Conditions. The DrivAer
fastback model scaled 1:1, was selected for conducting the CFD
simulations. The simulations were carried out using the open-
source software OpenFOAM®, a comprehensive collection of
C++ modules for tailoring solvers and utilities in CFD studies. In
this study, the coupling between pressure and velocity is achieved
through the SIMPLE algorithm (Semi-Implicit Method for Pres-
sure Linked Equations), as implemented in the simpleFoam solver,
which is designed for steady-state, turbulent, and incompressible
flow simulations. The 𝑘-𝜔-SST model, based on Menter’s formu-
lation [24], was chosen for the Reynolds-Averaged Navier-Stokes
(RANS) simulations due to its ability to overcome the limitations
of the standard 𝑘-𝜔 model, particularly its dependency on the
freestream values of 𝑘 and 𝜔, and its effectiveness in predicting
flow separation.

The simulations were performed at a flow velocity (𝑢∞) of
30 m/s, which corresponds to a Reynolds number of roughly
9.39 × 106, using the car length as the characteristic length scale.
The computational mesh is constructed using the SnappyHexMesh
(SHM) tool, featuring four distinct refinement zones. Additional
layers have been added around the car body to precisely repre-
sent wake dynamics and boundary layer evolution (see Figure 2b).
Boundary conditions were defined with a uniform velocity at the
inlet and pressure-based conditions at the outlet. To avoid back-
flow into the simulation domain, the velocity boundary condition
at the outlet was configured as an inletOutlet condition. The
car surface and ground were assigned no-slip conditions, while
the wheels were modeled to rotate with the rotatingWallVelocity
boundary condition. Slip conditions were applied to the lateral
and top boundaries of the domain.

Near-wall viscosity effects were addressed using the nutUS-
paldingWallFunction wall function approach. The selected wall

function for the viscosity term applies a continuous turbulent
viscosity profile near the wall, based on velocity, following the
approach proposed by [37]. For divergence terms, the default
Gauss linear scheme is used, with the velocity convective term
discretized using a bounded Gauss linearUpwindV scheme ap-
plied to the gradient of velocity, ensuring second-order accuracy.
Gradient calculations employed the Gauss linear method comple-
mented by a multi-dimensional limiter to enhance the stability of
the solution. The quantities of interest are the 3D velocity field,
surface pressure, and wall-shear stresses, as well as the aerody-
namic coefficients.
3.1.2 Validation of the Numerical Results. The selection
of the DrivAer fastback model is justified by the availability of
both computational and experimental references, enabling us to
benchmark our results against established data [17, 43]. Before
commencing the simulations, we conducted a preliminary assess-
ment of how mesh refinement influences the results. This involved
comparing the drag coefficients obtained from three different mesh
resolutions with experimental values and reference simulation, as
detailed in Table 2. The objective was to identify an optimal bal-
ance between simulation accuracy and computational efficiency.
This balance is crucial since our aim is to generate a large-scale
dataset for training deep learning models, necessitating both high
fidelity in the simulation results and manageable disk storage and
simulation times to accommodate the extensive computational
requirements. The drag coefficient, 𝐶𝑑 , is determined by the
equation:

𝐶𝑑 =
𝐹𝑑

1
2 𝜌𝑢

2
∞𝐴ref

(1)

The drag force, denoted by 𝐹𝑑 , experienced by a body is a function
of its effective frontal area 𝐴𝑟𝑒 𝑓 , the freestream velocity 𝑢∞, and
the air density 𝜌. This force comprises both pressure and frictional
components.

The evaluation encompassed not only the drag coefficients but
also the mesh size and the computational resources required. The
simulations were performed on a machine equipped with AMD
EPYC 7763 64-Core Processors, totaling 256 CPU cores with 4
Nvidia A100 80GB GPUs.

Our analysis reveals a consistent correlation between our sim-
ulations and both the benchmark experimental data and reference
simulations, with the 8 and 16 million cell meshes showing par-
ticularly good alignment. The discrepancy observed in the 40
million cell mesh could stem from differences in mesh granular-
ity, as the reference simulations utilized a 16 million cell mesh.
Finer meshes capture more intricate flow dynamics, which may
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Comparison of Mesh Resolutions and Experimental/Simulation Results
Mesh name Cell count DrivAer face count CPU-hours Difference Exp. Difference Ref. Sim.

