
Untrained and Unmatched: Fast and Accurate Zero-Training
Classification for Tabular Engineering Data

Preprint, compiledMay 4, 2025

Cyril Picard1 and Faez Ahmed1

1Department of Mechanical Engineering, Massachusetts Institute of Technology

Abstract
In engineering design, navigating complex decision-making landscapes demands a thorough exploration of
the design, performance, and constraint spaces, often impeded by resource-intensive simulations. Data-driven
methods can mitigate this challenge by harnessing historical data to delineate feasible domains, accelerate
optimization, or evaluate designs. However, the implementation of these methods usually demands machine-
learning expertise and multiple trials to choose the right method and hyperparameters. This makes them less
accessible for numerous engineering situations. Additionally, there is an inherent trade-off between training
speed and accuracy, with faster methods sometimes compromising precision. In our paper, we demonstrate
that a recently released general-purpose transformer-based classification model, TabPFN, is both fast and ac-
curate. Notably, it requires no dataset-specific training to assess new tabular data. TabPFN is a Prior-Data
Fitted Network, which undergoes a one-time offline training across a broad spectrum of synthetic datasets
and performs in-context learning. We evaluated TabPFN’s efficacy across eight engineering design classifica-
tion problems, contrasting it with seven other algorithms, including a state-of-the-art AutoML method. For
these classification challenges, TabPFN consistently outperforms in speed and accuracy. It is also the most
data-efficient and provides the added advantage of being differentiable and giving uncertainty estimates. Our
findings advocate for the potential of pre-trained models that learn from synthetic data and require no domain-
specific tuning to make data-driven engineering design accessible to a broader community and open ways to
efficient general-purpose models valid across applications. Furthermore, we share a benchmark problem set
for evaluating new classification algorithms in engineering design and make our code publicly available at
https://decode.mit.edu.com/projects/pfns4ed/.

1 Introduction

Engineering design is the systematic process of devising solu-
tions to complex problems, often involving the creation of prod-
ucts, systems, or structures through technical specifications and
detailed planning. Historically, conventional methods and de-
signer intuition led this endeavor. Yet, today’s era has brought
a new, advanced approach: Data-Driven Engineering Design.
By marrying empirical data with advanced analytics, design
decisions are optimized based on real-world data and sophisti-
cated computational evaluations. This transition to data-centric
methods, though promising, isn’t without its hurdles. Evalua-
tions, be they complex experiments or simulations, are some-
times bypassed due to their time-consuming nature, leading to
potentially incomplete decisions. Conversely, fast evaluations
are often inaccurate. In this landscape, we evaluate if TabPFN,
a general-purpose prior-fitted-data classification model devel-
oped by Hollmann et al. [1] can be effective in engineering de-
sign. Our findings across eight engineering design problems
demonstrate that on average, TabPFN is the fastest and most
accurate classification model for tabular data-based classifica-
tion problems. Below we highlight the motivation behind this
work.

Importance of Early Evaluation The design process often
requires synthesizing large amounts of information to make
critical decisions. In the early stages, engineers often want to
explore the design space to get an understanding of the con-
straints set by the requirements (the feasible domain) and the

performance landscape. However, such evaluations can require
complex experiments or numerical simulations and may be too
time-consuming to be of practical use. As a consequence, engi-
neers too often drop this step and may have to make decisions
with partial information.

Potential of Data-Driven Methods What if data from previ-
ous experiments or past designs were available? An engineer
could apply data-driven methods to identify existing patterns
in past data and use the resulting model to identify the bound-
aries of the valid regions of the design space [2, 3], speed-up
optimization by pre-filtering solutions [4], and evaluate design
robustness [5–7]. However, current models need to be trained
specifically for each application and no clear guidelines exist
for selecting the appropriate data-driven method.

In the absence of such guidance, many practitioners find them-
selves ensnared in a laborious cycle of hit-and-trial or, worse,
settling for inadequate model choices that don’t optimally
leverage available data. For each dataset and in adherence to
best practices [8], the typical process demands preprocessing
the dataset, selecting a data-driven method for the specific ap-
plication, running a hyperparameter optimization (HPO) to dis-
cover the best parameters for the chosen method, training the
model with these parameters, and lastly, evaluating its capabil-
ity in predicting the quality of candidate designs.

Challenges in Current Data-Driven Approaches Embark-
ing on the data-driven journey demands both an intricate knowl-

https://decode.mit.edu.com/projects/pfns4ed/


Preprint – Untrained and Unmatched: Fast and Accurate Zero-Training Classification for Tabular Engineering Data 2

edge of machine learning and a solid grasp of the specific en-
gineering challenge. This dual expertise is crucial for effective
model selection and the configuration of the HPO. It can be
very time-consuming and represent a challenge, especially if
new data points are added iteratively, e.g., in an active learn-
ing scheme to identify the boundaries of the feasible space [9].
Further, without a large and diverse dataset, training a classical
ML model from scratch can lead to overfitting [10], where the
model learns to perform well on the training data but poorly
on new, unseen data. In engineering design, small datasets are
unfortunately a common situation [11].

Previous Solutions and Their Shortcomings Different at-
tempts have been made in past years to tackle part of these
issues. Ensembling approaches, which combine several data-
driven methods or hyperparameter sets, reduce the dependence
on choosing a single set of methods and hyperparameters valid
across the whole domain (e.g., XGBoost [12]).

Another popular solution is automated machine learning (Au-
toML). Tools like AutoGluon [13] are examples of this, turning
the whole process into one simple algorithm. They handle ev-
erything from cleaning up data to picking the right methods and
then combining the results. AutoML tools have shown great
results in regression and classification tasks [13]. In engineer-
ing design, they also did well in tasks like designing bicycle
frames [14]. While they often give accurate results and make
it easier for more people to use advanced methods, they can be
very slow to train and need to be trained again for each new
dataset. Others have investigated the use of data-augmentation
techniques to alleviate the challenges of small datasets and have
shown that their models trained on “pseudo” or “fake” data
could have increased performance [10, 15].

Potential of Pre-trained Transformers Imagine if we didn’t
have to train a model for every specific dataset but instead had
a general-purpose model that knows a lot and can quickly adapt
to new tasks without any new training. This isn’t a far-fetched
idea. In the world of natural language processing, pre-trained
models, in the form of large language models (LLMs), have al-
ready shown they can do this. For instance, the Text-to-Text
Transfer Transformer (T5) learns various text tasks, like trans-
lating languages or summarizing articles, and then uses this
knowledge on new text [16].

Most approaches use the transformer architecture [17], a large
neural network with an attention mechanism that changes the
importance of the various parts of the input based on the in-
put (called context) itself. Transformers are hard to train due
to their size (millions of parameters) and data requirements
(millions–trillions of data points). Once trained, however, they
can be fine-tuned with much less effort (e.g., LoRA [18]) and
some are even ready for use out-of-the-box and can be eas-
ily integrated into applications for quick deployment. Indeed,
their architecture enables in-context learning: Show them a few
examples of a new task at inference time—a sequence of in-
put, expected output—and let them subsequently apply it [19].
Many readers may have used pre-trained general-purpose mod-
els and observed in-context learning in action when using tools
like ChatGPT, Bard, or Claude. These models and tools have
shown immense promise in language and vision tasks.

Potential of PFNs for Engineering Design In contrast, in
engineering design, we often deal with data arranged in ta-
bles or matrices, where each row could represent a unique de-
sign and columns might indicate different parameters or perfor-
mance metrics. Historically, deep learning hasn’t been the best
fit for such tabular data, especially when compared to other ma-
chine learning techniques [20]. However, the trend might be
changing. Recent studies have been exploring how transformer
models can be effectively applied to tabular data [1, 21–24].

In particular, prior-data fitted networks (PFNs) learn an al-
gorithm by being trained on millions of dynamically gener-
ated synthetic datasets sampled from a prior inspired by struc-
tural causal models. They can then be applied without re-
training to new datasets at inference time, and make fast and
well-calibrated probabilistic predictions in a single forward
pass. They can learn to accurately approximate Bayesian infer-
ence [22] and perform classification on various machine learn-
ing (ML) benchmark [1]. Considering they are specifically
geared towards smaller datasets, PFNs have the potential to rev-
olutionize data-driven tasks in engineering design. However,
given the stochastic nature of their training data, it remains to
be demonstrated if their learned knowledge can be effectively
transferred to datasets specific to the field. In this paper, we
show that on average, they are not only the fastest and most
accurate method across eight different engineering problems,
but also provide two desirable and valuable properties: differ-
entiable and well-calibrated uncertainty estimations.

Goal and contributions The core of our study centers on
evaluating if the recently published PFN for classification,
named TabPFN [1], which has been trained only on synthetic
data and has never seen airfoils, beams, or bicycle frames, can
still be effective on such engineering design problems. Our ob-
jective is to illustrate that general-purpose models that negate
the need for training or fine-tuning on new datasets, can be
effective and even superior to leading-edge AutoML and tra-
ditional algorithms in terms of speed, accuracy, and data effi-
ciency, especially in the domain of engineering design. This
would mark a significant departure from conventional data-
driven approaches, since such models can be readily used out-
of-the-box, and do not require specialized knowledge or large
datasets for training. Specifically, the contributions are:

1. Enhanced Benchmarking Tools: We introduce a col-
lection of eight engineering design datasets on airfoils,
bicycles, solar heat exchangers, trusses, and welded
beams, tailored for benchmarking classification algo-
rithms.

