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ABSTRACT

This research introduces DesignQA, a novel benchmark
aimed at evaluating the proficiency of multimodal large language
models (MLLMs) in comprehending and applying engineering re-
quirements in technical documentation. Developed with a focus
on real-world engineering challenges, DesignQA uniquely com-
bines multimodal data—including textual design requirements,
CAD images, and engineering drawings—derived from the For-
mula SAE student competition. Different from many existing
MLLM benchmarks, DesignQA contains document-grounded vi-
sual questions where the input image and input document come
from different sources. The benchmark features automatic evalu-
ation metrics and is divided into segments—Rule Comprehension,
Rule Compliance, and Rule Extraction—based on tasks that en-
gineers perform when designing according to requirements. We
evaluate state-of-the-art models like GPT4 and LLaVA against
the benchmark, and our study uncovers the existing gaps in
MLLMs’ abilities to interpret complex engineering documen-
tation. Key findings suggest that while MLLMs demonstrate
potential in navigating technical documents, substantial limita-
tions exist, particularly in accurately extracting and applying
detailed requirements to engineering designs. This benchmark
sets a foundation for future advancements in AI-supported en-
gineering design processes. DesignQA is publicly available at:
https://github.com/anniedoris/design_qa/.

NOMENCLATURE

GPT4 Refers specifically to gpt-4-1106-vision-preview
FSAE Formula SAE
LLaVA Refers specifically to llava-1.5-13b
LLM Large Language Model
MLLM Multimodal Large Language Model
RAG Retrieval-Augmented Generation
VQA Visual Question Answer (Benchmark)

∗Corresponding author: adoris@mit.edu

1. INTRODUCTION

Large language models (LLMs), such as ChatGPT [1], are
chat-bots that can engage in conversations based on user queries.
Trained on data from much of the internet, LLMs are based on
the Transformer architecture [2] and have learned to predict the
next words based on an input sequence of text [3]. ChatGPT
is the fastest adopted technology in history, with more than 100
million users two months after its release [4]. LLMs have gar-
nered significant attention for their conversational abilities, and
research studies have examined and quantified their abilities to
answer questions on a range of topics, from medicine [5, 6] to
education [7] to engineering [8, 9].

With the emergence of LLMs as conversational assistants, an
important question is how they can help humans answer questions
about engineering design problems. A key goal of design automa-
tion has been to have an AI helper that can make it easier and faster
for human designers to create better products. Although Gener-
ative AI has made significant strides, this goal has been difficult
to attain, since engineering design tasks necessitate synthesis of
multimodal information across multiple sources. One such task,
critical to engineering design, is designing products based on
technical requirements, which list rules that consist of a metric
and a value (e.g. maximum tire width can be no greater than
five inches) [10]. Matching the complexity of many real-world
designs, technical specifications can be lengthy and extremely
detailed and often reference critical safety or regulatory specifi-
cations. Designing according to requirements necessitates that
engineers or designers can interpret and synthesize multimodal
data across sources (e.g. the requirements document, CAD, en-
gineering drawings, documentation, standards, etc.).

Recently, models with multimodal capabilities [11–13],
lengthy documents (long-text) processing capabilities [14, 15],
and both multimodal and long-text capabilities [1] have been
developed. These advances bring us closer to the reality of a
multimodal AI assistant that could help automate engineering
design according to requirement documents. As new MLLMs
emerge, evaluating their capacity to fulfill these essential design-
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Figure 1: Overview of the three different segments (Rule Extraction, Rule Comprehension, and Rule Compliance) and six subsets in
DesignQA. Prompts and images shown above are condensed versions of the actual prompts and images used. The bottom right table
shows the metrics and the number of questions for each subset of the benchmark.

requirement-related tasks becomes imperative. This begs the
question: How good are contemporary MLLMs at engineering
design according to requirements? How can we measure tangible
improvements in the efficacy of MLLMs at these tasks? Thus, we
propose a novel benchmark aimed at assessing the proficiency of
MLLMs in interpreting and adhering to the complex and multi-
modal demands of technical requirements in the design process.

We present DesignQA (Figure 1), the first zero-shot bench-
mark for technical requirements question-answering. The bench-
mark consists of 1451 questions and is based on the Formula
SAE 2024 Rules and data (CAD, documentation, etc.) provided
by the MIT Motorsports team. By developing this benchmark
in conjunction with the MIT Motorsports team, we prioritized
the generation of a dataset that is characteristic of real-world de-
sign requirement challenges. DesignQA also contains document-
grounded reference-dependent visual question-answers (VQAs),
one of a handful of benchmarks that tests models’ abilities to an-
swer questions that require analysis across long-text documents
and images. Notably, our benchmark assesses a model’s ability
to synthesize information across an image and text from different
sources, where the image was not seen by the model during its
original training (pre-training).