RANS coarse 8 × 106 5.4 × 105 88 2.81% 1.7%
RANS medium 16 × 106 5.4 × 105 205 0.81% 1.88%

RANS fine 40 × 106 8.7 × 105 512 5.7% 6.78%
Table 2: A comparison of different mesh resolutions used in our simulations for the baseline DrivAer model, including cell count and DrivAer face
count. The simulation times are listed alongside the percentage differences when compared to experimental results and a referenced simulation, as
reported in [17].

not be represented in coarser meshes, leading to divergences. In
computational fluid dynamics, especially in the preliminary stages
of design, an error margin of up to 5% is generally considered ac-
ceptable for engineering purposes. In addition, implementing
"RANS fine" for all 4000 designs within the DrivAerNet dataset
would require approximately 120TB of storage, posing significant
challenges to data sharing and reproducibility due to the immense
storage demands. Therefore, considering the balance between
accuracy and computational resource allocation, we decided to
conduct our simulations using the 8 million and 16 million cell
meshes. These configurations provide a compromise between
computational efficiency and the level of detail necessary for ac-
curate aerodynamic analysis.

Leveraging Multi-Fidelity Data and Transfer Learning for
Efficient Surrogate Model Development: As shown by [15],
leveraging multi-fidelity CFD simulations proves to be a robust
strategy for accurate 3D flow field estimation. This approach in-
volves using a dataset that combines RANS, which are relatively
easier and cheaper to obtain and can capture the general flow be-
havior, with Direct Numerical Simulation (DNS) data, known for
its detailed flow information despite being computationally expen-
sive. Training a deep learning model with this diverse dataset not
only enables the model to generalize effectively to real-world sce-
narios, as confirmed by wind tunnel tests, but also facilitates a two-
phase training process. This process starts with medium-fidelity
RANS data to grasp general flow patterns and then transitions to
fine-tuning with high-fidelity DNS data, thereby enhancing the
model’s accuracy and real-world applicability. Similar results
leveraging multi-fidelity datasets for training surrogate models
have been demonstrated by [33, 35], underscoring the approach’s
efficacy in aerodynamic analysis. The DrivAerNet dataset can
be similarly utilized, allowing for integration with datasets of ei-
ther lower or higher fidelity to augment model training and refine
predictive capabilities.
3.1.3 CFD Simulation Results.

Inclusion of Diverse Car Dimensions and Complex Flow Dy-
namics: In contrast to the approach by [36] where all car models
are standardized to a uniform length of 3.5 meters to fit a prede-
fined computational domain, our dataset allows diversity in car
dimensions, adjusting the mesh, bounding boxes, and additional
layers accordingly for each design. This flexibility is crucial
for capturing the intricate flow dynamics around cars including
phenomena like flow separation, reattachment, and recirculation
zones, and ensuring precise aerodynamic coefficient estimation.

This approach addresses limitations observed in some studies that
prioritize dataset size over simulation fidelity, often overlooking
the importance of convergence, accurate modeling, and appropri-
ate boundary conditions for complex 3D models.

Modeling of Wheels, Side Mirrors, and the Underbody: As
previously highlighted, the majority of literature and available
datasets tend to neglect the modeling of wheels, side mirrors,
and the underbody, as detailed in Table 1. Our methodology, in
contrast, includes detailed modeling of these components. Fig-
ure 5 illustrates the velocity distribution on the car: here, the car
body exhibits zero velocity due to the no-slip boundary condi-
tion, whereas the wheels show nonzero velocity. Additionally, the
figure visualizes streamlines around the car, offering insight into
the flow dynamics influenced by the inclusion of these features.
The DrivAerNet dataset features full 3D flow field information,
as shown in Figure 6a with the velocity data, and in addition, it
provides the pressure distribution on the car’s surface. The pres-
sure coefficient, denoted as 𝐶𝑝 , is calculated as the ratio of the
pressure differential 𝑝 − 𝑝∞ to the dynamic pressure, 1