2. Accuracy and Speed Comparisons: By performing a
thorough comparative study of TabPFN’s efficiency
and speed against common classification algorithms
and state-of-the-art AutoML methods using these
datasets, we show that TabPFN is the highest-ranked
method.

3. Efficiency of Data Utilization: We provide a metric
to compare classification methods on how efficiently
they use available data and show that TabPFN is most
efficient in using data.

4. Insight into PFNs’ Promise: Beyond just quantitative
results, we engage in a reflective discourse on the la-



Preprint – Untrained and Unmatched: Fast and Accurate Zero-Training Classification for Tabular Engineering Data 3

tent potential of PFNs, training on synthetic data and
in-context learning within the engineering design do-
main. We discuss important factors beyond speed and
accuracy for selecting classification models, such as
interpretability, updatability, and uncertainty quantifi-
cation.

5. Open-Source Code and Dataset: In the spirit
of fostering collaborative advancement, we are
also releasing our eight datasets and the as-
sociated codebase at https://decode.mit.edu/
projects/pfns4ed/. This will act as a springboard
for other researchers to delve deeper, utilize, and fur-
ther the research in engineering classification.

Outline A general background on the use of classification in
engineering design and classification algorithms is provided in
Section 2. Section 3 details the considered algorithms and the
methodology applied to compare the algorithms. The results
of the performance-speed comparison and the data-efficiency
analysis are presented in Section 4. Finally, Section 5, dis-
cusses the impact of the strong results of TabPFN on design,
the limitations, and the outlook for PFNs at large.

2 Background

In this section, we formally introduce the classification task,
and provide the background into classical machine-learning
classification methods. We further highlight the differences
with PFNs, which are summarized in Fig. 1.

2.1 Classification and Its Use in Engineering Design

In general terms, classification is the task of identifying which
class c from a predefined set of classes C a candidate design
x belongs to. The task is called binary classification when
there are two classes, often denoted as 0 (negative) and 1 (pos-
itive). With three or more classes, the problem is referred to
as multi-class classification, where classes may or may not
have an ordinal relation. In engineering design, the classes
can represent a wide array of concepts from bike categories
(road, MTB, gravel,...) [25], to product ratings [26], to per-
formance and constraint-satisfaction indicators (valid or invalid
design) [3, 5, 6]. The latter, in particular, is common in engi-
neering as it allows to easily map regions of interest for design.
It can be mathematically defined for the binary case by:

cx =

{
1, if f (x) ≤ fthresh and g(x) ≤ 0
0, otherwise

(1)

Where f (x) represents a performance metric that should be
lower than a threshold fthresh (e.g., total weight ≤ 5 kg for a bike
frame) and g(x) is a set of inequality constraints to be satisfied.
Noteworthy, multi-class classification problems are commonly
more difficult due to the increase in prediction dimensionality.

When obtaining the true class is impractical, such as when it
is derived from expensive numerical simulations or it requires
the collection of human feedback, data-driven methods can be
used as faster surrogates. Following the above definition, a fast
classifier is convenient to perform design exploration to iden-
tify regions of promising designs, speed-up optimizations, and

evaluate the robustness of designs. In some cases, the iden-
tified designs are then evaluated with the expensive functions
and they become new data points that can be added to the train-
ing dataset, and the classification model needs to be updated
iteratively.

2.2 Classical Machine-Learning Classification Methods

The use of typical machine-learning classification models gen-
erally involves a two-step process: training followed by infer-
ence. In the training step, a labeled dataset is provided. Then
a model and training approach are selected along with their pa-
rameters, called hyperparameters. Hyperparameters are param-
eters that are not learned from the data but are set by the user
before training the model. The training step results in a learned
internal problem representation, known as “the model”, which
depends on the selected method. Examples include weights
and coefficients of basis functions (support vector machine),
branching rules (decision trees), or proximity trees (K-D trees
for nearest-neighbor searches). In the inference step, the repre-
sentation is frozen and used to predict the labels of unlabeled
data points.

The key challenge with this approach lies in the need to choose
the appropriate method and its hyperparameters [8]. Indeed,
each modeling method has limitations and requirements that
stem from the underlying assumptions. As a consequence, the
training step may need to be repeated multiple times to find
the best combination of model and hyperparameters for a given
task.

Without careful consideration, applying this optimization step
can rapidly lead to overfitting: A Model becomes too closely
tailored to the training data and loses its ability to make ac-
curate predictions on unseen data. To mitigate this risk, cross-
validation is used to assess the performance of ML models. The
training dataset is divided into multiple subsets, or folds, where
each fold is used as both a training set and a validation set. The
model is trained on the training set and evaluated on the valida-
tion set. This process is repeated multiple times, with different
folds used as the validation set each time. The average model
performance across folds is then used to guide the hyperparam-
eter optimization.

To go beyond the modeling limitations of a single model type,
ensembles can be built. Ensembles combine multiple models,
often of different types or trained on different subsets of the
data, to make predictions. By aggregating the predictions of
individual models, ensembles can often achieve better perfor-
mance than any single model [27]. While effective, all these
steps come at a large computational expense, especially during
the training step. As such, the process needs to be repeated for
each new dataset.

2.3 Prior-data Fitted Networks

Contrary to classical methods, PFNs are meta-learners: They
are trained to learn an “algorithm” or general task and are thus
not specific to a given problem and dataset [24]. Considering
for example TabPFN [1], it has been trained to perform data-
driven classification. TabPFN is thus a general-purpose classi-
fication algorithm. To apply it to a new classification problem,

https://decode.mit.edu/projects/pfns4ed/
https://decode.mit.edu/projects/pfns4ed/


Preprint – Untrained and Unmatched: Fast and Accurate Zero-Training Classification for Tabular Engineering Data 4

Train Model

Labeled Data
Step 1: Training a problem-specific model

Step 2: Inference using problem-specific model

Unlabeled Data Predictions

Classical
Model

Classical
Model

Frozen

Prior-Data
Fitted Network

Frozen

Step 1: Inference without problem-specific training

∪

Labeled Data

Unlabeled Data

Predictions

No training required to use the prior-data fitted network.

Classical Machine Learning Model Prior-Data Fitted Network 

Figure 1: The conceptual difference between classical classification models and prior-data fitted networks, showing how PFNs
do not require a training step, leading to fast predictions.

Minimze
Cross-Entropy Loss

9M Synthetic Datasets

Multi-Head Attention

Add&Norm

Feed Forward

Add&Norm

Transformer Layer (12x)

Input
Embedding

Label
Embedding

+

Labeled Data

Classification
Head

Predicted labels

Prior-Data
Fitted Network

Training Procedure of TabPFN

Masked Labels

Figure 2: Overview of the training procedure of TabPFN enabling it to learn the classification algorithm in general. At each
training step, a dataset is sampled from a pool of synthetic datasets and arbitrarily cut into a train and test. The labels from the
test set are removed and are used to calculate the cross-entropy loss used as the training metric.

both labeled samples (pairs of feature vectors and labels) and
unlabeled samples to be evaluated are passed to the model si-
multaneously. While the labeled points are similar to “training”
samples in classical methods, no training or fine-tuning is per-
formed: The samples undergo a single forward pass through
a frozen model.1 Instead, the labeled samples condition the
model through its attention mechanism to use the prior that
matches the new problem most to predict the labels of the unla-
beled samples, very much like the text prompts to LLMs con-
ditions their responses.

In terms of architecture, TabPFN [1] uses an encoder-only
transformer architecture [17] without positional encoding, see
Fig. 2. Each feature vector and label is encoded as a token,
summed together and passed to the sequence of transformer

1A frozen model is a model whose parameters, weights, and biases
are not changed.

layers. In the attention head, training samples can attend to
each other, while unlabeled samples can only attend to train-
ing samples. This attention mechanism enables conditioning
the model to new datasets at inference time. Finally, the output
of the last transformer layer is passed through a simple neural
network to output the classification probabilities.

Like LLMs that accept prompts with different numbers of
words, TabPFN does not expect the train and test sets to have a
fixed number of rows. For example, it is possible to feed it with
100 training points and ask predictions for thousands of test
points, or 2000 training points and only one test point. How-
ever, unlike LLMs where the order of the words is important,
the lack of positional encoding in TabPFN makes it invariant to
permutations of the input.

In terms of training, TabPFN needs to be trained only once
and the procedure is summarized in Fig. 2. Specifically, the



Preprint – Untrained and Unmatched: Fast and Accurate Zero-Training Classification for Tabular Engineering Data 5

available model has been trained on more than nine million di-
verse datasets, each representing a different classification task.
At each training step, a new dataset is generated by leveraging
ideas from causality and Bayesian learning. This dataset is then
arbitrarily cut into a train and test set of various lengths. The
model is then asked to predict the masked labels from the test
set. Using the real and predicted labels, a cross-entropy loss is
calculated and used to update the model to minimize this loss.