In addition to developing the dataset, we used DesignQA
to benchmark two state-of-the-art MLLMs, GPT4 and LLaVA,
providing the FSAE rules to the models either via the context
window or via a simple retrieval method. Of the models tested,
we show that GPT4 (given the rules through its context window)
performs the best on DesignQA. Based on observations of the
performances of these models on the benchmark, we provide
suggestions about how models might be modified for improved

results on DesignQA and design requirement questions generally.
In summary, our contributions are:

1. A Novel, Multifaceted Benchmark for MLLMs: We in-
troduce DesignQA, a benchmark that tests MLLMs’ under-
standing of design according to an engineering requirement
document. DesignQA is unique in its need for models to ana-
lyze and integrate information from both visual and long-text
inputs, emphasizing the complexity and multimodal nature
of real-world engineering tasks.

2. A Granular and Automatic Evaluation Framework: We
create DesignQA to be thorough and easy to use. The
benchmark is divided into three segments - rule extraction,
comprehension, and compliance - enabling a fine-grained
investigation into a model’s strengths and weaknesses and
enriching our understanding of AI in technical domains.
Each subset of DesignQA has an automatic evaluation met-
ric, permitting the quick evaluation of future MLLMs.

3. High Quality, Real-World Question-Answer Pairs: We
develop a high-quality benchmark based on real-world data
and problems. The question-answers in DesignQA are based
on the FSAE competition rules and data provided by the MIT
Motorsports team. Questions are designed and reviewed by
members of the MIT Motorsports team, industry profession-
als, and engineering researchers.

4. Evaluation of Contemporary MLLMs: We evaluate
MLLMs like GPT4 and LLaVA, unveiling the current limi-
tations of AI and retrieval methods in handling multimodal
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data and processing engineering requirements. The results
of our evaluation both underscore the necessity for and ex-
pose possible avenues for improved models for engineering
design.

2. RELATED WORK
In this section, we first provide an overview of existing work

on AI for engineering design, showcasing that MLLMs have new
potential to assist humans with design and design requirement
problems. We then explore existing benchmarks for LLMs and
MLLMs, highlighting the lack of benchmarks about engineering
design and design requirements. We then categorize existing
benchmarks by reference type. This sets the context for our
contribution, which addresses the need for real-world, document-
grounded benchmarks that bridge textual and visual information
comprehensively.

2.1 AI for Engineering Design
Much of the prior work on AI for design has focused on

single modalities [24], such as images or text. For text, several
studies have investigated natural language processing (NLP) for
technical engineering text. For example, [25] and [26] describe
a technical language processing framework for circumnavigating
the limitations of traditional NLP on unstructured engineering
data. Expanding beyond text, [27] creates a deep learning archi-
tecture for technical document classification that factors in images
as well as text. Despite significant advancements, many NLP and
deep learning methods are specialized to a single domain and
don’t generalize well to other problems within engineering de-
sign.

LLMs offer more generalizable solutions to various prob-
lems within engineering design. [28] demonstrates the potential
for LLMs (GPT-2 and GPT-3) to automate early-stage design
concept generation. [8] explores how LLMs can assist engineers
across an array of design and manufacturing tasks. While LLMs
are useful for select engineering design tasks, many engineer-
ing tasks are highly multimodal (involving images, CAD, graphs,
etc.). Therefore, recent advancements in MLLMs hold untapped
potential for the automation of engineering design tasks. [9] in-
vestigates the potential of GPT-4 to automate engineering design
tasks involving images, creating a dataset of over 1000 zero-shot
queries. However, this dataset does not focus on engineering
documentation. While a plethora of AI models like Google’s
Gemini, Meta’s Llama family, and Anthropic’s Claude models
have emerged recently, their effectiveness is almost exclusively
evaluated on non-engineering benchmarks. Critical for char-
acterizing the abilities of MLLMs for engineering design tasks
are benchmarks that can rigorously quantify their performances,
which serves as inspiration for DesignQA.

2.2 LLM and MLLM Benchmarks
In this section, we explore existing benchmarks for LLMs

and MLLMs based on domain and reference type. See Table 1
for a concise overview.

2.2.1 Benchmarks for Engineering Design and Design
Requirements. Very few benchmarks exist for engineering de-
sign problems or design requirement-related tasks. Despite the

plethora of complex, multimodal QAs that could be generated
from technically rich design requirement documents, very few
datasets or benchmarks have been developed for this domain.
PURE (PUblic REquirements) [29] is a dataset composed of 79
requirements documents scraped from the web. However, the
dataset does not provide QA pairs and thus cannot be easily used
for benchmarking. DesignQA harnesses the FSAE competition
rules and MIT Motorsport design data to develop a benchmark
of QAs pertaining to real-world design requirements.