2 𝜌𝑢
2, and

is given by:
𝐶𝑝 =

𝑝 − 𝑝∞
1
2 𝜌𝑢

2
. (2)

The distribution of 𝐶𝑝 on the car surface is depicted in Figure 6b.
3.2 Geometric Feasibility
Ensuring Geometric Integrity in Automated Design Morph-
ing: In our approach to generating large diverse automotive de-

Figure 5: 3D streamlines representing the magnitude of velocity around
the car, alongside the distribution of velocity magnitudes on the car’s
wheels. The gradient observed at the wheels is indicative of angular
velocity, reflecting the rotation of the wheels. Units are in (m/s).
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(a) Velocity field distribution around the DrivAer model, with velocity
magnitudes expressed in (m/s).

(b) Pressure coefficient (𝐶𝑝) distribution on the DrivAer model, illus-
trating the pressure variation across the car’s surface.

Figure 6: The DrivAerNet dataset includes detailed 3D fields for velocity, pressure, and wall-shear stresses, alongside aerodynamic coefficients as well
as the detailed 3D meshes of the car bodies and both front and rear wheels in each of its entries.

signs through automated morphing with ANSA®, ensuring the
geometric quality and feasibility of each variant is crucial. To ad-
dress potential issues such as non-watertight geometries, surface
intersections, or internal holes resulting from morphing opera-
tions, we employ an automated mesh quality assessment and repair
process. This procedure not only identifies but also rectifies com-
mon geometric anomalies, ensuring that only simulation-ready
models are included in our dataset. Geometries failing to meet
these criteria are systematically excluded from simulations. The
DrivAerNet dataset employs a diverse array of parameters (total of
50 parameters) to morph car geometries, encompassing modifica-
tions to the side mirror placement, muffler position, windscreen,
rear window length/inclination, the size of the engine undercover,
offsets for the doors and fenders, hood positioning, and the scale
of headlights as well as alterations to the overall car length and
width. Additionally, adjustments are made to the car’s upper and
underbody scaling, as well as pivotal angles such as the ramp,
diffusor, and trunk lid angles, all crucial for exploring the effects
of different design modifications on car aerodynamics. For a de-
tailed account of the morphing parameters, including their lower
and upper bounds, please refer to our GitHub repository.

As we morph the entire car’s geometry, wheel positioning
is adjusted in the 𝑥, 𝑦, and 𝑧 axes during the morphing process.
For all simulations, we use front and rear wheels of the same
shape. To accurately simulate the wheel rotation, we export them
as separate .stl files post-morphing, which allows us to apply
the rotatingWallVelocity physical boundary condition. Moreover,
morphing affects the car’s vertical positioning, necessitating a
calculation of the 𝑧-axis displacement to ensure the car body and
wheels are properly aligned with the ground plane. For simulation
purposes, we supply three distinct .stls: one for the car body,
one for the front wheels, and one for the rear wheels, to model
their interactions accurately.
3.3 DrivAerNet Dataset Characteristics

For our simulations, we employed OpenFOAM® version 11,
executing the computational tasks across 128 CPU cores and 4
Nvidia A100 80GB GPUs. This resulted in a total computational

cost of approximately 352,000 CPU hours. We make available the
complete suite of data, encompassing both the raw CFD outputs
and the derived post-processed datasets.

Our dataset serves as a benchmark for evaluating deep learn-
ing models, designed to facilitate effective model testing. To
manage the large volumes of data from CFD simulations, we em-
ploy a data reduction strategy that focuses on key areas of the flow
field. This involves retaining data from regions immediately in
front of and behind the car, defined within a specific bounding
box, which helps to reduce the overall data size significantly. Ad-
ditionally, we provide a script that converts CFD simulation data
into a format suitable for training deep learning models. Given the
widespread use of data visualization tools such as ParaView and
VisIt, which rely on the Visualization Toolkit (vtk), our dataset is
made available in vtk format. This ensures that the data is easily
accessible and usable within these common visualization envi-
ronments, supporting a broad range of research and application
needs.