Learning a general algorithm like this works under the hypoth-
esis that the model has been trained on a diverse set of tasks
and that the application datasets resemble the prior used for
training. Indeed, TabPFN has been trained on more than nine
million diverse datasets, and can thus use its large “past experi-
ence” to make better predictions, especially for small or biased
datasets. Like a human expert, if their experience is compatible
with a new task, they will be able to blend in their past experi-
ence with new data to be better at that new task. On the con-
trary, even novices with the best learning skills are restricted
to learning from the data available for the specific task. For
a detailed mathematical understanding behind the learning of
PFNs, readers should refer to [23]. There are however limita-
tions. The synthetic datasets only include problems with one to
100 features and two to ten classes. Even so, feature subsam-
pling and building ensembles can provide a way around those
limitations. Also, while its architecture lends itself to the par-
allel execution capabilities of GPUs, transformers are memory-
intensive with a quadratic dependency on input length. Conse-
quently, the number of points that can be processed by a PFN
is memory-bounded. On current consumer GPUs, TabPFN can
handle up to about 5000 training points.

3 Methods

This section details the selected datasets and the conditions un-
der which the different classification methods have been com-
pared, their parameters, and the analysis methods.

3.1 Engineering Datasets

To start, the selected problems from engineering design and re-
lated datasets are discussed. We gathered a set of eight prob-
lems from the literature [8, 25, 28]. The goal was to have a
diverse set of problems with different numbers of features (2–
100), binary and multi-class, and with and without discrete vari-
ables. The eight problems are summarized in Table 1.

The study incorporates diverse datasets, representative of vari-
ous facets of engineering design problems. A portion of these
datasets has been chosen to facilitate a comparison with earlier
works, particularly based on the review by Sharpe et al. [8].
Specifically, three realistic design problems from the said re-
view were chosen—the three-bar truss, the solar heat exchanger
(solar HEX), and the welded beam design problems—owing to
the availability of data or the possibility of its evaluation. In ad-
dition, the FRAMED dataset [14] and an airfoil dataset inspired
by [28] are considered to evaluate the classification methods on
problems with higher dimensionality.

These design problems all revolve around identifying designs
that not only satisfy certain constraints but also achieve a set
minimum performance threshold, which makes them suitable

for classification tasks. Some contain discrete variables, mean-
ing only specific integer values are permissible for those fea-
tures.

More specifically:

Airfoil Binary and Multi-class Datasets Originating from
the UIUC Airfoil Coordinates database2, they consist of the
(x,y)-coordinates of 50 points interpolated along the airfoil pro-
files following [28]. Their maximum lift coefficient is calcu-
lated using Xfoil [29] by sweeping the angle of attack between
−5◦ and 30◦. The binary dataset separates airfoils with a lift
coefficient greater than 1.7 and has a class distribution of 65%
to 35%. In contrast, the multi-class version involves four dis-
tinct classes distributed as 47%, 25%, 19%, and 9% associated
with maximum lift coefficients greater than 1.0, 1.5, and 1.8,
respectively. There is no predefined test set.

FRAMED Validity and Safety Datasets These are charac-
terized by 39 parameters, encompassing discrete variables, that
characterize bicycle frames. The validity dataset distinguishes
between geometrically valid and invalid frames (91% to 9%
split). The safety dataset presents a multi-class challenge as it
separates between frames that fail on both loading tests (49%),
pass only the loading test 1 (31%), pass only the loading test 2
(15%), and pass both loading tests (5%). The geometric con-
straints and loading cases are further detailed in [14]. There is
no predefined test set.

Solar HEX Dataset This dataset contains solar heat ex-
change designs characterized by two parameters. The label in-
dicates if the exchanger is high-performing and feasible. This
is a binary classification problem with a balanced class distribu-
tion. Train and test datasets were methodically generated using
Sobol and Halton sequences respectively, and subsequently la-
beled using the codes provided by the original authors [8].

Three-bar Truss Dataset It consists of six parameters defin-
ing the cross-section and material for each bar of a three-bar
truss problem. It aims at binary classification, with moderately
imbalanced class distribution. Separate train and test sets were
provided directly by the original authors. Details about the truss
design are available in the supplementary material of the origi-
nal publication [8].

Welded Beam Datasets They are two variations that differ
only by the method used to sample points. The underlying
problem is represented by four parameters and results in a bi-
nary classification problem. The Welded Beam train and test
datasets were methodically generated using Sobol and Hal-
ton sequences respectively, and subsequently labeled using the
codes provided by the original authors [8]. This sampling re-
sults in a highly imbalanced dataset for the welded beam prob-
lem. With only 2% feasible designs, the classification task
is very challenging. Consequently, a second variant, named
Welded Beam (+) is created by sampling, for the train set,
an additional 500 points using Bayesian optimization and the
straddle acquisition function [30]. This results in an increase

2https://m-selig.ae.illinois.edu/ads/coord_
database.html

https://m-selig.ae.illinois.edu/ads/coord_database.html
https://m-selig.ae.illinois.edu/ads/coord_database.html


Preprint – Untrained and Unmatched: Fast and Accurate Zero-Training Classification for Tabular Engineering Data 6

Table 1: List of selected datasets along with key metrics. Problems that have a separate test set are indicated with an ∗.
Dataset Modality Features Discrete Var Classes and their proportion Train size Test size

Airfoil binary Coordinates 100 × 2 65% / 35% 886 222
Airfoil multi-class Coordinates 100 × 4 47% / 25% / 19% / 9% 886 222
FRAMED validity Parameters 39 ✓ 2 91% / 9% 3609 903
FRAMED safety Parameters 39 ✓ 4 49% / 31% / 15% 5% 3236 810
Solar HEX Parameters 2 ✓ 2 52% / 48% 500 2500∗
Three-bar truss Parameters 6 ✓ 2 66% / 34% 1000 5000∗
Welded beam Parameters 4 × 2 98% / 2% 2000 2500∗
Welded beam (+) Parameters 4 × 2 84% / 16% 2500 2500∗

to 16% feasible data points. The test set for this variant is ob-
tained by sampling 20 000 points from the Halton sequence and
then randomly subsampling it to 2500 by giving more weight
to feasible points.

Notes On Preprocessing

Datasets are considered to be numerical only and no special
treatment of discrete variables is done. For other datasets, one-
hot encoding or ordinal mapping may be needed. TabPFN and
AutoGluon apply their own preprocessing, as such the datasets
are provided as is. For all other methods, a standard scaler
(z = (x − µ)/σ) is fitted and applied to the training data and
applied to test data without refitting. Likewise, classes in the
training data are mapped to a contiguous list from 0 to the max-
imum number of classes, and the labels predicted by the models
are mapped back to the original space. As these processes are
part of TabPFN and AutoGluon, the time required for the pre-
processing is also accounted for in the training time for other
methods.

3.2 Classification Methods

This section covers the classification methods considered in this
work. Table 2 provides an overview of the selected methods.
We picked three baseline models: k-nearest neighbors, support
vector machines, and decision trees. Each represents a differ-
ent approach to classification and they are known for their sim-
plicity and widespread application in various domains, includ-
ing engineering design. On top of that, we include methods
from two state-of-the-art approaches: gradient-boosted deci-
sion trees, and AutoML [13, 20]. With this choice of meth-
ods, we cover a wide range of methods from simple to highly
complex AutoML approaches. This is particularly important
since we aim to investigate the trade-off between classification
accuracy and the time needed to apply those methods to a new
dataset and make predictions. It is worth noting that multi-layer
perceptions (artificial neural networks) are not considered, as
they are expensive to train and are underperforming on tabular
data classification, especially for smaller datasets [20]. In the
following, we cover the key components of each method.

3.2.1 Baseline Models

For our research, these models were implemented using the
scikit-learn library [31].

k-Nearest Neighbors (KNN) A non-parametric method,
KNN operates on the principle of feature similarity. By con-

Table 2: Overview of the classification methods used and the
chosen settings.

GPU Settings

TabPFN ✓ Default for version 0.1.8
XGBoost × Default for version 1.7.4
AutoGluon+ ✓ Best quality preset
AutoGluon∼ ✓ Medium quality preset
XGBoost∗ × Parameters tuned with SMAC
SVM∗ × Parameters tuned with SMAC
Decision Trees∗ × Parameters tuned with SMAC
KNN∗ × Parameters tuned with SMAC

sidering the k most similar instances from the training dataset,
it predicts the classification of new data points. Its simplicity
lies in its ability to make decisions based on the majority class
of its neighbors, making it intuitive and easy to implement.

Support Vector Machine (SVM) SVM is a supervised ma-
chine learning model that seeks to find the optimal hyperplane
that best separates the data into classes. It’s especially effective
in high-dimensional spaces and is known for its kernel trick,
enabling it to create non-linear decision boundaries.

