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ABSTRACT

The placement of objects on a ship is critical to many facets
of the performance of a ship. Most notably, the mass distribu-
tion properties of objects in a ship affect the ship’s stability, trim,
and structural loading. Information gathered from object place-
ment optimization can allow naval architects to further optimize
the design of the whole ship by potentially reducing the struc-
tural weight of the vessel, and adjusting the shape of the hull or
the general arrangements based on available space in the ship.
This paper presents a novel, many-objective bin packing prob-
lem for object placement across multiple decks on a ship. This
problem is also highly constrained to avoid object intersection
and protrusion. The problem was optimized with the NSGA-II
algorithm, utilizing a heuristic population initialization and by
separating the objectives into a bilevel optimization scheme. The
bilevel scheme decouples certain objectives and design variables
from the rest of the problem and sequences the evaluation for
the objectives in a two-stage process. The hypervolume of the
final population measured the performance of the optimization
test. The results indicate that sequencing the objectives with a
bilevel scheme produces an 80.3% larger hypervolume than an
all-in-one optimization for the same problem. The findings from
this study provide a systematic way by combining concepts from
many-objective optimization, bin packing heuristics, and bilevel
optimization to sequence the optimization of many-objective, ob-
ject placement problems.

∗Address all correspondence to this author.

NOMENCLATURE
LOA Length Overall of the Ship
BOA Beam Overall of the Ship
N Number of Objects Placed in the Ship
M Number of Decks on the Ship
VCG Vertical Center of Gravity
LCG Longitudinal Center of Gravity
LCB Longitudinal Center of Buoyancy
YCG Transverse Center of Gravity
GM Metacentric Height
BMt Height from VCB to the Metacenter
VCB Vertical Center of Buoyancy
∆ Ship Displacement
ρ Density of Saltwater = 1025 kg/m3

INTRODUCTION
Ships are highly complex and expensive systems and are of-

ten built as one-off designs or in limited production. The com-
plexity in ship design stems from the need to balance many con-
flicting design requirements while finding potential designs in an
immensely large design space. Therefore, ships require signifi-
cant effort in design analysis to produce a product that is effec-
tive, efficient, and inexpensive to the customer. The early stages
of ship design are the most critical in affecting much of the per-
formance of the final ship in areas such as stability, structural
strength, and hydrodynamics. Providing information about po-
tential designs as early in the design process as possible gives
naval architects better insight into delivering quality ship designs
to their customers. One critical area in a ship’s design is the mass
distribution properties of objects placed in the hull. The mass
properties affect the ship’s stability, trim, and structural loading.

1 Copyright © 2022 by ASME



Information gathered from object placement optimization can al-
low naval architects to further optimize the design of the whole
ship by potentially reducing the structural weight of the vessel,
and adjusting the shape of hull or the general arrangements based
on available space in the ship. Many-objective design optimiza-
tion provides an optimal set of designs across several objectives
that allow designers to choose a design that is best tailored to
a customer’s needs early in the design process. Many of these
customer needs can be decoupled, where the optimization of one
objective does not necessarily affect the optimization of another.
For example, structural strength and hull drag are not directly
tied to each other, so the shape of the hull and the structure could
be designed simultaneously or sequentially. Another type of op-
timization, bilevel algorithms, provide an opportunity in ship de-
sign, as they split the optimization problem into two or more dis-
tinct components, allowing decoupled objectives to be evaluated
sequentially.

The following sections detail a process of placing objects
across multiple ship decks to optimize the mass properties of the
entire ship using a bilevel optimization scheme. The first objec-
tive seeks to minimize the net vertical center of gravity of all the
objects so, increasing the stability of the ship. The second objec-
tive seeks to minimize differences in the total footprint area of
objects placed in each deck, so that each deck is equally utilized.
The third and fourth objectives seek to position the transverse
and longitudinal centers of gravity so that the ship does not trim
or heel in any direction. The fifth objective aims to minimize
the structural loading of the ship by spreading the weight of the
objects longitudinally to match the buoyancy distribution of the
ship. The sixth objective seeks to pack the set of objects as com-
pactly as possible so to allow extra space near the surface of the
hull for future design alterations. The optimization targets the
effect of object placement on upright stability, equal deck uti-
lization, and the structural needs of the ship, giving designers
a variety of design arrangements to consider while designing a
ship.

The novel contributions of this paper are:

1. Devised problem formulation of ship deck packing. Defined
six objectives critical for this problem and four types of con-
straints.

2. Showed gains obtained using heuristic initialization for all-
in-one optimization problems (83.3% increase in final hy-
pervolume).

3. Showed gains obtained by leveraging a bilevel optimization
to seed an initial population for an all-in-one optimization
(62.9% increase in final hypervolume from the result after
heuristic initialization).

4. Showed gains obtained by strategically sequencing the op-
timization of many objectives using bilevel optimization
(80.3% increase in final hypervolume from the result after
heuristic initialization).

PREVIOUS WORK
This section provides a background for the work detailed

in this paper. The first subsection contains definitions useful to
optimization problems. The second subsection provides a back-
ground in object placement algorithms and bin packing optimiza-
tion. The third subsection presents bilevel optimization. Finally,
the fourth subsection details prior work in multi-objective ship
design optimization.