The DrivAerNet dataset offers a comprehensive suite of aero-
dynamic data pertinent to car geometries, including key metrics
such as the total moment coefficient 𝐶𝑚, the total drag coefficient
𝐶𝑑 , total lift coefficient 𝐶𝑙 , front lift coefficient 𝐶𝑙, 𝑓 , and rear lift
coefficient𝐶𝑙,𝑟 . Included within the dataset are crucial parameters
like wall-shear stress, and the 𝑦+ metric, integral for mesh qual-
ity evaluations. Further, the dataset provides insights into flow
trajectories and detailed cross-sectional analyses of pressure and
velocity fields along the 𝑥 and 𝑦-axes, enriching the understanding
of aerodynamic interactions.

The dataset includes:
• Comprehensive CFD simulation data ∼ 16TB

• A curated version of CFD simulations ∼ 1TB

• 3D meshes of 4000 car designs and the corresponding aero-
dynamic performance coefficients (𝐶𝑑 , 𝐶𝑙 , 𝐶𝑙,𝑟 , 𝐶𝑙, 𝑓 , and
𝐶𝑚) ∼ 84GB

• 2D slices include the car’s wake in the 𝑥-direction and the
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Figure 7: Scatter plots displaying the relationship between drag coefficient (𝐶𝑑) and lift coefficients (𝐶𝑙 , 𝐶𝑙, 𝑓 , 𝐶𝑙,𝑟 ) for the DrivAerNet dataset. The
dataset represents unique design variants generated via the Optimal Latin Hypercube sampling method, utilizing the Enhanced Stochastic Evolutionary
Algorithm (ESE). Data points are categorized into training, validation, and test sets (70%, 15%, 15%).

Figure 8: Comparative Kernel Density Estimation (KDE) and violin
plots of drag coefficients from two aerodynamic datasets. The blue
curve represents the dataset from Song et. al 2023 [36], and the orange
curve corresponds to the DrivAerNet dataset. DrivAerNet focuses on
conventional car designs, emphasizing the influence of minor geometric
modifications on aerodynamic efficiency.

symmetry plane in the 𝑦-direction ∼ 12GB.

Aerodynamic Performance Variability Amongst Car Designs
in DrivAerNet: Figure 7 displays three scatter plots that map
out the relationships between drag coefficient (𝐶𝑑) and various lift
coefficients (𝐶𝑙 , 𝐶𝑙, 𝑓 , and 𝐶𝑙,𝑟 ) in the DrivAerNet dataset. The
data has been split into training, validation, and test sets, with
a division of 70% for training and 15% each for validation and
testing. Such a division is critical for the integrity of the model
training process and subsequent performance evaluation.

The Kernel Density Estimation (KDE) plot, illustrated in Fig-
ure 8, compares the distribution of drag coefficients across two
aerodynamic datasets. Here, we compare the dataset from [36],
which spans a broad range of drag values, reflecting a wide va-
riety of car designs in ShapeNet. In contrast, our DrivAerNet
dataset targets conventional car designs, accounting for more de-
tailed geometric modifications. This focus is particularly relevant
in the context of the engineering design process, where an ini-
tial car design is typically refined through incremental changes
to optimize aerodynamic performance. The DrivAerNet dataset,

therefore, provides a more specific examination of subtle design
adjustments and their impact on aerodynamic performance.

In Figure 9, we present the aerodynamic performance across
various designs. The top left illustrates the design with lowest drag
coefficient 𝐶𝑑 . In contrast, the top right shows the design with the
highest𝐶𝑑 , identifying opportunities for aerodynamic refinement.
The bottom left reveals the design with the lowest lift coefficient
𝐶𝑙 (indicating the largest downforce), which is advantageous for
stability at high speeds, while the bottom right exposes design the
highest 𝐶𝑙 , potentially complicating aerodynamic stability.

Figure 9: Aerodynamic performance of car designs from DrivAerNet
showcasing a range of coefficients. Top left: Design with minimum drag
coefficient 𝐶𝑑 , indicating optimal aerodynamic efficiency. Top right:
Design with maximum 𝐶𝑑 . Bottom left: Design with minimum lift
coefficient𝐶𝑙 (highest downforce). Bottom right: Design with maximum
𝐶𝑙 .