Decision Trees (DT) As the name suggests, Decision Trees
divide the dataset into subsets using a tree-like model of deci-
sions. They recursively split the data based on feature values,
making them particularly interpretable, as the decisions can be
visualized and understood easily.

3.2.2 Gradient-Boosted Decision Trees

Gradient-Boosted Decision Trees (GBDT) is an ensemble tech-
nique that builds upon the principle of boosting. It combines
the output of multiple shallow decision trees, added iteratively,
to improve predictive accuracy and reduce overfitting. At each
stage, a new tree is fit to the negative gradient (hence, “gradient-
boosted”) of the loss function, which corrects the mistakes of
the previous trees. Over several iterations, this method effec-
tively tunes the model to the intricacies of the dataset, enabling
it to handle complex non-linear patterns. One of the most
popular implementations of GBDT is XGBoost [12], which is
renowned for its computational efficiency and capability to han-
dle large datasets.



Preprint – Untrained and Unmatched: Fast and Accurate Zero-Training Classification for Tabular Engineering Data 7

3.2.3 AutoML (AutoGluon)

Automated Machine Learning (AutoML) refers to the pro-
cess of automating the end-to-end process of machine learn-
ing. From data preprocessing, feature selection, and model se-
lection, to hyperparameter tuning, AutoML seeks to produce
high-quality machine-learning models with minimal manual in-
tervention. AutoGluon, in particular, is an open-source Au-
toML library that offers automated model selection, hyperpa-
rameter optimization, and model bagging and ensembling for a
variety of machine-learning tasks [13]. Internally, it evaluates
many different models (e.g., kNN and XGBoost) and parame-
ters, and automatically applies the latest techniques from ML
to generate one ensemble with high performance. It has been
shown to work well on ML benchmark [13] and the FRAMED
dataset [14]. AutoGluon is, however, very time-consuming to
run. Therefore, we consider two presets: medium and best.
The presets change the number of configurations tested and the
number of models in the weighted ensemble, influencing both
the training and the inference time.

3.2.4 Prior-data Fitted Network (TabPFN)

As described in Section 2.3, TabPFN is a novel model tailored
for tabular data. Unlike traditional deep learning models that re-
quire application-specific models, extensive data, and training
time, TabPFN capitalizes on the information from previously
trained datasets. By leveraging prior knowledge and transfer-
ring it to relevant tasks, TabPFN is a general-purpose classifi-
cation algorithm that offers an efficient alternative for situations
where data might be limited or where computational resources
are constrained. We use the original model and weights pub-
lished in [1] across all the evaluated problems without any fine-
tuning.

3.2.5 Hyperparameter Tuning

Following recommended best practices, the hyperparameters of
KNN, SVM, DT, and XGBoost are tuned [8]. We employed
the SMAC3 framework [32] (version 2.0.0) for hyperparam-
eter tuning. SMAC3 is a state-of-the-art tool that combines
Bayesian optimization and random forest regression to search
the hyperparameter space efficiently. To utilize SMAC3, we
first defined the hyperparameters and their respective ranges for
each method. To limit overfitting, we employed a 5-fold cross-
validation setup, where the train set was split into five subsets,
and the models were trained and evaluated on different combi-
nations of these subsets. The average model accuracy across
the five folds was the metric to optimize. By iteratively running
a set of configurations and evaluating their performance using
the accuracy metric, SMAC3 adaptively selected promising hy-
perparameter settings to explore. This process continued until
convergence or a predefined budget was reached (a maximum
of 100 configurations). Through SMAC3, we aimed to iden-
tify the optimal hyperparameter configuration that maximized
the accuracy of our machine learning models, enhancing their
predictive accuracy and generalization capabilities. The hyper-
parameters for each method can be found in the code associated
with this work.3

3https://decode.mit.edu/projects/pfns4ed/

Both AutoGluon and hyperparameter tuning for individual
methods were run from scratch for each dataset size and ran-
dom split, as we wanted to mimic a real-world scenario where
train data is the only thing that is known and test data are actual
points of interest to be evaluated.

3.2.6 Computational Environment

The study was conducted on a single computer with a 12th Gen
Intel®Core™ i9-12900K CPU and an Nvidia 3090Ti GPU. We
used Python (version 3.10.9) along with scikit-learn (version
1.2.2), XGBoost (version 1.7.4), AutoGluon (version 0.7.0),
and TabPFN (version 0.1.8). More details about the Python en-
vironment are provided with the code. The use of GPU or CPU
was decided based on the methods’ compatibility with GPU
and trials to identify which hardware was the fastest. Overall,
Table 2 provides an overview of the considered methods for
classification.

3.3 Evaluation Protocol

3.3.1 Data Handling

To control for the stochastic components of each classifica-
tion method and to rule out lucky data splits, we repeat each
training and evaluation step 20 times for each dataset and each
method. We start by generating 20 different random permuta-
tions of each dataset. For the welded beam dataset, we ensure
that at least two feasible samples are present within the first 100
points given its high imbalance. For the Airfoil and FRAMED
datasets, the data is further split with the first 20% becoming
the test set, and the last 80% the train set. Through these 20
different data splits, we gather performance data less sensitive
to biases in the train and test data that could favor one particular
method. It allows us to apply non-parametric statistical tools to
further increase the confidence in our results.

Within each data split, each method is evaluated considering
only the first 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%,
90% and 100% of the resulting training set. This yields a total
of 220 train/test executions per dataset per method. With this
approach, the change in performance of each method as a func-
tion of data quantity can be assessed. In particular, it offers
insights into the data efficiency of each method.

3.3.2 Evaluation Metrics

In this section, we discuss our choice of evaluation metrics and
their respective limitations.

Accuracy One of the most intuitive metrics in classification
problems is accuracy. It measures the ratio of correctly pre-
dicted instances to the total number of instances. While accu-
racy might seem like an obvious choice due to its simplicity,
it is not without its flaws, especially when dealing with imbal-
anced datasets. In such cases, even a naive model that predicts
the majority class for all inputs can achieve a high accuracy,
rendering the metric misleading. As most of the datasets we
study are imbalanced (see Table 1), we use the F1-score metric
for our analysis.

https://decode.mit.edu/projects/pfns4ed/


Preprint – Untrained and Unmatched: Fast and Accurate Zero-Training Classification for Tabular Engineering Data 8

F1-score To combat the limitations of accuracy, especially in
scenarios with imbalanced classes, the F1-score is often em-
ployed. Defined mathematically as:

F1 =
2 × true positives

2 × true positives + false positives + false negatives
(2)

The F1-score provides a balance between precision (the ratio of
correctly predicted positive observations to the total predicted
positives) and recall (the ratio of correctly predicted positive
observations to all observations in actual class). It is particu-
larly useful when false positives and false negatives have dif-
fering costs.

Multi-class F1-Score (Macro Averaging) The traditional
F1-score is intrinsically binary. However, for problems involv-
ing multiple classes (such as Airfoil multi-class and FRAMED
safety datasets), an adaptation is required. One common strat-
egy is macro averaging. Here, the F1-score is calculated inde-
pendently for each class and then the average is taken.

Relative data efficiency We evaluate the data efficiency of
each method by considering how many more data points are
needed to reach some performance threshold compared to the
first method reaching the same threshold within a data split. In
this work, the threshold is set to 90% of the best performance
achieved across all methods for the given data split. This level
is chosen to represent a reasonable classifier. The method is
illustrated in Fig. 3. Mathematically, the efficiency of method
m for a given data split is given by:

ηD,m =
nmax − nm

nmax − nbest
(3)

Where nmax is the total number of points in the dataset, nbest
is the number of points needed for the best method to reach
the threshold and nm is the number of points needed for the
method m to reach that threshold (or nmax if it does not achieve
the threshold). Using this definition, the first method to reach
the threshold is awarded a 100% efficiency while a method us-
ing all data points gets 0%.

3.3.3 Statistical Testing Protocol

Ensuring the validity and statistical significance of our results
is pivotal for drawing reliable conclusions. Given the multiple
machine learning methods and datasets involved in our analy-
sis, we employed a robust statistical testing protocol to compare
the performances of these methods.

Friedman Ranking Test This non-parametric test is chosen
to assess if there are differences in ranks among multiple paired
samples. It is used to identify if there are any differences that
would warrant further analysis.

Wilcoxon Significance Analysis This non-parametric test,
widely recognized for comparing two paired samples, is cho-
sen to assess the difference in ranks of various machine learn-
ing methods across our datasets. Unlike the t-test, the Wilcoxon
test does not assume a normal distribution and is therefore more

0.00 0.25 0.50 0.75 1.00
Fraction of training data

0.6

0.7

0.8

0.9

F 1
 sc

or
e

TabPFN
AutoGluon +

90% Threshold

nbest nag + nmax

nmax nbest

nmax nag +

Figure 3: Graphical representation of the suggested data effi-
ciency showcased using two methods for simplicity. Data ef-
ficiency is defined as the ratio of how much data is left once a
method crosses a performance threshold over how much data
is left for the first method to cross the same threshold. In this
example, TabPFN and AutoGluon+ have a data efficiency of
100% and 75%, respectively.

versatile, especially when the data distribution is unknown or
not normally distributed.