Terminology
Optimization is the process of manipulating the inputs of a

problem to minimize the output of the problem. Multi-objective
optimization aims to minimize two or more problems, called
objectives, simultaneously. When a multi-objective problem
has more than three objectives, it is often termed as a “many-
objective” optimization problem, due to the additional complex-
ity of dealing with higher dimensional data. In these methods,
multiple objectives typically compete, meaning that one objec-
tive is improved at the detriment of another. Multi-objective
problems rely on population based optimizations where a set of
individuals, each representing all of the inputs to the problem, are
manipulated to produce a set output for each objective. An indi-
vidual is considered dominant if, for any given objective, there
does not exist another individual with that objective score lower
without the detriment of the other objectives. The set of domi-
nant individuals form a limit, called the Pareto front, that defines
the best possible objective evaluations from the optimization.

Object Placement Algorithms and Optimization
From chip floorplanning problems to placing components

in a satellite, the problem of placing multiple objects in a limited
space is of immense importance to many industries. The problem
is also extremely challenging to solve 1.

One of the most challenging aspects of object placement
is the prevention of overlapping objects. Object placement in
2D and 3D is highly constrained and can be expensive to com-
pute in order to prevent object intersection. Potential complex-
ities in placing objects include object geometry, rotation of ob-
jects, interference checking algorithms, and morphing compo-
nents. The number of constraints for interference checking is or-
der N2, where N is the number of objects placed by the algorithm,
and interference checking functions can be computationally ex-
pensive based on the geometry of the objects [1]. Therefore, in
order to simplify this complexity as much as possible, all objects
placed into ships in this study will be represented as 2D rectan-
gular footprints of the length and width of each object. This way,
interference checking between any two objects is simplified to
measuring an area of overlap between two rectangles. Further
details of the object generation are found in the Methods section.

1Floorplanning is an NP-hard problem
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Many heuristic algorithms [2–5] exist to pack a set of objects
that minimizes the total volume of the objects placed. A common
heuristic is the back-left packing algorithm, which is used to in-
spire the packing heuristic used later in the paper [6]. Another
heuristic, pattern search algorithms, follows a structured search
procedure to explore the feasibility and objective values of po-
tential layouts, and have been used to find optimal arrangements
of objects [7–11]. However, these heuristic algorithms focus on
a single objective, such as minimizing the volume of packing,
while satisfying constraints. In this study, there are six objec-
tives, which makes this object placement problem considerably
harder for a heuristic to solve.

Simulated annealing algorithms mimic the annealing of met-
als as a method to optimize combinatorial problems. These algo-
rithms have been used to perform multi-objective object place-
ment optimizations for 3D components and 2D chip layouts
[12, 13].

Particle swarm optimization (PSO) algorithms mimic the
flow of social movement, such as a school of fish or a flock of
birds. Each particle tends to search through the design space,
while taking social cues from the other particles to find the ”opti-
mal” location within the design space [14]. PSO algorithms have
also been used in similar bin packing optimization problems and
multi-objective optimization problems [15–18].

Genetic Algorithms (GA) mimic biological evolution by
“breeding” and “mutating” a population of inputs to an optimiza-
tion problem and then evaluating the objectives and promoting
the “fittest” individual inputs to the next generation of evalua-
tion. GA’s have been used to pack objects for both compact
packing optimization and for system performance optimization
[1]. These population based methods allow one to model multi-
ple objectives and constraints simultaneously. Examples of pack-
ing optimization include improving automobile performance by
arranging subsystems in the vehicle. [1, 19–21]. To the best of
our knowledge, GA has not been used for six objective packing
optimization. The optimizations performed in this paper utilized
the NSGA-II algorithm [22], which has also been used in liter-
ature for both ship design optimization [23], and object packing
optimization [1]. Additionally, the NSGA-II algorithm does not
required a gradient to optimize a problem. Some of objectives
laid out in the next section are non-differentiable and the inputs
to the optimization are not completely differentiable, suggesting
that NSGA-II a good optimizer for this problem.

Bilevel Optimization
At times, it can be beneficial to separate certain objectives

and evaluate them as a two stage process. For example, a system
level design can be optimized, and then a subsystem or compo-
nent can optimized given the system level design (i.e., a vehicle
engine can be optimized for fuel efficiency, then the transmission
is optimized for the given engine to further improve efficiency).

Another example is to optimize resource allocation for web ser-
vices [24]. Performing an optimization in two or more stages
is called bilevel optimization. The bilevel optimization process
is split into an upper and lower algorithm. The upper algorithm
drives the optimization, while the lower algorithm is used to re-
fine and improve the optimization. Bilevel optimization schemes
have been used with genetic algorithms in different processes and
for a variety of applications. Some bilevel processes are nested
where for each generation in the upper algorithm, the lower al-
gorithm performs an entire optimization. Other bilevel processes
are sequential, where the upper algorithm optimizes a set of ob-
jectives, and then the lower algorithm manipulates different in-
puts to either further optimize the same set of objectives as the
upper algorithm, or an entirely new set of objectives [25, 26]. In
systems design applications, the upper algorithm drives system
level design, while the lower algorithm can drive a component
level design. Systems design optimization using bilevel schemes
have been shown to find Pareto dominant systems level designs
with optimal component designs, which effectively achieves a set
of Pareto dominant all-in-one optimized designs [27].

In the case of this study, a bilevel scheme was devised to
separate and evaluate some of the objectives as a tool for initial-
ization and for sequential optimization.

Ship Design Optimization
There are many opportunities to leverage optimization meth-

ods in ship design. Prior work in ship design optimization has
ranged from single objective hull form optimization, to multi-
objective design analysis of deck and general arrangements. Hull
form optimization with particle swarm optimization and genetic
algorithms to minimize drag have been performed for all sizes of
craft, ranging from planning hulls to container ships [16, 17, 28].
Other genetic algorithms have been used to analyze design trade-
offs in ship general arrangements for space allocation, human
dynamics optimization, and classed object placement on a single
deck [23, 29–31].