2.2.2 LLM Reference-dependent Benchmarks. Text-
based QA benchmarks that require a model to parse additional
references to answer the posed question can be called “reference-
dependent" benchmarks. Reference-dependent benchmarks
differ from many classic reading comprehension benchmarks,
like MCTest [16], which are “self-contained" and can be
answered by short-text (approximately paragraph length)
chunks accompanying the question. Since reference-dependent
benchmarks require a model to locate the relevant information
– usually across one or multiple long texts – and then apply
that information to the posed question, they tend to be more
complex questions. Following the distinction made by Dasigi et
al. [19], reference-dependent benchmarks can further be divided
into “open-domain" benchmarks and “document-grounded"
benchmarks. An example of an open-domain question, taken
from SQUAD, is: “Where do water droplets collide with ice
crystals to form precipitation?" [17] Open-domain benchmarks,
such as SQUAD [17] and WikiQA [18], test a model’s ability
to answer general-knowledge, factoid-type questions, the answer
for which is usually contained in multiple sources in the model’s
pre-trained corpus.

In contrast, document-grounded benchmarks, like
QASPER [19] and ZeroScrolls [14], test a model’s ability
to answer questions based on information provided in a specific
long-text document. An example of a document-grounded
question, taken from QASPER, is: “[In reference to a specific
NLP paper] Which neural architecture do they use as a base for
their attention conflict mechanisms?" [19] As noted by Dasigi
et al., document-grounded QAs tend to be more complex than
open-domain QAs since they are anchored in user context and the
answers are not widely available facts [19]. DesignQA, grounded
in the FSAE rule document, fits within this document-grounded
category. As a result, the questions posed in our benchmark
are complex and rooted in user needs rather than common
sense. Document-grounded questions are very characteristic of
engineering design problems, as various types of documents –
standards, manuals, documentation, etc. – often contain specific
information that cannot be easily found on the internet.

2.2.3 MLLM Benchmarks. Multimodal datasets typically
test an MLLM’s capacity to analyze a non-text element with re-
spect to question text. At the time of writing, most MLLMs
can only accept images as non-text inputs, so multimodal QA
benchmarks tend to consist of a visual (image) coupled with a
question/answer pair. Visual question-answers (VQAs) can be
categorized in the same way as text-based QA benchmarks. The
vast majority of VQA benchmarks are self-contained. An ex-
ample of a self-contained VQA question, taken from MME, is:
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Table 1: Overview of select LLM and MLLM benchmarks, their domains, and reference-dependence. Our benchmark is unique in its
focus on design requirements, and in that it contains multi-source document-grounded VQAs.

Reference Type

Benchmark Domain Self-contained Open-domain Doc-Grounded
Single Source*

Doc-Grounded
Multi Source** VQA

McTest [16] Narrative Children’s Stories ✓ - - - ✗

SQUAD [17] Wikipedia - ✓ - - ✗

SQUAD [17] Wikipedia - ✓ - - ✗

WikiQA [18] Wikipedia - ✓ - - ✗

QASPER [19] NLP Papers - - ✓ - ✗

ZeroScrolls [14] Mixed: Wiki, Gov, etc. - - ✓ - ✗

MME [20] COCO ✓ - - - ✓

MM-Bench [21] Mixed: COCO, Llava, etc. ✓ - - - ✓

ScienceQA [22] Open-source science materials - ✓ - - ✓

InfoSeek [23] Wikipedia - - ✓ - ✓

DesignQA (Ours) FSAE Rules Doc & Data - - - ✓ ✓

*Single source: image in question contained within the document; **Multi source: image in question not contained within the document

“[Pertaining to a photo showing doubles tennis partners] Are
there two people in this image?" These are questions for which
no context (other than the image) is needed to answer the ques-
tion. The MME [20] and MMBench [21] benchmarks – high-
lighted by Chang and Wang et al.’s review paper [30] – are both
self-contained VQAs. These benchmarks largely focus on basic
tasks – primarily reasoning and perception – which are usually
presented in a multiple choice format for ease of evaluation [20].

More challenging and less prevalent than self-contained
VQAs, reference-dependent VQAs test a model’s ability to syn-
thesize image analysis with additional knowledge, either from
the open domain or from specific documents. ScienceQA [22],
which contains elementary to high school-level science multiple
choice questions, can be considered an open-domain VQA. The
benchmark additionally encourages complete “train-of-thought"
reasoning by providing a “lecture" – multiple sentences of gen-
eral knowledge pertaining to the question – and “explanation"
– reasoning for selecting a particular answer – for each VQA.
InfoSeek [23] is the first document-grounded VQA, composed
of questions about images in specific Wikipedia articles that can
only be answered by consulting the corresponding article’s text.