Holm’s Adjustment Given the multiple comparisons being
made (due to the variety of machine learning methods), there
arises the risk of observing a statistically significant difference
purely by chance. The issue of multiple comparisons could in-
flate our Type I error. To control the family-wise error rate and
counteract this problem, we employ Holm’s adjustment.

In our study, the protocol involves the following steps:

1. Ranking of Methods: For each dataset and data split,
the machine learning methods are ranked based on
their performance, with the best-performing method
receiving the lowest rank.

2. The Friedman ranking test is applied to the ranks to
identify if there are statistically significant differences
between any methods.

3. If the calculated p-value from the Friedman ranking
test is below the significance threshold set at 0.05.
All methods are compared in a pairwise fashion using
the Wilcoxon significance analysis and Holm’s adjust-
ment is used to account for the multiple comparisons.

4. The final step of our statistical analysis involves in-
terpreting the corrected pairwise p-values to find the
classification methods that are significantly different
from the others, using the same 0.05 threshold.

Through this rigorous statistical testing protocol, we can con-
fidently infer differences in the performance of the machine
learning methods across the datasets, ensuring that our con-
clusions are not the mere result of chance or the byproduct of
multiple comparisons.



Preprint – Untrained and Unmatched: Fast and Accurate Zero-Training Classification for Tabular Engineering Data 9

4 Results: A Comparative Study of
ClassificationMethods

The results of our study are a set of 1760 different train sets
evaluated across eight methods. We decompose these results
by considering first the performance of all methods of the full
datasets. Second, we investigate the effect of dataset size on
performance and use the performance change with dataset size
to quantify the data efficiency of each method. Third, we as-
sess the overall performance. Finally, we put these results into
perspective considering both performance and speed to nail the
advantages of TabPFN.

4.1 Performance Comparison on Full Datasets

As a starter, we compare the classification performance through
the F1 score of all eight methods when considering the full
datasets. Figure 4 displays the distribution of performance
across the 20 different splits for all methods and datasets.
TabPFN emerges as a strong classifier with performance bet-
ter (2x) or on par (3x) compared to AutoGluon+. This confirms
the results seen on ML benchmark [1] and is in itself an im-
pressive result. In particular, TabPFN can leverage its diverse
prior to have leading performance (F1 = 0.68) in the strongly
imbalanced Welded Beam dataset. AutoGluon+ shows, as ex-
pected, very high performance across the board and is the lead-
ing method on the remaining three datasets. Conversely, older
machine learning methods (SVM, KNN and DT) are overall
clearly behind, except on the Welded Beam (+) dataset where
samples are intelligently located.

Considering the Solar HEX, Welded Beam, and Welded Beam
(+) datasets, Fig. 4 also demonstrates that TabPFN and XG-
Boost are sample-order invariant methods. Methods that
rely upon hyperparameter tuning naturally introduce additional
stochasticity that can lead to different models even if the same
dataset is provided. It is also noteworthy that hyperparameter
tuning alone—i.e., without ensembling and bagging, can lead
to overfitting despite the use of cross-validation in these small
datasets. Indeed, XGBoost with the default parameters is better
or on par with the tuned variant XGBoost∗ on seven datasets.

4.2 Performance with Partial Datasets and Data Efficiency

To go further, Table 3 provides the mean F1 score and stan-
dard deviation achieved when considering only 10% and 50%
of the full dataset. Similarly to the results for the full datasets,
TabPFN has leading performance on four and five datasets, re-
spectively. Other methods that get the best mean performance
on some datasets include AutoGluon and XGBoost. A more
complete picture of the change in performance as dataset size
increases is provided in Fig. 8 in the Appendix, and confirms
the trend described so far. It is also worth mentioning that the
observed trends hold when considering the accuracy metric.4

Given the good performance with only fractions of the datasets,
a natural extension is to consider data efficiency. Table 4 offers
a detailed assessment of the relative data efficiency of various
methods to achieve 90% of their best performance. The data

4All the results can be obtained and analyzed further: https://
decode.mit.edu/projects/pfns4ed/

efficiency is computed relative to the first method that reaches
this performance threshold in each dataset and for each run.

TabPFN emerges as the most data-efficient method across the
board. Out of the eight datasets presented, TabPFN achieves
the highest data efficiency in six. It showcases its superiority,
especially in the binary classification of Airfoil (95.6%), multi-
class classification of Airfoil (85.5%), and in the datasets of
Solar HEX (99.0%), Three-bar truss (96.5%), and both vari-
ations of the Welded beam (100.0% and 99.6% respectively).
Overall, it holds the highest average data efficiency of 79.4%.
While TabPFN is the most data-efficient on average, the Auto-
Gluon models give stiff competition in certain datasets. Specif-
ically, AutoGluon+ excels in the FRAMED safety (91.8%) and
FRAMED validity (96.0%) datasets, outperforming TabPFN.
Moreover, while TabPFN leads in average efficiency, the dif-
ference between TabPFN and AutoGluon+ is relatively narrow,
with the latter having an average efficiency of 73.9%.

In terms of performance variability, the table highlights the
variable efficiency of some methods across different datasets.
For instance, KNN∗ demonstrates a striking efficiency of 92.0%
in the Solar HEX dataset but drops to a meager 0.1% in the
Three-bar truss dataset. Similar trends can be observed for
models like SVM∗ and XGBoost∗. It’s notable that certain
methods, specifically DT∗ and KNN∗, generally struggle in
terms of data efficiency across the majority of datasets, with
averages of 17.4% and 23.3% respectively.

In terms of problems, the Welded beam dataset proves to be
especially polarizing. On one hand, TabPFN achieves a per-
fect score of 100.0% efficiency, meaning that regardless of data
split, it is the first method to reach the performance threshold.
On the other hand, several models, including XGBoost, KNN∗,
and DT∗, never reach the performance threshold, resulting in a
0.0% efficiency.

Overall, while TabPFN asserts its dominance in data efficiency
in the majority of datasets, it’s crucial to consider the specifici-
ties of each dataset when choosing a model, as some might offer
competitive or even superior performance in specific contexts.

4.3 Overall Method Ranking

Combining all the data splits and dataset fractions, we per-
form a statistical analysis to compare the methods based on
F1 score and total time. The results from our statistical anal-
ysis, shown as critical difference plot in Fig. 5, confirm that
TabPFN achieves the best F1 score across the board (rank of
2.65), closely followed by AutoGluon+ (rank of 2.70). While
close, the large number of conducted experiments allows for
this difference to be statistically significant given the selected
0.05 threshold. Further, TabPFN is also the fastest method
(rank of 1.44), followed by XGBoost (rank of 1.56). As ex-
pected, AutoGluon+ is the slowest method (rank 8.00) due to
training more models and exploring more hyperparameters.

Apart from TabPFN and XGBoost which have low scores on
both metrics, the other methods follow the more expected
performance-speed trade-off.

https://decode.mit.edu/projects/pfns4ed/
https://decode.mit.edu/projects/pfns4ed/


Preprint – Untrained and Unmatched: Fast and Accurate Zero-Training Classification for Tabular Engineering Data 10

0.55 0.60 0.65 0.70 0.75 0.80 0.85
F1 score

TabPFN
XGBoost

AutoGluon +

AutoGluon
XGBoost

SVM
KNN

DT

Airfoil binary

0.4 0.5 0.6 0.7
F1 score

TabPFN
XGBoost

AutoGluon +

AutoGluon
XGBoost

SVM
KNN

DT

Airfoil multi-class

0.5 0.6 0.7 0.8
F1 score

TabPFN
XGBoost

AutoGluon +

AutoGluon
XGBoost

SVM
KNN

DT

FRAMED validity

0.4 0.5 0.6 0.7
F1 score

TabPFN
XGBoost

AutoGluon +

AutoGluon
XGBoost

SVM
KNN

DT

FRAMED safety

0.95 0.96 0.97 0.98 0.99
F1 score

TabPFN
XGBoost

AutoGluon +

AutoGluon
XGBoost

SVM
KNN

DT

Solar HEX

0.65 0.70 0.75 0.80 0.85 0.90
F1 score

TabPFN
XGBoost

AutoGluon +

AutoGluon
XGBoost

SVM
KNN

DT

3-bar truss

0.0 0.2 0.4 0.6
F1 score

TabPFN
XGBoost

AutoGluon +

AutoGluon
XGBoost

SVM
KNN

DT

Welded beam

0.775 0.800 0.825 0.850 0.875 0.900 0.925
F1 score

TabPFN
XGBoost

AutoGluon +

AutoGluon
XGBoost

SVM
KNN

DT

Welded beam (+)

Figure 4: Boxplots comparing the F1 scores of each method for each full dataset. Notice that the F1 score scale is different for
each dataset. We observe that TabPFN has the highest median performance in 4 out of 8 problems.