This paper will focus on object placement optimization to
target the mass distribution properties of the ship with the pur-
pose of optimizing for the ship’s stability, trim, and structural
loading.

METHODS
This section details the ship design used for the study, the

objects to be placed on the ship, objective functions, the con-
straint functions, and the optimization algorithms.

Ship for this Study
The ship used in this study is a design with a prismatic hull

and four decks. The ship and deck area are detailed in Table 1.
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TABLE 1. SHIP DESIGN PARAMETERS USED FOR THE OB-
JECT PLACEMENT OPTIMIZATION

Parameter Value

Length Overall 118.1 m

Length of Bow Taper 15.0 m

Length of Stern Taper 15.0 m

Beam Overall 17.1 m

Beam at Stern 14.0 m

Design Draft 4.3 m

Depth 10.0 m

Number of Decks 4

Area of the Waterplane 1860.5 m2

Submerged Volume 8000.2 m3

Displacement 8203 tons

The volume displaced by the ship in saltwater, 8000.2 m2, trans-
lates to a displacement of 8203 tons. Assuming that the set of
objects to be placed into this hull form represents the entire ship,
note that the sum of the weights of the 81 objects described in the
next section is 8203 tons, so that this ship satisfies Archimede’s
principle of buoynacy [32]. Additionally, the area of the water-
plane of this ship design is equal to the deck area allowed for
object placement. This assumes that the weight and volume of
the objects placed into ship incorporate the structure of the ship
into their placement. In order to maintain the simplicity of the
design for this problem, the waterplane of each deck is identical.
The waterplane profile of this ship is a triangular bow, a rectan-
gular mid-body, and a trapezoidal stern taper. A plan view of a
deck is shown in Figure 1.

Object Generation
Eighty one objects were generated for the optimization algo-

rithm to place into the ship. The number of objects were selected
to provide computational complexity, so to provide a large num-
ber of design variables to manipulate and an exponentially large
number of constraints to satisfy. Further, the sizing of the objects
was selected to be approximately 50% of the total deck space
available, and limiting the largest dimension to allow two ob-
jects to be placed adjacently across the beam of the vessel. Each
of these objects has a specified length, width, VCG, and weight.
For each object, each of these four parameters could be assigned
one of three values. Eighty one objects were chosen such that
every combination of length, width, VCG, and weight is seen

TABLE 2. POSSIBLE PARAMETER VALUES FOR OBJECT GEN-
ERATION

Parameter Low Value Med. Value High Value

Length 2.82 m 5.64 m 8.46 m

Width 2.8 m 5.6 m 8.5 m

VCG 0.83 m 1.25 m 1.67 m

Weight 50.63t 101.27 t 151.91 t

among the set of objects. Table 2 details the possible values for
each parameter.

The length and width values are 1/6, 1/3, and 1/2 of 99% of
the Beam Overall. The VCG values are 1/6, 1/3, and 1/2 of the
height between decks. The weight values sum to the displace-
ment of the ship, and are scaled such that the ratio of lightest to
medium to heaviest objects is 1:2:3. While the set of objects does
not fully represent a real set of objects to be placed into a real
ship, this set provides a challenging and diverse set of objects for
the optimization algorithms to manipulate to minimize the objec-
tive functions. In this instance, the objects represent static loads
on a ship. They do not represent objects that might move or have
variable weight during a ship’s voyage(such as food stores, water
storage, fuel). Future work in object placement of non-static ob-
jects will explore these instances for ship design analysis. Future
work will also consider object placement of specialized objects,
such as machinery, tanks, landing pads, etc. and will consider
relevant constraints for these objects. Different ship placement
applications may have other requirements (such as the number
of objects to be placed, number of decks, and mass of each ob-
ject), we want to emphasize that these choices are used to demon-
strate the effectiveness of different optimization algorithms. Our
tests have shown that the results generalize if other problem re-
quirements are used too. Future work will tie our methods to
measurements and requirements from real-world ships.

Objective Functions
The six objective functions used in this study provide repre-

sentative considerations of object placement in a ship. The fol-
lowing subsections detail the six objectives.

Vertical Center of Gravity The vertical center of grav-
ity (VCG) objective seeks to minimize the height of the vertical
center of gravity of all of the objects combined. On a ship, the
VCG is critical to ensure the upright stability of the vessel. The
calculation of the VCG is shown in Equation 1:

F1 =
∑

N
i=1 Weighti ∗VCGi

∆
(1)
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FIGURE 1. PLAN VIEW OF THE SHIP DECK SPACE.

where ∆ is the ship displacement, and VCGi is the object’s
VCG plus the height of the deck it is sitting on.

Deck equalization The deck equalization objective
seeks to equalize the sum of the footprint areas of the objects
in each deck. Equalizing the placement of objects across mul-
tiple decks ensures that artificial bottlenecks for personnel, ma-
terial, or energy are limited in a real ship at sea. This objective
will not directly prevent bottlenecks in and of itself, but will cre-
ate an initial starting point for placement analysis [23, 29, 30].
This objective also prevents placing all objects as low as possible
for the VCG objective. This target is minimized using the sum
of the absolute difference between the foot print area of the ob-
jects in each deck and an even split of the objects between each
deck. The deck equalization objective is defined in Equation 2
and Equation 3.

UtilDeck j = |
n j

∑
i=1

li ∗wi −
∑

N
i=1 li ∗wi

M
| (2)

F2 =
∑

M
j=1 UtilDeck j

∑
N
i=1 li ∗wi

(3)

where n j is the number of objects in Deck j and li and wi are the
length and width of each object.