However, there is still a significant need for document-
grounded VQAs that are more characteristic of real-world tasks.
InfoSeek has a direct match between visual and the document
(i.e. the visual is contained within the document), while most
visual questions asked by users would not fit this direct look-up
framework (e.g. provided with an image of a broken machine and
a manual for the machine, the exact image will not be contained
within the manual). InfoSeek’s images and documents – which
both come from Wikipedia – have also been seen by the model
during pre-training; for many of the questions asked by users, ei-
ther the document or the visual would not have been seen during
pre-training. DesignQA is constructed to fill these gaps and is

more representative of these real-world scenarios.

3. DESIGNQA BENCHMARK
3.1 The Dataset

Our benchmark is developed in conjunction with the MIT
Motorsports team, so all questions in the benchmark pertain to
the 2024 Formula SAE Rules and are based on data provided
by the team. The benchmark consists of 1451 question-answers
(Figure 1) and is divided into three segments – Rule Extraction,
Rule Comprehension, and Rule Compliance – each of which tests
a different skill needed for designing according to a technical re-
quirements document. Each segment of the dataset is further di-
vided into two subsets, each of which corresponds with a specific
task and has its own automatic evaluation metric. The QAs were
created by a member of the MIT Motorsports team, a member
of our team from industry (Autodesk), or a member of our team
from academic research. All manually generated QAs – except
those that are derivatives of other questions or Rule Compliance
explanations – were reviewed by the two parties that didn’t write
the question. To provide more context to the model, each of the
QAs begins with the following preamble:

We are a student engineering team designing a vehicle for the
FSAE competition. Attached is the FSAE rules document.

The rule document was provided to the model when asking
each question. The following paragraphs describe in more detail
how each segment of the benchmark was created.

3.1.1 Rule Extraction. A key - albeit usually simple - task
for engineers is to locate a specific rule in a requirement doc-
ument: answering a question about a rule is predicated on the
ability to locate and extract the relevant rule. The Rule Extrac-
tion segment of the benchmark tests a model’s ability to extract

4



Figure 2: REPRESENTING 3D CAD MODELS IN 2D IMAGES. A) MULTI-VIEW CAD IMAGE. B) CLOSE-UP CAD IMAGE.
C-D) ENGINEERING DRAWING IMAGES. C USES THE DIRECT DIMENSIONING METHOD AND D USES THE SCALE BAR
DIMENSIONING METHOD.

rules from the 140-page FSAE rule document. This benchmark
segment is further divided into two subsets: Retrieval QAs and
Compilation QAs.

Retrieval questions test a model’s ability to extract specific
information from a lengthy document. Given the large number
of pages in the original rule document, retrieving the text of the
rules word-for-word is a non-trivial task. While this retrieval task
might become obsolete in the future as better models continue
to be developed, it is critical for models to retrieve accurate
information, as it is a necessary precursor for the other types of
questions in this benchmark.

We programmatically create the Retrieval QAs by first ex-
tracting all the text from the PDF document, excluding the head-
ers, footers, and page numbers. The rule document is well or-
ganized into numbered sections and subsections (which may or
may not have titles) in the format ‘AA.#.#.#’. By using a combi-
nation of manually created scripts and regex patterns to identify
the individual rules, we tabulate the set of rules and label the rule
number, the rule title, and the rule text. Finally, we drop the rules
that do not contain any text (while keeping the child rules) as
well as sets of rules that pertain to other aspects of the race (e.g.,
Administrative Regulations, Document Requirements) and not to
the design specifications that the vehicle must meet.

From the tabulated set of rules, we can then programmati-
cally formulate the set of Retrieval QAs. To the preamble de-
scribed in the previous section, we append the following:

What does rule {𝑟𝑢𝑙𝑒_𝑛𝑢𝑚𝑏𝑒𝑟} state exactly? Answer with only
the text of the rule and no other words.

Where {𝑟𝑢𝑙𝑒_𝑛𝑢𝑚𝑏𝑒𝑟} is replaced by each of the selected
rule numbers. This process results in 1192 Retrieval QAs.