Preprint – Untrained and Unmatched: Fast and Accurate Zero-Training Classification for Tabular Engineering Data 11

Table 3: Mean and standard deviation of the F1 scores of each method for each trainset when considering 10% and 50% of the
available dataset. The highest mean value for each dataset is highlighted in blue. We observe that TabPFN has the highest mean
performance in 4 out of 8 and 5 out of 8 problems for these trainset sizes.

10% of the trainsets
Airfoil
binary

Airfoil
multi-class

FRAMED
validity

FRAMED
safety Solar HEX 3-bar

truss Welded beam Welded
beam (+)

TabPFN 0.685 ± 0.073 0.468 ± 0.039 0.514 ± 0.076 0.510 ± 0.017 0.930 ± 0.028 0.529 ± 0.184 0.094 ± 0.122 0.840 ± 0.045
XGBoost 0.606 ± 0.068 0.461 ± 0.043 0.418 ± 0.088 0.573 ± 0.028 0.894 ± 0.034 0.638 ± 0.036 0.049 ± 0.066 0.696 ± 0.064
AutoGluon+ 0.642 ± 0.075 0.445 ± 0.071 0.535 ± 0.069 0.555 ± 0.032 0.901 ± 0.041 0.595 ± 0.084 0.093 ± 0.088 0.804 ± 0.044
AutoGluon∼ 0.576 ± 0.095 0.448 ± 0.056 0.493 ± 0.075 0.525 ± 0.030 0.877 ± 0.062 0.535 ± 0.114 0.108 ± 0.126 0.726 ± 0.114
KNN∗ 0.524 ± 0.118 0.373 ± 0.078 0.459 ± 0.123 0.379 ± 0.029 0.865 ± 0.042 0.542 ± 0.101 0.104 ± 0.139 0.752 ± 0.060
SVM∗ 0.661 ± 0.063 0.462 ± 0.063 0.447 ± 0.092 0.472 ± 0.036 0.913 ± 0.027 0.562 ± 0.156 0.057 ± 0.105 0.799 ± 0.052
XGBoost∗ 0.593 ± 0.074 0.434 ± 0.044 0.480 ± 0.108 0.551 ± 0.029 0.903 ± 0.036 0.606 ± 0.056 0.050 ± 0.073 0.679 ± 0.067
DT∗ 0.433 ± 0.151 0.344 ± 0.074 0.281 ± 0.156 0.304 ± 0.073 0.853 ± 0.063 0.472 ± 0.173 0.027 ± 0.070 0.653 ± 0.081

50% of the trainsets
Airfoil
binary

Airfoil
multi-class

FRAMED
validity

FRAMED
safety Solar HEX 3-bar

truss Welded beam Welded
beam (+)

TabPFN 0.777 ± 0.027 0.604 ± 0.033 0.695 ± 0.038 0.582 ± 0.027 0.980 ± 0.004 0.834 ± 0.015 0.582 ± 0.067 0.904 ± 0.011
XGBoost 0.727 ± 0.034 0.589 ± 0.038 0.697 ± 0.044 0.644 ± 0.020 0.968 ± 0.007 0.811 ± 0.014 0.275 ± 0.088 0.824 ± 0.013
AutoGluon+ 0.756 ± 0.041 0.584 ± 0.039 0.758 ± 0.045 0.653 ± 0.026 0.975 ± 0.007 0.798 ± 0.020 0.378 ± 0.097 0.905 ± 0.013
AutoGluon∼ 0.727 ± 0.042 0.567 ± 0.043 0.714 ± 0.070 0.624 ± 0.023 0.962 ± 0.016 0.775 ± 0.030 0.286 ± 0.160 0.871 ± 0.041
KNN∗ 0.657 ± 0.062 0.494 ± 0.043 0.594 ± 0.066 0.437 ± 0.024 0.963 ± 0.007 0.729 ± 0.021 0.254 ± 0.150 0.860 ± 0.015
SVM∗ 0.752 ± 0.036 0.540 ± 0.038 0.649 ± 0.041 0.548 ± 0.035 0.967 ± 0.005 0.794 ± 0.019 0.023 ± 0.071 0.896 ± 0.008
XGBoost∗ 0.718 ± 0.043 0.556 ± 0.044 0.752 ± 0.037 0.637 ± 0.023 0.967 ± 0.007 0.802 ± 0.017 0.187 ± 0.117 0.820 ± 0.012
DT∗ 0.590 ± 0.050 0.435 ± 0.050 0.632 ± 0.117 0.470 ± 0.069 0.955 ± 0.012 0.633 ± 0.062 0.021 ± 0.065 0.783 ± 0.027

Table 4: Relative average data efficiency to attain 90% of the best performance to the first method reaching the threshold. The
method with the highest efficiency is highlighted in blue. We observe that TabPFN achieves the highest data efficiency in 6 out
of 8 datasets, also achieving the highest average data efficiency, closely followed by the Autogluon models.

Airfoil
binary

Airfoil
multi-class

FRAMED
validity

FRAMED
safety Solar HEX 3-bar

truss Welded beam Welded
beam (+) Average

TabPFN 95.6% 85.5% 7.0% 52.4% 99.0% 96.5% 100.0% 99.6% 79.4%
XGBoost 45.7% 71.5% 84.8% 48.8% 95.4% 89.1% 0.0% 44.1% 59.9%
AutoGluon+ 78.3% 53.7% 91.8% 96.0% 97.0% 82.2% 1.0% 91.1% 73.9%
AutoGluon∼ 66.8% 60.1% 50.2% 77.3% 95.3% 70.9% 12.3% 80.1% 64.1%
KNN∗ 13.9% 3.8% 0.0% 0.0% 92.0% 0.1% 0.0% 76.5% 23.3%
SVM∗ 81.3% 27.0% 0.0% 15.5% 98.3% 72.9% 0.0% 92.0% 48.4%
XGBoost∗ 49.2% 47.8% 70.6% 90.8% 96.3% 83.3% 0.0% 36.0% 59.3%
DT∗ 0.0% 0.0% 0.0% 42.7% 92.8% 0.0% 0.0% 3.4% 17.4%

4.4 Per Dataset Performance-Speed Trade-Off

To investigate the performance-speed trade-off, we consider
both metrics in a multi-objective fashion. First, we aggregate
the performance of each method across a dataset by consider-
ing the area under the curve (AUC) formed by the F1 score or
total time as a function of the trainset fraction for each data
split. Then, considering that F1 should be maximized while the
total time should be minimized, we compute for each data split
the Pareto rank of each method.

Using this approach, we find that TabPFN has an average Pareto
rank of 1.0 across the 20 data splits for all eight datasets, show-
ing that it presents as a recommended choice for both speed
and performance. It is closely followed by XGBoost, with an
average rank of 1.375. Dataset-specific details are shown in
Fig. 6. With this detailed view it becomes clear, that TabPFN is
either leading in both F1 score and total time or, when TabPFN
is less accurate, e.g., for the FRAMED datasets, it is part of the
performance-speed non-dominated front.

5 Discussion

Understanding the Complexity of Design Classification
Problems Analyzing the eight selected design problems pro-
vides a clearer understanding of their inherent difficulty. We
utilize two specific metrics to gauge this. Firstly, by rank-
ing the problems based on the collective F1 scores achieved
by all eight ML methods, we discern that the Welded beam
problem is the most challenging, given its lowest average per-
formance. In contrast, the Solar HEX problem seems to be
the easiest, as it commands the highest average performance.
The second metric, the variance in performance across meth-
ods, reveals the criticality of method selection for specific do-
mains. Solar HEX showcases minimal variance, suggesting
that the choice of method doesn’t significantly affect its per-
formance outcome. However, for problems like Welded beam
and FRAMED safety, the considerable variance underscores
the crucial role of method selection in determining the results.



Preprint – Untrained and Unmatched: Fast and Accurate Zero-Training Classification for Tabular Engineering Data 12

12345678

DT
KNN
SVM

XGBoost AutoGluon
XGBoost
AutoGluon +
TabPFN

Ranks: F1 score

12345678

AutoGluon +

XGBoost
AutoGluon

SVM DT
KNN
XGBoost
TabPFN

Ranks: Total Time

Figure 5: Overall results: Critical difference plot on aver-
age ranks in terms of F1 score (top) and total time (bottom)
across datasets and splits with a Wilcoxon significance anal-
ysis (Holm’s adjustment for multiple comparisons). Smaller
ranks are better and statistically indistinguishable methods are
connected with a black bar. We observe that TabPFN has the
lowest rank in both precision and time.

Recommendations for Engineering Design Classification
Methods While previous work on classification for design [8]
found that there are no clear recommendations for which clas-
sical classification model to choose for engineering design, our
results investigating the latest ML methods leads us to make
the following recommendations. TabPFN is, overall, both the
most accurate and the fastest method currently available. It
also has the best average data-efficiency and should as such be
the method of choice for datasets that fit its limitations (less
than 100 features5 and less than 5000 data points). The second
method of choice, if training time is not an issue, is AutoGluon
with best or medium quality presets. Finally, XGBoost with de-
fault settings, while being less accurate in general, still offers a
good performance-time ratio. We hope that the clearer guide-
lines on method selection support engineers who wish to use
data-driven methods for their applications.