Transverse and Longitudinal Centers of Gravity
The Transverse and Longitudinal Centers of Gravity (YCG and
LCG, respectively) affect how the ship is heeled and trimmed.

The target YCG of the ship is to center the weight on the center-
line of the ship, or Y = 0 for this problem. The target LCG for the
ship is to center the weight at the longitudinal center of buoyancy
(LCB) of the ship. Equation 4 and Equation 5 show the objective
functions for YCG and LCG, where the center of gravity of each
object is the geometric center of its footprint:

F3 = |∑
N
i=1 weighti ∗ (Yi +

1
2 wi)

∑
N
i=1 weighti

| (4)

F4 = |∑
N
i=1 weighti ∗ (Xi +

1
2 li)

∑
N
i=1 weighti

−LCB| (5)

Longitudinal Bending Moment The maximum longi-
tudinal bending moment is minimized by matching the longi-
tudinal weight distribution of the objects with the longitudinal
distribution of hydrostatic force by the ship’s hull. The purpose
of minimizing the maximum longitudinal bending moment is to
reduce the loading on the structure of the ship, leading to the
potential to reduce the weight of the structure of the ship [33].
Equation 6, Equation 7, Equation 8, and 9 detail the process of
calculating the distributed load, vertical sheer force, and bending
moment on the ship’s structure and treating the ship as a simple
beam:

Dist.Load = f (x) = Sec.Weight(x)−Sec.Area(x)∗ρ ∗g (6)

VerticalSheer(x) =V (x) =
∫ LOA

0
f (x)dx (7)
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BendingMoment(x) =
∫ LOA

0
V (x)dx (8)

F5 = max(|BendingMoment(x)|) (9)

where the Sectional Weight is the weight per unit length at a
given X location along the ship’s length, and the Sectional Area
is the cross sectional area of the submerged portion of the ship at
a given X location.

Bounding Box The bounding box objective minimizes
the area of a rectangle in the X-Y plane that encompasses all of
the objects. This can allow free space near the limits of the deck
space to allow the hull morph in potential future design optimiza-
tions. The bounding box is calculated by finding the extreme
forward-most, aft-most, port-most, and starboard-most protru-
sions (X f wd ,Xa f t ,Yport ,andYstbd , respectively) from the objects
and computes the area of the bounding box with Equation 10:

F6 = (X f wd −Xa f t)∗ (Ystbd −Yport) (10)

Constraint Functions
The following subsection details the four types of constraints

used in optimization algorithms. The stability constraint, the
protrusion constraints, and the intersection constraints are used
in the AiO optimization scheme. A fourth type of constraint,
the Deck Utilization Constraint, is used in the upper level al-
gorithm for the bilevel optimization scheme along with the GM
constraint. The protrusion and intersection constraints are used
in the lower algorithm in the bilevel optimization scheme.

Stability Constraint The stability constraint ensures
that a design produces a ship that is hydrostatically stable (pos-
itive GM). The constraint is satisfied if the height of the meta-
center is greater than the VCG of the objects placed in the ship,
meaning the GM is positive. Equation 11 rearranges this condi-
tion as an inequality:

0 ≥VCG− (VCB+BMt) (11)

Protrusion Constraints The protrusion constraints are
a set of constraints to ensure that no object intersects the limits
of the hull. There are five protrusion constraints for each ob-
ject, for a total of 405 protrusion constraints for the 81 objects
in a design. One protrusion constraint ensures that the X posi-
tion of an object is within the limits of the hull, while the other
four constraints ensure that the corners of each object do not ex-
ceed the bounds of the hull given the y position and x position.

Equation 12 checks the X position of the object. Equations 13-16
check the Y position of the object. Similar constraints have also
be defined in prior work [23].

0 ≥ Xi + li −LOA (12)

0 ≥−Beam(Xi)

2
−Yi (13)

0 ≥ Yi +wi −
Beam(Xi)

2
(14)

0 ≥−Beam(Xi + li)
2

−Yi (15)

0 ≥ Yi +wi −
Beam(Xi + li)

2
(16)

Intersection Constraints The intersection constraints
check the area of intersection of two objects. For the 81 ob-
jects, there are 3,240 unique object intersections to check. Equa-
tions 17-19 detail the intersection constraints for two objects. We
adopted the intersection constraints from prior work [23].

Pxi j =(Xi+ li−X j)∗(Xi−X j− l j)−|(Xi+ li−X j)∗(Xi−X j− l j)|
(17)

Pyi j =(Yi+wi−Yj)∗(Yi−Yj−w j)−|(Yi+wi−Yj)∗(Yi−Yj−w j)|
(18)

0 ≥ Pxi j ∗Pyi j (19)

In situations where objects i and j are assigned to different decks,
the intersection constraint value is returned as zero since their
their deck assignment supersedes their X-Y position intersection.

Deck Utilization Constraint The deck utilization
constraint ensures that no individual deck is overloaded with
objects during the upper algorithm phase of the bilevel opti-
mization scheme. There are M = 4 deck utilization constraints.
Equation 20 details the constraint calculation for a set of n
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objects in on deck j:

0 ≥
n j

∑
i=1

(li ∗wi)−0.75∗Areadeck j (20)

The limit of 75% of the total deck space was chosen to avoid
potential limits on the true capacity of the deck space due to the
bow and stern tapers due to the rectangular shape of the objects
and the limits on object rotation. Further, this allows the objects
to be packed onto the deck using the initialization heuristic de-
scribed in the next section. Note that other limits can also be
selected based on the requirements in different scenarios. This
choice is not expected to alter any of our findings, as it only
makes the problem more or less constrained for each algorithm.