Compilation questions assess a model’s ability to look for
information spanning a long document. A common task that
designers might perform when interacting with a design require-
ment document is the compilation of all rules relevant to a specific
subject, such as the ‘suspension’ or ‘critical fasteners’. To create
this set of QAs, we begin with a manually curated set of 30 com-
mon terms present in the rule document (nine of which include
their synonyms, acronym, or plurals). This results in 30 questions
with the following format:

Please list all rules relevant to {𝑡𝑒𝑟𝑚}. Answer with only the
rule numbers (i.e.: AA.1.1.1) separated by commas and no other
words. The rules relevant to {𝑡𝑒𝑟𝑚} are:

Where {𝑡𝑒𝑟𝑚} is replaced by each of 30 common terms. To
create the ground truth answers, we first compile the list of rules
that include the term with a simple search through the tabulated
rules, described in the previous section. We also include the
children of each of the rules found, as well as any other rules that
might be mentioned in both the parent and child rules.

3.1.2 CAD Representation. The Rule Comprehension and
Rule Compliance segments of our benchmark ask questions about
3D CAD models of the designed vehicle. We develop QAs around
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four different 3D CAD models provided by MIT Motorsports: the
vehicle, the vehicle plus the aerodynamic package, the rear wheel
package, and the powertrain. Before describing the details of
these QAs, we devote this section to detailing how we provide
3D CAD model information to MLLMs. Since MLLMs cannot
accept typical 3D CAD model formats (e.g. .stl, .step, etc.) at this
time, we convert the CAD that we would like to show the model
into 2D image forms, preserving as much 3D spatial information
as possible. We represent 3D CAD models in 2D using three
different kinds of images: 1) multi-view CAD images, 2) close-
up CAD images, and 3) engineering drawing images (Figure 2).

Multi-view CAD images (Figure 2A) show six views of the
CAD model: top, bottom, front, back, left, and isometric. Since
the model cannot rotate a 3D CAD model in a CAD software
GUI, these six views capture information about how the different
views fit together to comprise the 3D model. Each view has a
corresponding coordinate frame, so that it is clear to the viewer
how each of the six views is related to the others.

Close-up CAD images (Figure 2B) show zoomed-in views
of our CAD. The purpose of these images is to show finer detail
in specific regions of the model. The close-up CAD images show
a single view of the model with an orientation (and coordinate
frame) matching one of the views in the corresponding multi-view
CAD image.

Engineering drawing images (Figure 2C&D) display di-
mensional information about the 3D model. These images are
created using engineering drawing software, so that the dimen-
sions shown are highly accurate. They show a single view of the
model with an orientation (and coordinate frame) matching one
of the views in the corresponding multi-view CAD image. We
used two different dimensioning systems to indicate the dimen-
sions on these images. The first method was direct-dimensioning
(as in Figure 2C), where dimensions relevant to a particular rule
are explicitly indicated on the drawing. The second method was
scale-bar-dimensioning (as in Figure 2D), where a scale bar is
provided and from which a model could infer necessary dimen-
sions. We used a mixture of these two dimensioning methods in
our QAs, as we were interested in what effect the dimensioning
method would have on model performance.

In the following sections, we describe how these three image
types are employed in our QAs. Often, two of these image
types are appended together to form an image that conveys more
information. While we represent 3D CAD models using various
2D image types, this 3D model representation should be updated
as MLLMs become more sophisticated and are able to parse
inherent 3D model file formats.

3.1.3 Rule Comprehension. In order to understand how the
rules relate to a design, engineers must first understand the terms
presented in the rules and the names of the different components in
the design. The Rule Comprehension segment of the benchmark
evaluates a model’s ability to refer to elements of a 3D model
according to the definitions and terminology presented in the rule
document. This part of the benchmark is further divided into two
subsets: Definition QAs and Presence QAs.

Definition questions test a model’s ability to identify the
name of a highlighted component in a CAD model. From a list
of 31 components, we created a multi-view CAD image where

the component-to-be-identified is highlighted in pink (Figure 1
and Figure 2A). Component synonyms were also collected (e.g.
frame and chassis) for scoring purposes. Sometimes, it was nec-
essary to hide some components in the CAD model so that the
highlighted component could be better visualized. If components
were hidden, it was noted in the prompt. Appended to the pream-
ble is the following prompt, which resulted in the generation of
31 VQA pairs:

Also attached is an image showing six CAD views of our vehicle
design. What is the name of the component(s) highlighted in pink?
{[If components hidden] Some parts of the design have been hidden
so that the highlighted component(s) can better be visualized.}
Answer just with the name of the highlighted component(s) and
nothing else.

We also tracked how the component-in-question was men-
tioned in the rule document: if it was mentioned explicitly in
a “definition" section of the FSAE rule document (“definition
component"), if it was not in a definition section but mentioned
multiple times throughout the document (“multi-mention com-
ponent"), or if it was not mentioned in the document at all (“no-
mention component"). The intent behind this tracking was to
understand whether the frequency and way in which a compo-
nent’s name is mentioned in the rule document is correlated with
the model’s ability to visually identify the component.