Applicability of Synthetic Datasets to Engineering Design
More importantly, our empirical findings support the idea that,
within the potential biases of the eight considered problems,

5As of Sept. 2023, the GitHub version of TabPFN applies a sub-
sampling mechanism if more than 100 features are present in the con-
sidered dataset.

engineering design datasets can align closely or fall within the
prior used to train TabPFN. Given the scarcity of large-scale
datasets in the field, this discovery suggests that synthetic data
generation could serve as a promising strategy to overcome this
challenge. In particular, it highlights the potential of TabPFN’s
data generation pipeline as a foundation for creating synthetic
datasets suitable to further develop modern data-driven ap-
proaches for engineering design. Such approaches include pre-
trained models that can be used out-of-the-box by practitioners.
However, further investigation is required to fully ascertain the
extent of this applicability, both theoretically and empirically.
Additionally, there is an opportunity to push the boundaries by
customizing the data generation pipeline to suit specific engi-
neering design challenges.

Uncertainty Estimates and Differentiability We also want
to highlight additional properties of TabPFN in particular and
prior-data fitted networks in general. TabPFN supports classi-
fication problems with up to ten classes and can provide well-
calibrated probabilities for each of them [22]. To illustrate what
it means, Fig. 7 qualitatively compared the probability of fea-
sibility for the two-dimensional Solar HEX problem obtained
from the overall three best-performing models: TabPFN, XG-
Boost, and AutoGluon+. Contrary to the latter two which are
based on decision trees, TabPFN provides smoother transitions
that normally require Bayesian models. Well-calibrated prob-
ability predictions could be especially beneficial for the engi-
neering design community: when the uncertainty is high, addi-
tional simulations or different models could be used. Further,
since PFNs are deep neural networks, they are completely dif-
ferentiable and their gradient can be used to perform gradient-
based optimization to solve the inverse design problem: finding
a design that achieves a certain class.

5.1 Limitations

This study, while offering significant insights into the use of
PFN models for engineering design challenges, carries some in-
herent limitations. Firstly, TabPFN’s performance was gauged
predominantly on its speed and accuracy; however, in the com-
plex realm of engineering design, other metrics like inter-
pretability might be equally crucial. The eight datasets em-
ployed, although representative, might not encompass the full
spectrum of variability and intricacy present in real-world en-
gineering scenarios. We hope that our work motivates other
researchers to use these methods for their engineering design
problems, while also benchmarking new algorithm develop-
ments on the set of problems we used. We also haven’t exhaus-
tively evaluated the influence of specific preprocessing tech-
niques on TabPFN’s efficacy. Lastly, while TabPFN exhibited
commendable performance, it might need to be complemented
with domain-specific knowledge in many intricate engineering
design challenges to realize its full potential.

5.2 Future Work

Our findings in this paper pave the way for numerous future re-
search directions. Key areas of exploration include leveraging
larger test datasets and a deeper dive into feature engineering
to uncover more intricate relationships within the design data.
Given the speed of PFN models, the potential of integrating



Preprint – Untrained and Unmatched: Fast and Accurate Zero-Training Classification for Tabular Engineering Data 13

Figure 6: Trade-off between performance and total execution time (log-scale) for each method and dataset. The performance
axis is reverted so that the ideal method is in the lower left corner. The resulting Pareto front is shown as a gray dotted line and
dominated points are in pastel. We observe that TabPFN is always on the Pareto front.

these classifiers within an active learning framework, which fo-
cuses on selecting the most informative samples, is an exciting
prospect. Similarly, their speed lends itself well to their use
within ensembles. Additionally, adapting the approach to re-
gression tasks can broaden its utility. Considering the emergent
abilities described for other transformer models, studying the
effect of model size on performance seems a natural extension.
Lastly, the incorporation of uncertainty quantification methods
will enhance the reliability and robustness of our models, en-
suring they not only predict but also gauge the confidence of
their predictions.

6 Conclusion

In this work, we have evaluated a game-changing approach to
machine learning that leverages prior-data fitted networks to
remove the need for domain-specific training for classification
tasks. To support the rigorous evaluation, we have defined eight
diverse problems and generated corresponding datasets. Based
on those, we evaluated eight data-driven classification methods:
classical approaches (KNN, SVM, and DT), an ensembling
method (XGBoost), an AutoML algorithm (AutoGluon), and a

prior-data fitted network (TabPFN). Across datasets, TabPFN
was overall the most accurate, data-efficient, and fastest ap-
proach, followed by AutoGluon for accuracy and XGBoost for
speed.

As such TabPFN stands out as a broadly applicable classifier
that does not require machine learning expertise to tune hyper-
parameters, provides well-calibrated uncertainty estimates, and
is differentiable. All of which make it an excellent candidate to
become a standard for data-driven tasks in engineering design.
This is especially striking since it has been trained exclusively
on synthetic data, yet seemingly encompassing engineering
data distributions. In contrast, other models that require train-
ing from scratch can offer better customization and domain-
specific performance when the necessary time, resources, and
expertise are available.

Pre-trained transformer models that use in-context learning for
tabular data open up a new field of possibilities within engi-
neering to promote fast, accurate, and easy-to-use data-driven
methods to support the design process in general, and in in-
dustry in particular. Future work directions include extending
this work by looking into their use for Bayesian optimization,



Preprint – Untrained and Unmatched: Fast and Accurate Zero-Training Classification for Tabular Engineering Data 14

0.025 0.050 0.075 0.100
10

20

30

40
TabPFN

0.025 0.050 0.075 0.100
10

20

30

40
XGBoost

0.025 0.050 0.075 0.100
10

20

30

40
AutoGluon +

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y 
of

 C
la

ss
 1

Probability 0.5 True feasible region

Figure 7: Probability predictions for class 1 (feasible designs) for the three overall best-performing models for the two-
dimensional Solar HEX problem. The 5% train set is used (25 samples) and a grid of 100x32 is used to create the heatmap.

as well as, the development of subdomain-specific pre-trained
networks for an even higher data efficiency.

Acknowledgment

We would like to thank Dr. Carolyn Seepersad, Dr. Tyler Wiest,
and their co-authors for sharing their data and code for the Solar
HEX, 3-bar truss, and Welded Beam benchmark problems.

Funding Data

• The Swiss National Science Foundation (Post-
doc.mobility No. P500PT_206937).

A Additional Results

All the performance results can be summarized in a set of
learning curves showing how the performance changes with in-
creased data, see Fig. 8.

References
[1] Hollmann, N., Müller, S., Eggensperger, K., and Hutter,

F., 2023, “TabPFN: A Transformer That Solves Small
Tabular Classification Problems in a Second,” doi:10.
48550/arXiv.2207.01848, 2207.01848

[2] Malak, R. J., Jr. and Paredis, C. J. J., 2010, “Using Sup-
port Vector Machines to Formalize the Valid Input Do-
main of Predictive Models in Systems Design Problems,”
https://doi.org/10.1115/1.4002151Journal of Mechanical
Design, 132(101001).

[3] Yoo, D., Hertlein, N., Chen, V. W., Willey, C. L.,
Gillman, A., Juhl, A., Anand, S., Vemaganti, K.,
and Buskohl, P. R., 2021, “Bayesian Optimiza-
tion of Equilibrium States in Elastomeric Beams,”
https://doi.org/10.1115/1.4050743Journal of Mechanical
Design, 143(111702).

[4] Tsai, Y.-K. and Malak, R. J., 2022, “A Constraint-
Handling Technique for Parametric Optimization and
Control Co-Design,” ASME 2022 International Design
Engineering Technical Conferences and Computers and
Information in Engineering Conference, American So-
ciety of Mechanical Engineers Digital Collection, doi:
10.1115/DETC2022-89957.

[5] Massoudi, S., Picard, C., and Schiffmann, J.,
2022/ed, “Robust Design Using Multiobjective Op-
timisation and Artificial Neural Networks with
Application to a Heat Pump Radial Compressor,”
https://doi.org/10.1017/dsj.2021.25Design Science, 8.

[6] Wiest, T., Seepersad, C. C., and Haberman, M. R.,
2022, “Robust Design of an Asymmetrically Ab-
sorbing Willis Acoustic Metasurface Subject to
Manufacturing-Induced Dimensional Variationsa),”
https://doi.org/10.1121/10.0009162The Journal of the
Acoustical Society of America, 151(1), pp. 216–231.

[7] Caputo, C. and Cardin, M.-A., 2021, “THE
ROLE OF MACHINE LEARNING FOR FLEX-
IBILITY AND REAL OPTIONS ANALY-
SIS IN ENGINEERING SYSTEMS DESIGN,”
https://doi.org/10.1017/pds.2021.573Proceedings of
the Design Society, 1, pp. 3121–3130.

[8] Sharpe, C., Wiest, T., Wang, P., and Seepersad,
C. C., 2019, “A Comparative Evaluation of Su-
pervised Machine Learning Classification Tech-
niques for Engineering Design Applications,”
https://doi.org/10.1115/1.4044524Journal of Mechanical
Design, 141(12).