Individual Design and Heuristic Initialization

An individual design is represented by 81 objects × 7 pa-
rameters = 567 values. For each object, the seven values needed
to evaluate its placement are the X position, the Y position, the
deck assignment, length (x-direction), width (y direction), the
weight, and the VCG of each object. The genetic algorithm, how-
ever, can manipulate 4 parameters: X position, Y position, deck
assignment, and rotation of each object. The X and Y positions
of each object are defined by the forward-port side corner of each
object. The deck assignment is an integer value corresponding to
index of the deck, where index = 0 is the bottom-most deck. The
rotation of each object is a binary value indicating a 0◦ or a 90◦

rotation of the object. This value swaps the length and width
values for any object that is rotated 90◦.

Heuristic Initialization for Individual Designs
Given the high number of constraints in this problem, utilizing a
heuristic to generate an individual design will improve the opti-
mization algorithm’s ability to optimize instead of just focusing
on searching for feasible designs. An efficient heuristic modeled
after the back-left 2D packing algorithm [6] was devised to as-
sign objects to different decks, pack them without any constraint
violations, and spread them longitudinally to allow for better
initial evaluation of the LCG and Bending Moment Objectives.
The Heuristic Individual initialization follows this algorithm:

Step Operation
1 Generate a random sequence of the N objects to be placed.
2 Randomly rotate the N objects either 0◦ or 90◦ with 50%

probability for each.
3 For each object, i in the sequence, of the N objects:
4 - Assign a deck to an object. Deck = imoduloM or with

a prescribed deck assignment from the upper algorithm of
the bilevel scheme.

5 - For each deck, the starting drop position is the front of
the mid-body on the port edge of the deck.

6 - Place an object at the drop position for that object’s deck
7 - The drop position for each deck is the aft, port corner of

the previous object placed on a particular deck.
8 - If the drop point results in an object protruding from the

hull, then reset the drop point for that deck to be the front
of the mid-body and y = starboard-most protrusion of ob-
jects on that deck

9 Repeat Steps 4 through 8 for all N Objects

This heuristic initializes an individual ship design to avoid con-
straint violations, places an approximately equal number of
objects on each deck, spreads them longitudinally first to achieve
a better initialization for F4 and F5. While this heuristic is not
meant to optimally pack the objects such as other 2D packing
heuristics, it is used to generate a population of individuals that
avoids violating any of the 3646+ constraints in this problem,
allowing the optimization algorithm to focus on optimizing
rather than reducing constraint violations.

Optimization Method
This section details the two different optimization methods

used to produce the results section of this paper.

Six-Objective All in One Optimization The six-
objective, all in one optimization (AiO) scheme leverages the
standard NSGA-II algorithm from the Pymoo package for the
Python programming language [34]. All six objectives and the
GM, protrusion, and intersection constraints were all evaluated
for each individual in each generation. For the purposes of
this paper, the crossover and mutation parameters were left in
the default state. The algorithm manipulates the X-position, Y-
position, rotation, and deck assignment of all N objects to min-
imize the six objectives. Two different optimizations were per-
formed using the AiO scheme. The first optimization had a popu-
lation of 500 ship designs seeded using a completely random ini-
tialization without regard for any of the constraints. The second
optimization had a population of 500 ship designs seeded using
the heuristic initialization described in the previous section, hav-
ing zero constraint violations across the initial population. Both
of these optimizations were performed for 10,000 generations.

7 Copyright © 2022 by ASME



Bilevel Optimization The bilevel optimization scheme
used in this paper separates the evaluation of the six objectives
into a two-stage optimization with an upper and a lower algo-
rithm. The bilevel scheme devised for this paper is detailed in
this section.

The upper algorithm optimizes the VCG and deck equaliza-
tion objectives by manipulating the deck assignment of the N ob-
jects. The GM constraint and the deck utilization constraints con-
strain the upper algorithm. These two objectives were selected
because their only design variable is the deck assignment and
that these affect the bulk of the constraint evaluations, but are not
constrained by them. The X-position, Y-position, and rotation of
the 81 objects are strongly affected by the constraint evaluations,
yet do not affect the VCG or deck equalization objectives, there-
fore we can manipulate the deck assignment freely with limited
constraints and can optimize for these objectives in the upper al-
gorithm. The upper algorithm is initialized with a population
of 500 design arrangements using the deck assignment heuris-
tic from Step 4 of the heuristic initialization process. After 500
generations, an optimal individual is selected as the individual
having the minimum VCG from the set of designs with the ten
most-minimal values of deck equalization. Through experimen-
tation, the difference in the minimal values of deck equalization
was found to be the difference between one object placement
difference in any given deck. Choosing the design with the mini-
mum VCG from this set of design arrangements ensures that the
population of design arrangements is seeded with objects that
have an optimal deck assignment for the first two objectives. It
is important to note that the deck assignment chosen by this pro-
cess is not necessarily dominant, but is certainly well rounded as
having both a low VCG and equally utilized decks. The advan-
tage of seeding the lower algorithm with equalized decks is that
each deck has a similar amount of free space to manipulate the
x-position, y-position, and rotation to gain overall improvements
in the remaining four objectives in the lower algorithm.