In the next section, we propose a new deep learning method
to utilize the dataset for surrogate modeling.
4. DYNAMIC GRAPH CONVOLUTIONAL NEURAL

NETWORK FOR REGRESSION
Geometrical deep learning has demonstrated significant

promise in addressing fluid dynamics challenges involving irreg-
ular geometries, as demonstrated in studies by [1, 20, 26, 29, 30,
32, 34].
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Figure 10: Architecture of the RegDGCNN for aerodynamic drag prediction. The model processes a 3D mesh by converting it into a point cloud
representation. It takes 𝑛 input points, calculates an edge feature set of size 𝑘 for each point at an EdgeConv layer, and aggregates features within each
set to compute EdgeConv responses for the corresponding points. The output features of the last EdgeConv layer are aggregated globally to form a 1D
global descriptor, which is then used to predict the aerodynamic drag coefficient 𝐶𝑑 , enabling direct learning from the 3D geometry of the object. The
EdgeConv block ingests an input tensor of dimensions 𝑛 × 𝑓 , where it determines edge features for each point utilizing a multi-layer perceptron (MLP).
Post-MLP application, the block outputs a tensor of dimensions 𝑛 × 𝑎𝑛 by conducting a pooling operation over the neighboring edge features.

In this work, we extend the Dynamic Graph Convolutional
Neural Network (DGCNN) framework [42], traditionally associ-
ated with PointNet [27] and graph CNN methodologies, to ad-
dress regression tasks, marking a significant departure from its
conventional applications in classification. Our contribution lies
in adapting the DGCNN architecture to predict continuous values,
specifically focusing on aerodynamic coefficients critical in fluid
dynamics and engineering design. Leveraging the spatial encod-
ing capabilities of PointNet and the relational inferences provided
by graph CNNs, our proposed RegDGCNN model (as shown in
Figure 10) aims to capture the complex interactions of fluid flow
around objects, offering a novel method for accurate estimation of
crucial aerodynamic parameters. This approach harnesses local
geometric structures by constructing a local neighborhood graph
and applying convolution-like operations on the edges linking
pairs of neighboring points, aligning with graph neural network
principles. The technique, termed edge convolution (EdgeConv),
is shown to exhibit properties that bridge translation invariance
and non-locality. Uniquely, unlike in standard graph CNNs, the
graph of RegDGCNN is not static but is dynamically updated after
each layer of the network, allowing the graph structure to adapt to
evolving feature spaces.

We start by initializing the graph 𝐺 with node features 𝑋 ,
along with the parameters for the EdgeConv layers 𝜃 and the Fully
Connected (FC) layers 𝜙. A distinctive feature of the RegDGCNN
is its dynamic graph construction within each EdgeConv layer,
where the 𝑘-nearest neighbors of each node are identified based
on the Euclidean distance in the feature space, thereby adaptively
updating the graph’s connectivity to reflect the most significant
local structures. The EdgeConv operation is defined as:

ℎ𝑖 𝑗 = Θ
(︁
𝑥𝑖 , 𝑥𝑗 − 𝑥𝑖

)︁
(3)

enhances node features by aggregating information from these

neighbors using a shared Multi-Layer Perceptron (MLP), which
processes both the individual node features and their differences
with adjacent nodes, capturing the local geometric context effec-
tively.

Following the EdgeConv transformations, global feature ag-
gregation is performed, pooling features from across all nodes into
a singular global feature vector:

𝑥′𝑖 = max
𝑗∈N(𝑖)

ℎ𝑖 𝑗 (4)

Here, max pooling is employed to encapsulate the graph’s holistic
information. This global feature vector is subsequently processed
through several FC layers, with the inclusion of non-linear activa-
tion functions like ReLU and dropout to introduce non-linearity
and prevent overfitting, respectively. The architecture culminates
in an output layer, designed to suit the specific task at hand, for
instance, employing a linear activation for regression tasks.