[9] Chen, W. and Fuge, M., 2018, “Active Expansion Sam-
pling for Learning Feasible Domains in an Unbounded
Input Space,” doi:10.48550/arXiv.1708.07888, 1708.
07888

[10] Li, H., Qiu, L., Wang, Z., Zhang, S., Tan, J., and Zhang,
L., 2022, “An Assembly Precision Prediction Method for
Customized Mechanical Products Based on GAN-FTL,”
https://doi.org/10.1177/09544054211021340Proceedings

2207.01848
1708.07888
1708.07888


Preprint – Untrained and Unmatched: Fast and Accurate Zero-Training Classification for Tabular Engineering Data 15

0.4

0.5

0.6

0.7

0.8

F 1
 sc

or
e

TabPFN

XGBoost

AutoGluon +

AutoGluon

KNN

SVM
XGBoost

DT

Airfoil binary

0.3

0.4

0.5

0.6

F 1
 sc

or
e

TabPFN
XGBoost

AutoGluon +

AutoGluon

KNN
SVM

XGBoost

DT

Airfoil multi-class

0.2

0.4

0.6

0.8

F 1
 sc

or
e

TabPFN
XGBoost

AutoGluon +

AutoGluon

KNN

SVM

XGBoost

DT

FRAMED validity

0.3

0.4

0.5

0.6

0.7

F 1
 sc

or
e

TabPFN

XGBoost
AutoGluon +

AutoGluon

KNN

SVM

XGBoost

DT

FRAMED safety

0.75

0.80

0.85

0.90

0.95

1.00

F 1
 sc

or
e

TabPFN

XGBoost
AutoGluon +

AutoGluon

KNN
SVM

XGBoost

DT

Solar HEX

0.4

0.6

0.8

F 1
 sc

or
e

TabPFN

XGBoost

AutoGluon +

AutoGluon

KNN

SVM

XGBoost

DT

3-bar truss

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of training data

0.0

0.2

0.4

0.6

F 1
 sc

or
e

TabPFN

XGBoost
AutoGluon +
AutoGluon

KNN

SVM

XGBoost

DT

Welded beam

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of training data

0.4

0.6

0.8

F 1
 sc

or
e TabPFN

XGBoost

AutoGluon +

AutoGluon

KNN

SVM

XGBoost
DT

Welded beam (+)

Figure 8: Median and 95% confidence interval of the F1 score as a function of the fraction of training data supplied.



Preprint – Untrained and Unmatched: Fast and Accurate Zero-Training Classification for Tabular Engineering Data 16

of the Institution of Mechanical Engineers, Part B: Journal
of Engineering Manufacture, 236(3), pp. 160–173.

[11] Regenwetter, L., Heyrani Nobari, A., and Ahmed, F.,
2022, “Deep Generative Models in Engineering Design:
A Review,” https://doi.org/10.1115/1.4053859Journal of
Mechanical Design, 144(7).

[12] Chen, T. and Guestrin, C., 2016, “XGBoost: A Scalable
Tree Boosting System,” Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, ACM, San Francisco California
USA, pp. 785–794, doi:10.1145/2939672.2939785.

[13] Erickson, N., Mueller, J., Shirkov, A., Zhang, H., Lar-
roy, P., Li, M., and Smola, A., 2020, “AutoGluon-Tabular:
Robust and Accurate AutoML for Structured Data,” doi:
10.48550/arXiv.2003.06505, 2003.06505

[14] Regenwetter, L., Weaver, C., and Ahmed, F., 2023,
“FRAMED: An AutoML Approach for Struc-
tural Performance Prediction of Bicycle Frames,”
https://doi.org/10.1016/j.cad.2022.103446Computer-
Aided Design, 156, p. 103446.

[15] Du, X., Bilgen, O., and Xu, H., 2021, “Gener-
ating Pseudo-Data to Enhance the Performance of
Classification-Based Engineering Design: A Preliminary
Investigation,” ASME 2020 International Mechanical En-
gineering Congress and Exposition, American Society
of Mechanical Engineers Digital Collection, doi:10.1115/
IMECE2020-24634.

[16] Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J., 2020, “Ex-
ploring the Limits of Transfer Learning with a Unified
Text-to-Text Transformer,” Journal of Machine Learning
Research, 21(140), pp. 1–67.

[17] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I., 2017,
“Attention Is All You Need,” Advances in Neural Infor-
mation Processing Systems, Vol. 30, Curran Associates,
Inc.

[18] Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y.,
Wang, S., Wang, L., and Chen, W., 2022, “LoRA: Low-
rank Adaptation of Large Language Models,” Interna-
tional Conference on Learning Representations.

[19] Li, Y., Ildiz, M. E., Papailiopoulos, D., and Oymak, S.,
2023, “Transformers as Algorithms: Generalization and
Stability in In-context Learning,” 2301.07067

[20] Shwartz-Ziv, R. and Armon, A., 2022, “Tabu-
lar Data: Deep Learning Is Not All You Need,”
https://doi.org/10.1016/j.inffus.2021.11.011Information
Fusion, 81, pp. 84–90.

[21] Zhu, B., Shi, X., Erickson, N., Li, M., Karypis, G., and
Shoaran, M., 2023, “XTab: Cross-table Pretraining for
Tabular Transformers,” doi:10.48550/arXiv.2305.06090,
2305.06090

[22] Müller, S., Hollmann, N., Arango, S. P., Grabocka, J., and
Hutter, F., 2022, “Transformers Can Do Bayesian Infer-
ence,” International Conference on Learning Representa-
tions.

[23] Nagler, T., 2023, “Statistical Foundations of Prior-Data
Fitted Networks,” Proceedings of the 40th International
Conference on Machine Learning, PMLR, pp. 25660–
25676.

[24] Kirsch, L., Harrison, J., Sohl-Dickstein, J., and Metz, L.,
2024, “General-Purpose In-Context Learning by Meta-
Learning Transformers,” 2212.04458

[25] Regenwetter, L., Curry, B., and Ahmed, F., 2021,
“BIKED: A Dataset for Computational Bicy-
cle Design With Machine Learning Benchmarks,”
https://doi.org/10.1115/1.4052585Journal of Mechanical
Design, 144(3).

[26] Singh, A. and Tucker, C. S., 2017, “A Machine
Learning Approach to Product Review Disambigua-
tion Based on Function, Form and Behavior Classifica-
tion,” https://doi.org/10.1016/j.dss.2017.03.007Decision
Support Systems, 97, pp. 81–91.

[27] Rokach, L., 2010, “Ensemble-Based Classifiers,”
https://doi.org/10.1007/s10462-009-9124-7Artificial
Intelligence Review, 33(1), pp. 1–39.

[28] Heyrani Nobari, A., Chen, W., and Ahmed, F., 2021,
“PcDGAN: A Continuous Conditional Diverse Genera-
tive Adversarial Network For Inverse Design,” Proceed-
ings of the 27th ACM SIGKDD Conference on Knowl-
edge Discovery & Data Mining, Association for Comput-
ing Machinery, New York, NY, USA, pp. 606–616, doi:
10.1145/3447548.3467414.

[29] Drela, M., 1989, “XFOIL: An Analysis and De-
sign System for Low Reynolds Number Airfoils,” Low
Reynolds Number Aerodynamics, T. J. Mueller, ed.,
Springer, Berlin, Heidelberg, pp. 1–12, doi:10.1007/
978-3-642-84010-4_1.

[30] Bryan, B., Nichol, R. C., Genovese, C. R., Schnei-
der, J., Miller, C. J., and Wasserman, L., 2005, “Ac-
tive Learning For Identifying Function Threshold Bound-
aries,” Advances in Neural Information Processing Sys-
tems, Vol. 18, MIT Press.

[31] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, É.,
2011, “Scikit-Learn: Machine Learning in Python,” Jour-
nal of Machine Learning Research, 12(85), pp. 2825–
2830.

[32] Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp,
A., Deng, D., Benjamins, C., Ruhkopf, T., Sass, R.,
and Hutter, F., 2022, “SMAC3: A Versatile Bayesian
Optimization Package for Hyperparameter Optimization,”
Journal of Machine Learning Research, 23(54), pp. 1–9.

2003.06505
2301.07067
2305.06090
2212.04458

	Introduction
	Background
	Classification and Its Use in Engineering Design
	Classical Machine-Learning Classification Methods
	Prior-data Fitted Networks

	Methods
	Engineering Datasets
	Classification Methods
	Baseline Models
	Gradient-Boosted Decision Trees
	AutoML (AutoGluon)
	Prior-data Fitted Network (TabPFN)
	Hyperparameter Tuning
	Computational Environment

	Evaluation Protocol
	Data Handling
	Evaluation Metrics
	Statistical Testing Protocol


	Results: A Comparative Study of Classification Methods
	Performance Comparison on Full Datasets
	Performance with Partial Datasets and Data Efficiency
	Overall Method Ranking
	Per Dataset Performance-Speed Trade-Off

	Discussion
	Limitations
	Future Work

	Conclusion
	Additional Results