The lower algorithm is a second optimization that is seeded
by the deck assignments determined by the upper algorithm. Fol-
lowing the heuristic initialization process, the objects are placed
into their prescribed deck assignments. Two different lower al-
gorithms were used to produce results. The first lower algo-
rithm repeated the 6-objective, AiO optimization from the pre-
vious section, but with every individual seeded with the same
deck assignment for each object as determined by the upper al-
gorithm, and otherwise following the heuristic initialization pro-
cess. The second method also initialized the population the same
way, but limited NSGA-II to only manipulating the X-position,
Y-position, and rotation of each object. Additionally, instead of
evaluating all six objectives, this lower algorithm only evaluated
the remaining four objectives as the VCG and deck equalization
objectives cannot change without the manipulation of the deck
assignment variables. Further, only the protrusion constraints
and intersection constraints were evaluated in this lower algo-

FIGURE 2. TWO DIMENSIONAL VISUALIZATION OF HY-
PERVOLUME EVALUATION METRIC, DOMINANCE, AND THE
PARETO FRONT FOR A MINIMIZATION PROBLEM

rithm. Both methods for the lower algorithm were evaluated for
9,500 generations so that the total number of generations run for
the bilevel scheme was 10,000 generations.

Hypervolume Calculation A measure of a Pareto front
in multi-objective optimization problems is the hypervolume
metric, where each dominant individual acts as a vertex to an
N-dimensional prism that is positioned in relation to a reference
point [35]. N is the number of objectives in the optimization
problem and the reference point is typically the worst case sce-
nario for all the objectives [34]. Figure 2 shows a hypervolume
measurement for a two objective minimization problem. The
blue stars represent non-dominant individuals, while the red rep-
resents dominant individuals. In order to increase the hypervol-
ume of a population, the optimization algorithm tries to further
minimize the objectives and increase the number of dominant in-
dividuals to increase the resolution of the Pareto front. Figure 2
shows an example of two objectives and a 2-D hypervolume.

We use hypervolume to measure a six objective optimiza-
tion with a 6-D hypervolume measurement. The optimization
schemes are evaluated using the hypervolume indicator in the
pymoo package [34]. The hypervolume of a population indicates
a combined measure of the spread of the dominating individuals
and the degree to which the objectives are minimized. The hyper-
volume measurements shown in the next section were computed
using only dominant and feasible individuals in the population.
A worst case scenario for each objective was devised to act as a
reference point of the hypervolume calculation. Table 3 shows
these values for the reference point. Since all objectives could
tend to zero without the presence of constraints, the objective
values were scaled between zero and one, with one being the
worst case scenario value for a given objective. This equalizes
the prominence of each objective in the hypervolume calculation.
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TABLE 3. WORST CASE SCENARIOS FOR EACH OBJECTIVE
AND ITS CORRESPONDING VALUE

Objective Worst Case Scenario Value

1 All objects are placed on the top
deck

10m

2 All objects are placed on one
deck

1

3 All objects are placed on the
edge of the hull

8.55m

4 All objects are placed at the
front of the ship

59m

5 All objects are placed at the
LCB

2.38∗109Nm

6 All objects are spread across the
whole deck plane

2019.51m2

RESULTS
This section reviews the results of the four different opti-

mization tests. The following subsections contain results on con-
straint violations, the hypervolume performance, and some views
of generated designs. We used the NSGA-II algorithm imple-
mentation through the pymoo package [34].

Constraint Violations

FIGURE 3. AVERAGE AND MINIMUM NUMBER OF CON-
STRAINT VIOLATIONS FOR THE RANDOMLY INITIALIZED
POPULATION DURING THE BEGINNING OF THE 6-OBJECTIVE,
AiO OPTIMIZATION. DUE TO THE HIGHLY CONSTRAINED
PROBLEM, THE ALGORITHM NEEDED MORE THAN 1000 GEN-
ERATIONS TO ACHIEVE ZERO CONSTRAINT VIOLATIONS.

The only optimization test that produced constraint viola-
tions was the AiO optimization with a randomly initialized the
population. Figure 3 shows the average number of constraint vi-
olations across the population and the minimum number of con-
straint violations seen in an individual. The graph only shows the
first 2000 generations of the optimization since the remainder of
the optimization saw zero average constraint violations across
the population.

Optimization Results
The hypervolume metric was used to evaluate the perfor-

mance of the optimization algorithms. Figure 4 the growth of
the hypervolume for all four optimization tests. The black line
shows the hypervolume for the randomly initialized AiO opti-
mization. The green line is the result of heuristically initialized,
AiO optimization. The red line is the hypervolume starting at
Generation = 500, for the Bilevel method where the lower al-
gorithm is the 4-objective optimization. Finally, the orange line
shows the hypervolume for the Bilevel method where the lower
algorithm is the AiO optimization. Table 4 shows the initial and
final hypervolume values for each optimization scheme. It is im-
portant to note that the bilevel scheme with the four objective
lower algorithm produces an 80.3% larger hypervolume than the
AiO scheme with the heuristic initialization.

TABLE 4. INITIAL AND FINAL HYPERVOLUME VALUES FOR
EACH OPTIMIZATION SCHEME. WE NOTE THAT THE BILEVEL
SCHEME ACHIEVES THE HIGHEST HYPERVOLUME WHICH
IS 80.3% LARGER THAN AN ALL-IN-ONE OPTIMIZATION
SCHEME.