ℎ𝑖 𝑗 = MLP
(︁ [︁
𝑥𝑖 , 𝑥𝑗 − 𝑥𝑖

]︁ )︁
(5)

𝑋 ′ = max
𝑖∈G

𝑥′𝑖 (6)

The model’s performance is quantified by calculating the loss
between its predicted outputs and the ground truth drag values
using the mean squared error (MSE), with the backpropagation
algorithm adjusting the model parameters 𝜃 and 𝜙 through op-
timization algorithms such as Adam [21] to minimize this loss.
This iterative refinement process highlights the RegDGCNN’s ca-
pability to dynamically leverage and integrate hierarchical features
from graph-structured data.
4.1 Implementation Details
Network Architecture: We constructed the graph for the
RegDGCNN using the 𝑘-nearest neighbors algorithm, with 𝑘 set
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to 40. This parameter was critical in defining the local neighbor-
hood over which convolutional operations were performed. The
RegDGCNN model was instantiated with specific parameters to
accommodate the nature of the regression task. The EdgeConv
layers were configured with channels of sizes {256, 512, 512,
1024}, and the following MLP layers were {128, 64, 32, 16}.
Lastly, the embedding dimension of the network was set at 512,
providing a high-dimensional space to capture the complex fea-
tures necessary for the regression tasks at hand. Our RegDGCNN
model is entirely differentiable and can seamlessly integrate with
3D generative AI applications for enhancing design optimization.

Model Hyperparameters: The experiments were conducted
using the PyTorch framework. The models were trained using
a batch size of 32, with the number of points per input set to 5000.
Training was distributed across 4 NVIDIA A100 80GB GPUs, uti-
lizing data parallelism to enhance computational efficiency. The
network’s learning rate was initially set to 0.001, and a learning
rate scheduler was employed to reduce the rate upon plateauing
of the validation loss, specifically using the ReduceLROnPlateau
scheduler with a patience of 10 epochs and a reduction factor of
0.1. This approach helped in fine-tuning the models by adjusting
the learning rate in response to the performance on the validation
set. The models were trained for a total of 100 epochs, ensuring
sufficient learning while preventing overfitting. For optimization,
we used the Adam optimizer [21] due to its adaptive learning rate
capabilities.

Inference Time: The RegDGCNN model, with its compact size
of roughly 3 million parameters and a storage requirement of
about 10MB, performs drag estimation for a car design with 540k
mesh faces in 1.2 seconds on 4 A100 80GB GPUs, a significant
efficiency gain compared to the 2.3 hours taken by a standard CFD
simulation on 128 CPU cores with 4 A100 80GB GPUs.
5. SURROGATE MODELING OF AERODYNAMIC DRAG

In this section, we evaluate our RegDGCNN model on two
aerodynamic datasets, DrivAerNet and ShapeNet, highlight the
impact of larger training volumes on model performance, and
investigate the model’s learned features.

Figure 11: Correlation plot of the predicted drag coefficient 𝐶𝑑 by our
RegDGCNN model against the ground truth for the DrivAerNet unseen
test set, achieving an 𝑅2 score of 0.9. The dotted line denotes the line of
perfect correlation, representing the ideal prediction scenario.

5.1 DrivAerNet: Aerodynamic Drag Prediction of
High-Resolution Meshes

The examination of RegDGCNN’s performance on the Dri-
vAerNet dataset, depicted in Figure 11, reveals a good correlation
between predicted values and ground-truth data from CFD, un-
derscoring the model’s effectiveness. The complexity of the Dri-
vAerNet dataset is attributed to its inclusion of industry-standard
shapes, varied through 50 geometric parameters, presenting a
comprehensive challenge in aerodynamic prediction. Our model
effectively navigated the complexities of the dataset and directly
processed the 3D mesh data, marking a significant shift from tra-
ditional methods that often rely on generating Signed Distance
Fields (SDF) or rendering 2D images. This straightforward ap-
proach enabled us to achieve an 𝑅2 score of 0.9 on the unseen test
set, emphasizing the model’s ability to accurately discern subtle
aerodynamic differences.

5.2 ShapeNet: Aerodynamic Drag Prediction of
Arbitrary Vehicle Shapes

To test the generalizability of the proposed RegDGCNN
model, we also evaluated its ability to adapt to complex geome-
tries on an existing benchmark dataset, utilizing 2,479 diverse car
designs from the ShapeNet dataset [36] (see Figure 12), which ex-
hibits a broader range of car shapes than our DrivAerNet dataset.