Presence questions assess a model’s ability to understand
whether a particular component is present or not in a close-up
CAD image. As such, these QAs are an easier variant of the Def-
inition QAs, since they ask the model to provide a yes/no answer
rather than the name of a component. Using the same list of 31
components from the Definition QAs, we generated two close-up
CAD images (like that in Figure 2B), one which contained the
component and another which did not. These 62 close-up CAD
images were appended to the corresponding multi-view CAD
image (like that in Figure 2A), which provided more 3D context
for the close-up image. This resulted in 62 VQA pairs, each
of which had the following prompt, where {𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡_𝑛𝑎𝑚𝑒}
was replaced with one of the 31 components:

Also attached is an image showing seven CAD views (each boxed
in black) of our vehicle design. The top, big view shows a close-
up view of the design. The six smaller views on the bottom
of the image show different complete views of the CAD of the
vehicle and are provided for context. Note that the close-up view
orientation matches one of the six complete view orientations.
The close-up view may also have some components hidden (with
respect to the corresponding complete view) for visualization of
specific components. Looking at the close-up view, is/are the
{𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡_𝑛𝑎𝑚𝑒} visible in the close-up view? Answer simply
with yes or no.

3.1.4 Rule Compliance. Engineers frequently consult re-
quirement documents to ensure that their designs comply with
specific specifications. The Rule Compliance segment of the
benchmark characterizes a model’s ability to check that a design
conforms with a specific rule. This part of the benchmark is
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further divided into two subsets: Dimension QAs and Functional
Performance QAs, depending on the type of rule in question.

Dimension questions test a model’s ability to check that a de-
sign complies with a rule that stipulates dimensional constraints.
From a list of 20 dimension rules, we generated three engineering
drawing images for each rule:

1. A direct-dimensioned and rule-compliant image (as in Fig-
ure 2C).

2. A direct-dimensioned and rule-violating image. These were
generated by editing the dimensions on the first image to
explicitly violate the rule-in-question, or by modifying the
CAD model so that the updated dimensions violated the rule.

3. A scale-bar-dimensioned and rule-compliant image (as in
Figure 2D).

No scale-bar-dimensioned and rule-violating QAs were created.
Since the CAD provided by MIT Motorsports is inherently rule-
compliant, it is difficult to create negative examples when editing
of direct-dimensions is not possible. Each of these engineering
drawing images was appended to a corresponding multi-view
CAD image (like that in Figure 2A) to provide context about the
full model. This resulted in 60 VQAs with the following prompt,
appended to the preamble:

Also attached is an image that shows an engineering drawing of
the vehicle on the top accompanied by six CAD views of the
vehicle on the bottom. The six CAD views each feature a different
orientation of our design, so that 3D information about our design
can be inferred. The CAD views are provided to contextualize the
engineering drawing, which has the same orientation as one of the
six CAD views. All units displayed in the engineering drawing
have units of mm. Based on the engineering drawing, does our
design comply with rule {𝑟𝑢𝑙𝑒_𝑛𝑢𝑚𝑏𝑒𝑟} specified in the FSAE
rule document?

{[If direct-dimensioned:] Only use dimensions explicitly
shown in the engineering drawing to answer the question. If a
dimension is not explicitly shown, you can assume that it complies
with the rules.}

{[If scale-bar-dimensioned:] To answer the question, use the
scale bar shown at the top of the engineering drawing to compute
necessary dimensions in the drawing.}

First provide an explanation for your answer (begin it with
’Explanation:’). Then provide just a yes/no answer (begin it with
’Answer:’) that summarizes your response.

While these questions can be answered with a yes/no re-
sponse, we also wanted to assess the model’s ability to explain
why the design was or was not compliant, encouraging chain-of-
thought reasoning [22]. For each direct-dimensioned question,
we (or members of the MIT Motorsports team) wrote an expla-
nation justifying the ground-truth yes/no answer. These explana-
tions were not extensively reviewed, other than to ensure that they
supported the corresponding ground truth yes/no answer. These
human-written explanations can then be compared to generated
model explanations.

From these 60 VQAs, we generated another set of 60 VQAs
with additional context that would help with answering the ques-

tion. For the set of original 60 VQAs, we swapped out the multi-
view CAD portion of the image with a different multi-view CAD
image with components highlighted in pink that were relevant to
the rule. We also added a line to the prompt explaining what
the highlighted components were (e.g. “In the CAD views, the
lower side impact structure is highlighted in pink"). In total, 120
Dimension VQAs were generated: 60 without additional context
and 60 with additional context.