Scheme Initial HV Final HV

AiO, Random Init. 0.000 0.072

AiO, Heuristic Init. 0.058 0.132

Bilevel, AiO Lower. 0.144 0.215

Bilevel, 4-Obj. Lower. 0.144 0.238

Individual Design Visualization
This subsection presents a sample of design arrangements

generated by the optimization algorithm. These designs were
generated utilizing a python script for the Rhinoceros CAD soft-
ware. The Z scale is tripled to allow visualization of the ob-
jects on all four decks. The X and Y position and the length and
width of each object is exactly scaled to the footprint of each
deck shown in gray. The height of each object is a representa-
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FIGURE 4. HYPERVOLUME OF DOMINANT AND FEASIBLE DESIGN ARRANGEMENTS VERSUS ITERATION FOR THE DIFFERENT
OPTIMIZATION SCHEMES.

tive of the object’s VCG, and the color signifies the weight of
the object. The objects weighing 50.63 tons are blue, 101.27
tons: green, and 151.91 tons: red. Figure 5a shows the opti-
mized design from the bilevel scheme with the 4-objective lower
algorithm having the minimum bounding box area of 1194.13m2.
Figure 5b the design arrangement from the same scheme having
the minimum maximum-bending moment of 2.48 ∗ 107Nm. Fi-
nally, Figure 5 shows the design arrangement from the heuristi-
cally initialized, AiO optimization scheme having the minimum
maximum-bending moment of 5.30 ∗ 107Nm. The arrangement
seen in a) was generated by arranging the objects using a back-
left, first fill heuristic [5] to place the set of objects into the ship,
filling the bottom most deck first. While this heuristic was able
to place all of the objects efficiently in the ship, this arrangement
does not utilize all of the available decks equally for the F2 ob-
jective. In addition, this arrangement does not account for the F3
or F4 objectives, or YCG and LCG. This heuristically generated
design would actually heel the ship to starboard, and trim the ship
forward. This lack of consideration of the weight and center of
gravity of each object and the aggregated set suggests that pack-
ing heuristics alone are not feasible for ship deck arrangements.
The optimized arrangements seen in b), c), and d) account for
all of the objectives, such that the ship floats with minimal heel
and trim in these packing arrangements. The arrangements seen
in b) and c) are devised from the bilevel method with the four
objective lower algorithm, notice that the objects assigned to the
decks are the same between the two figures yet they minimize
different objectives. It is interesting to note that the VCG and
deck equalization objective have competed by placing the larger

objects on higher decks as they account for a larger footprint ar-
eas, but with less weight, while placing the smaller objects on
the lower decks, fitting more weight lower on the ship. The deck
assignments for these objects seem to make sense as these two
objectives were specifically targeted in the upper algorithm. Ar-
rangements seen in Figure 5 c) and d) are the individuals with
the minimized bending moment objective for the bilevel and AiO
optimization schemes, respectively. Notice that the spread of ob-
jects resulting from the AiO optimization do not quite follow the
same “large objects sit higher” pattern seen from the bilevel op-
timization.

DISCUSSION
This section provides a discussion on the results of the four

optimizations performed for this paper. The first subsection an-
alyzes the heuristic initialization of the population. The second
subsection discusses Bilevel Optimization as a tool for popula-
tion initialization. The third subsection discusses Bilevel Opti-
mization as a tool to separate objectives and improve the opti-
mization results. The hypervolume metric is used to describe the
ability of the optimization methods to produce a set of optimal
individuals: the greater the final hypervolume, the better the op-
timization method. This Discussion will not necessarily compare
the objective function values of optimal individuals produced by
the different optimization methods. Instead, it will focus on hy-
pervolume as a general metric for both the spread and objective
function scores of individuals along the Pareto front produced by
each optimization method. The final subsection discusses pos-
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[a] [b]

[c] [d]

FIGURE 5. a) ARRANGEMENT OF A BEST LONG SIDE FIT HEURISTIC PACKING AS A COMPARISON TO THE OTHER OPTIMIZED
ARRANGEMENTS OF OBJECTS b) DESIGN ARRANGEMENT WITH MINIMUM BOUNDING BOX AREA RESULTING FROM BILEVEL
SCHEME. b) DESIGN ARRANGEMENT WITH MINIMUM MAXIMUM-BENDING MOMENT RESULTING FROM BILEVEL SCHEME. c)
DESIGN ARRANGEMENT WITH MINIMUM MAXIMUM-BENDING MOMENT RESULTING FROM 6-OBJECTIVE, AiO SCHEME.

sible future implementation of a bilevel optimization scheme to
sequence ship design.

Heuristic Initialization of Population
The optimizations performed for this paper further confirm

that the initialization of a population is imperative to producing
a larger hypervolume of optimal and feasible designs. As seen in
Figure 4 and Figure 3, the randomly initialized population did not
produce any dominant and feasible individuals for the first 1/8th

of the generations, and required the remainder of the generations
to produce a hypervolume that was close to the hypervolume pro-
duced by the heuristically initialized population at the start of the
optimization process. The heuristic initialization of the AiO op-
timization scheme allowed the optimization to produce an 83.3%
larger hypervolume than the randomly initialized AiO optimiza-
tion after 10,000 generations, as seen in Table 4. This heuristic

intialization algorithm is computationally efficient, placing ob-
jects in order N computations; however, it does so without a
guarantee that all objects will be placed without any constraint
violations due to the presence of multiple decks. In future work,
we will test other existing heuristic algorithms that guarantee ob-
ject placement to our application with the requirement of multi-
ple decks.