Figure 12: A selection of car samples from the ShapeNet dataset,
demonstrating the diversity in car shapes and mesh resolutions, utilized
to evaluate the generalization capabilities of RegDGCNN. These samples
provide a comparative baseline against the high-resolution meshes found
in our DrivAerNet dataset.

In Table 3, we compare the performance of two models: the
attn-ResNeXt model from the study by [36], which implements
a self-attention mechanism to boost the understanding of interac-
tions among various regions of an image. It uses 2D depth/normal
renderings as input and has approximately 2 billion parameters,
achieving an 𝑅2 score of 0.84; our proposed RegDGCNN model,
which directly processes 3D mesh data, significantly reduces the
number of parameters to 3 million, and achieves a superior 𝑅2

score of 0.87. This comparison underscores the efficiency and
effectiveness of our model in aerodynamic drag prediction tasks.
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Table 3: Comparison of model performance for drag prediction on
arbitrary car shapes from the ShapeNet dataset.

Model Input 𝑅2 # Parameters
attn-ResNeXt [36] 2D Depth/Normal Renderings 0.84 2B
RegDGCNN (ours) 3D Mesh 0.87 3M

5.3 Effect of Training Dataset Size
For both ShapeNet4 and DrivAerNet datasets, we first al-

located 70% for training, and 15% each for validation and test-
ing. Subsequently, we experimented with training subsets at 20%,
40%, 60%, 80%, and 100% of the training portion. The ShapeNet
subsets ranged from 1270 to 6352 samples. Meanwhile, for the
DrivAerNet dataset, the corresponding sample sizes were 560,
1120, 1680, 2240, and 2800 samples.

Figure 13 reveals a clear trend where the average relative er-
ror in drag coefficient predictions decreases as the percentage of
the dataset used for training increases. This trend is consistent for
both datasets, underscoring the common machine learning prin-
ciple that more training data generally leads to better model per-
formance. The improved performance of the DrivAerNet Dataset
across all sizes of training data highlights the critical role of bigger
datasets in machine learning models for aerodynamics and further
establishes the value of DrivAerNet dataset, which is significantly
larger than previous open-source datasets.

The figure also indicates that RegDGCNN yields better per-
formance on the DrivAerNet dataset compared to the dataset from
ShapeNet. This can be attributed to several factors:

• The large variation in shapes within ShapeNet does not cor-
respond with an adequate number of samples to encompass
the entire range of aerodynamic drag values.

• ShapeNet models cars were modeled as single-bodied enti-
ties, omitting crucial details like wheels and underbodies that
are vital for accurate aerodynamic modeling.

• All drag values in ShapeNet were computed using a single
reference area, which does not account for the significant
variation in frontal projected areas of different car designs.

• There is a considerable variation in mesh resolutions across
the ShapeNet dataset, potentially leading to inconsistencies
in aerodynamic predictions.

This analysis serves to demonstrate the generalization capabilities
of our model, emphasizing the objective of developing models
that effectively generalize to out-of-domain distributions.
5.4 Features Learned

To further assess the model’s performance, we analyze the
features learned in the intermediate layers following the edge con-
volution operations. Figure 14 illustrates the distribution of fea-
ture importance across an upsampled point cloud of a car sample
from DrivAerNet, with color coding from light yellow (low im-
portance) to dark red (high importance). Initially, RegDGCNN

4The work expanded their dataset to 9,896 variations through resizing and flip-
ping augmentations, but considered only 2,474 unique car designs as independent
samples for their surrogate model training to prevent data leakage across different
sets.