Functional Performance questions also test a model’s abil-
ity to check that a design complies with a rule given a relevant
image. For this category however, either the rule, the image,
or both is related to some functional performance of the design.
Most questions involve a rule that imposes a constraint on some
functional criteria of the design, and the image conveys the in-
formation required to check the rule. For example, there could
be a restriction on the material choice for a part (hence the cor-
responding material strength) in the rule and the visualization of
FEA results could indicate the maximum stress found in the part.
When applicable, a pair of positive and negative examples is gen-
erated, where a variation is introduced to either the question or
the image such that the first example would violate the rule while
the second example would not. There is significant variation
in the images and rules contained within this subset, and thus
there is no standardized prompt. We encourage exploration of
our code for more details. As these questions were more difficult
to formulate due to limited availability of functional performance
data, this subset has 16 VQAs. Like the Dimension questions,
we generated a human-written explanation for each VQA.

3.2 Evaluation Metrics
Models tested on DesignQA can be evaluated completely

automatically. For each of the six subsets of the benchmark, an
appropriate automated evaluation metric was selected and im-
plemented in our code so that a model’s (predicted) answer can
readily be compared to the ground-truth answer. For several of
the evaluation metrics, it can be difficult to intuit what score a
prediction would receive relative to a ground-truth answer. As
such, we’ve provided some examples in Figure 3 of model predic-
tions (from our Model Evaluation section), their corresponding
ground-truth answers, and the resulting scores. Each of the eval-
uation metrics is discussed in-depth below.

3.2.1 F1-score. Many subsets of our dataset are scored on
a flavor of the F1-Score. The F1-Score is a popular metric for
evaluating models’ performance on binary classification tasks,
as the metric weighs both precision and recall. It is defined as:
F1-Score: F1-Score = 2 × Precision×Recall

Precision+Recall .
F1 Bag of Words: F1 applied to a Bag of Words (BoW) was

used by [17–19] as an automatic metric for their benchmarks,
which asked a model to pull verbatim phrases from a body of text
to answer a question. As defined by [17], the metric first involves
a cleaning step. The predicted answer (model response) and
the ground-truth answer are converted to lower-case characters,
extra white-space is removed, and punctuation and articles are
taken out. They are then each “tokenized" into lists of words –
predicted list (P) and ground-truth list (GT) – where F1-Score
can be computed using Precision and Recall, where 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑃∩𝐺𝑇
len(𝑃) and 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑃∩𝐺𝑇

len(𝐺𝑇 ) .
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Figure 3: Responses from the different models evaluated across different subsets of the benchmark. We show the subsets that have
evaluation metrics that can be harder to interpret, to provide references for various scores. The bolded portions of the predicted responses
show what we interpreted to be correct.

Since our Retrieval QAs also ask the model to pull text from
the rule document verbatim, we use this F1 Bag of Words metric
to evaluate the Retrieval subset of the benchmark. We compute
F1 BoW for each QA, and we report a macro-average across all
questions.

F1 Rules: Similar to the Retrieval QAs, our Compilation
questions ask a model to identify text (specifically rule numbers)
contained within the rule document. We therefore use a very
similar metric to the F1 Bag of Words used for the Retrieval QAs,
except the lists P and GT are replaced by lists of rule numbers. We
compute F1 Rules for each QA, and we report a macro-average

across all questions.

F1 Bag of Characters (BoC): Our Definition QAs ask a
model to identify a component highlighted in a multi-view CAD
image, using the rule document for reference. These QAs seemed
like they should be scored similarly to the Retrieval QAs; how-
ever, since the model was now being asked for component names
(several words) rather than complete rules (sentences), we did
not want to penalize the model for small spelling errors or ending
differences. For example, if the ground truth is “front hoop," a
predicted response of “front hooped" should be considered more
correct than “front motor." F1 Bag of Words would score “front
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hooped" and “front motor" as equally correct. F1 Bag of Charac-
ters reflects the relative correctness of “front hooped" over “front
motor." It is computed in the same way as F1 Bag of Words, ex-
cept tokenization occurs on the character rather than word level.
We compute the F1 BoC for each Definition QA across all syn-
onyms, and we report the macro average of the highest score for
each QA.

Accuracy: Several subsets of our benchmark – Presence, Di-
mension, and Functional Performance questions – ask the model
to provide a yes/no answer. We score these using accuracy (ACC).