Bilevel Optimization to Initialize a Population
The results also indicate that bilevel optimization is an ef-

fective tool to seed and heuristically initialize a population. The
upper algorithm of the bilevel scheme only manipulated the deck
assignment of the 81 objects for 500 generations, then utilized
an optimal deck assignment arrangement with the heuristic ob-
ject placement process to initialize a population for the AiO op-
timization scheme, which ran for the remaining 9,500 genera-
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tions. The starting hypervolume for this bilevel optimization was
greater than the final hypervolume of the 10,000 generation op-
timization of the AiO scheme. As seen in Table 4, utilizing the
bilevel scheme to initialize the AiO optimization resulted in a
62.9% increase the final hypervolume over the heuristic initial-
ization of the AiO problem. The initial optimization from the
upper algorithm pushed the dominant set of individuals much
more quickly than trying to optimize all of the objectives simul-
taneously. Additionally, this upper optimization was performed
with less computational effort than the AiO scheme since the op-
timization algorithm only checked for five constraints, evaluated
two objective functions, and manipulated 81 variables per indi-
vidual, instead of the 3,646 constraints, six objectives, and 324
variables per individual. Further, after the bilevel initialization,
the AiO optimization also continued to increase the hypervolume
for the remaining 9,500 generations, confirming that there were
still opportunities to further optimize these design arrangements
after the population initialization.

Bilevel Optimization to Separate Objectives
Bilevel Optimization is shown to be an effective tool for

separating objectives to evaluate many objective problems in se-
quence rather than in parallel. This claim is only true where
objectives, constraints, and design variables can be completely
decoupled into multiple sets. In this paper, the VCG objective,
deck equalization objective, and GM constraint are solely reliant
on the deck assignment of the objects, allowing these to be op-
timized initially and then held constant while the remaining four
objectives, 3,645 constraints, and design variables are evaluated
and manipulated in the lower algorithm. As seen in Table 4, the
sequencing of objectives in a bilevel scheme improved the fi-
nal hypervolume by 80.3% over the heuristically initialized AiO
problem. The benefit to this optimization scheme is it reduces
the number of decisions NSGA-II makes in crossover, mutation,
design evaluation, allowing for greater design space exploration
within the confines of predetermined deck assignment arrange-
ments. This is evident in Figure 4, where the bilevel scheme
with the 4 objective lower algorithm produces a greater hypervol-
ume at the end of 10,000 generations than any other optimization
scheme proposed in this paper.

Implications of Bilevel Optimization for Ship and Sys-
tems Design

Sequencing of decoupled objectives using a bilevel opti-
mization scheme is shown to improve the quality of the hypervol-
ume of the Pareto dominant set of individuals. In this instance,
the deck assignment of a set of objects was optimized for deck
utilization and VCG, then the positioning of the objects was opti-
mized for ideal weight and spatial distribution. This optimization
scheme accounts for the physical implications of arranging ob-
jects. Other ship arrangement papers, such as those authored by

Wang, Parsons, and Daniels account human factors and the spa-
tial relations between classed objects [23, 29, 30]. Strategically
sequencing the optimization for object placement with a bilevel
scheme can allow the optimization of a ship on a systems level
and subsystems level. In this case, the optimization algorithm
will not need to evaluate the complexity of a whole ship design
for every individual, or slow optimization progress by leverag-
ing a limited population of designs across a large number of ob-
jectives to map a Pareto front. Figure 5c shows the optimized
arrangement of the objects that has the minimum longitudinal
bending moment applied to a structure that would support this
ship. This design was generated using the bilevel scheme, where
the deck assignments were preserved after the upper algorithm.
Decoupling objectives allowed this individual design to have a
low center of gravity, equalized deck usage, and a weight distri-
bution that will reduce the structural needs of this vessel. Similar
decoupling of design variables and objectives can design the bow
and stern of a ship, as seen in Feng et al.’s recent Paper [28].

More broadly speaking, bilevel schemes can be used to se-
quence the optimization of systems on the system, subsystem,
and component level. Following the model used in this paper, a
system level design can be optimized in an upper algorithm, such
as the positioning and sizing of components. Then the lower al-
gorithm will optimize the components while constraining the op-
timization based on the system level optimization, to further im-
prove the system level objective. Potential applications of bilevel
optimization for sequencing systems design include automobiles,
mobile electronics, medical devices, and factory/workstation de-
sign.

CONCLUSION
This paper presented a novel method to solve a many-

objective, combinatorial optimization problem for bin packing
pertaining to the arrangement of objects across multiple decks
of a ship. This problem was heavily constrained to ensure that
objects placed do not intersect each other and do not protrude
from the ship. Additionally, a heuristic for packing items into
a ship was devised following a pattern similar to the back-left
2-D packing algorithm, but to spread the objects across multiple
decks. Four different optimization methods were tested using the
NSGA-II optimization algorithm. The results showed that popu-
lation initialization to prevent infeasible designs is imperative to
producing a wide variety of feasible designs for further evalua-
tion after the optimization is completed. Further, it was shown
that when some of the objective functions and design variables
can be decoupled from the remainder of the problem, a bilevel
optimization scheme is effective at population initialization, pro-
ducing an initial population with a larger hypervolume than de-
signs produced from optimization initialized with the heuristic
initialization alone. Further, leveraging the same bilevel scheme
to optimize the six objectives as a two stage sequence to evalu-
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ate two objectives, then the remaining four objectives produces a
larger hypervolume at the end of the optimization. This improved
performance is likely due to the simplification of the optimiza-
tion problem. This allows the crossover and mutation operators
to produce better results when focusing on fewer objectives than
all six objectives evaluated in parallel.

Future work in this project space includes further expansion
of bilevel optimization schemes to produce optimized deck ar-
rangements that can be sequenced with structural and/or hull de-
sign. Such potential opportunities include bin packing optimiza-
tion for machinery and/or outfitting to produce initial stage de-
signs work includes investigation into systems optimization uti-
lizing a bilevel scheme to sequence the optimization of different
objectives for a wider variety of industries and use cases.
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