Figure 13: Average relative error in drag coefficient predictions on the
unseen test set for our model RegDGCNN, based on training set size. The
results from the ShapeNet drag dataset [36] are denoted in blue, while
results from the DrivAerNet dataset are shown in orange. The training
set sizes vary from 20% to 100%. We observe that the increase in dataset
size leads to significant error reduction, showing the necessity of larger
datasets in aerodynamic surrogate modeling.

zeroes in on the car’s frontal and rear area, which are critical in
shaping aerodynamic performance. This focus is notably perti-
nent for aerodynamic design, as the frontal area has a substantial
effect on pressure drag and the rear area is particularly relevant
due to its role in airflow separation and wake region formation.
As the model delves deeper through its layers, it starts to rec-
ognize more complex geometric details. Conversely, areas such
as the roof and windows are less crucial for drag, underscoring
the model’s adeptness at identifying areas with a more significant
aerodynamic influence.
6. LIMITATIONS AND FUTURE WORK

This section discusses the limitations of our study. Despite
careful selection to ensure a balance between detail and compu-
tational efficiency, the model’s parameterization faces an inherent
limitation. This stems from the trade-off between the compact-
ness of the representation and the flexibility needed to capture
a broad range of aerodynamic phenomena. Consequently, while
our approach offers valuable insights for many applications, it may
not fully encompass all aerodynamic variabilities pertinent to au-
tomotive engineering. The dataset comprises 4,000 instances,
which, while significant, might not fully capture the broad spec-
trum of real-world automotive designs. Additionally, our focus
was primarily on drag prediction; however, we plan to extend the
application of RegDGCNN to include surface field predictions in
future work. While our dataset is large and of high-fidelity, it is
important to acknowledge that we are still in the early stages of ap-
proaching the scale and foundational impact seen in AI fields like
image processing and natural language processing, where large
datasets are a norm.

One of the key challenges in applying graph-based methods
like RegDGCNN is the significant GPU memory requirements.
This is due to the need to compute all pairwise distances between
points, which can be highly memory-intensive. Moreover, the
non-uniform density of point clouds introduces additional com-
plexities; a fixed 𝑘-nearest neighbors approach may not be suitable
for areas with varying densities of points.

Another limitation is that, in its current form, RegDGCNN
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Figure 14: Visualization of feature importance across an upsampled point cloud of a car model from DrivAerNet, derived from our RegDGCNN,
specifically focusing on features from the EdgeConv layers. Feature intensities are color-coded from low (light yellow) to high (dark red), indicating
areas of significant learning focus by the convolutional layers. This mapping highlights the learned features that contribute to the model’s predictions.

does not reduce the number of points during the forward pass
for large-scale point clouds, leading to high computational de-
mands and potentially limiting the model’s scalability to even
larger datasets. Addressing these challenges will be crucial for
advancing the capabilities and applications of graph-based neural
networks in processing complex aerodynamic data.
7. CONCLUSION

In our conclusion, we highlight the distinct advantages of
DrivAerNet, which, by focusing on detailed geometric modifi-
cations, outperforms broader datasets such as those referenced
in [22, 31, 36], especially in the context of real-world aerodynamic
design applications. Additionally, the compact RegDGCNN
model, with 3 million parameters and 10MB size, efficiently esti-
mates drag in just 1.2 seconds for industry-standard designs with
540k mesh faces, significantly outpacing traditional CFD simu-
lations. Moreover, our RegDGCNN model, in particular, show-
cases superior performance by directly processing 3D meshes,
thereby eliminating the need for 2D image rendering or the gen-
eration of Signed Distance Functions (SDF), which simplifies
the preprocessing stages and increases the model’s accessibility.
Importantly, the RegDGCNN model’s ability to deliver precise
drag predictions without requiring water-tight meshes highlights
its adaptability and effectiveness in leveraging real-world data.
Through the expansion of the DrivAerNet dataset from 560 to
2800 samples, we achieved a remarkable reduction in error by ap-
proximately 75%. Similarly, on the dataset from [36], increasing
the training samples from 1270 to 6352 led to a 56% decrease
in error, underscoring the substantial impact of dataset scale on
enhancing the performance of deep learning models in aerody-
namic studies. The inclusion of specific parametric alterations
(50 geometric parameters) within our DrivAerNet dataset has sig-
nificantly improved model learning, resulting in a notable increase
in predictive accuracy, essential for the refinement of aerodynamic
designs. This emphasizes the critical role of large detailed, high-
fidelity datasets in crafting models capable of adeptly handling
the complexities inherent in aerodynamic surrogate modeling.
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