3.2.2 BLEU. The BLEU (Bilingual Evaluation Understudy)
score was developed by Papineni et al. [31] for the automatic scor-
ing of machine translations relative to human, reference transla-
tions. It has been employed in recent benchmarks [22, 32] and
was used by [22] to evaluate the semantic similarity between an
explanation provided by a generative model and an explanation
written by a human. To compute BLEU, predicted and reference
sentences are first broken up into n-grams, which are segments of
n (a user-specified number) words. n-gram matches between the
predicted and reference sentences are then found; once a predicted
n-gram is matched to a reference n-gram, the n-gram is removed
from the pool of reference n-grams in a process called “clipping."
The number of matching n-grams is then divided by the number
of n-grams in the predicted sentence, producing a modified pre-
cision score, 𝑝𝑛. The authors suggest to compute BLEU-4: 𝑝𝑛
for n = 1 through n = 4, taking the geometric mean of the four
𝑝𝑛 (since 𝑝𝑛 decays exponentially with increasing n) [31]. How-
ever, since we only use one reference (one explanation), BLEU-4
scores were always near zero. As such, we report BLEU-2, which
has non-zero scores but still preserves some of the information
about adjacency of words. BLEU-2 (with max n-gram 2) can be
computed as: log(BLEU) = min

(︁
1 − 𝑟

𝑐
, 0
)︁
+∑︁2

𝑛=1
1
2 log(𝑝𝑛)

The min() term is a “brevity penalty" and serves to penalize
predictions (of length c) that are shorter than the ground truth
(length r). For the explanation portions of the Rule Compliance
questions, we report BLEU-2 to quantify the similarity between
the model’s generated explanation and the human-generated ex-
planation.

3.2.3 ROUGE. The ROUGE (Recall-Oriented Understudy
for Gisting Evaluation) metric was developed by Lin et al. [33] to
measure the quality of a computer-generated text summary rela-
tive to a human, reference summary. The metric has been utilized
in recent benchmarks [14, 22] to assess generative models’ abili-
ties to craft explanations and summarize text. ROGUE-L, which
uses longest common sub-sequence (LCS), is useful for charac-
terizing similarity in sentence-level word order. The LCS refers
to the longest sequence of words that appear in the same order
but not necessarily consecutively in the two sentences. ROGUE-
L is computed as the F1 score of the LCS: 𝑅𝐿𝐶𝑆 =

𝐿𝐶𝑆 (𝑅,𝑃)
𝑚

,
𝑃𝐿𝐶𝑆 =

𝐿𝐶𝑆 (𝑅,𝑃)
𝑛

, and 𝑅𝑂𝑈𝐺𝐸𝐿 =
2𝑃𝐿𝐶𝑆×𝑅𝐿𝐶𝑆

𝑃𝐿𝐶𝑆+𝑅𝐿𝐶𝑆
,

where 𝑅 is a reference sentence, 𝑃 is a predicted sentence, 𝑚
is the length of a reference sentence, 𝑛 is the length of a predicted
sentence, 𝑅𝐿𝐶𝑆 is the recall, and 𝑃𝐿𝐶𝑆 is the precision. For
the explanation portions of the Rule Compliance questions, in
addition to reporting BLEU-2, we also report ROUGE-L.

4. MODEL EVALUATION
We evaluate simple baselines and recent state-of-the-art

MLLMs on our DesignQA benchmark to understand the state
of current AI models in understanding engineering requirement
documentation. The goal is to identify gaps in current AI’s capa-
bilities and encourage other researchers to build and train better
AI models and frameworks for answering the questions we col-
lected. Moreover, evaluating different MLLM models provides
some insight into the relative difficulty of the questions, and the
failure modes could serve as inspiration for better approaches to
the benchmark.

4.1 Baselines and Models
Naive Baselines Similar to [14], we create basic baselines that
rely on random selection so that it is easier to contextualize mod-
els’ performances across the different subsets and metrics of the
benchmark. For the Retrieval questions, we randomly choose a
rule from the 1192 rules in our rule list. For the Compilation
questions, we randomly pick 10 rules from our list of 1192. For
the Definition questions, we randomly choose two consecutive
words in the rule document. For the questions scored on accu-
racy (Presence, Dimension, and Functional Performance ques-
tions), we randomly select yes or no with 50% probability. Note
that these baselines are evaluated to provide a sense of the lower
threshold score (predicting randomly with no learning) for any
machine learning model.

MLLM Models We consider two recent MLLMs in our eval-
uation: the closed-source model from OpenAI gpt-4-1106-
vision-preview (GPT4) and the open-source model llava-1.5-13b
(LLaVA) [1, 34]. GPT4 is chosen for evaluation because of its
high performance on existing benchmarks [9, 14] while LLaVA
is selected because of its promise (and the promise of its deriva-
tives) as an open-source MLLM [35]. The extracted text from
the FSAE rule document PDF is roughly 70,091 tokens in length.
While GPT4 has a 128,000 token context window and can ingest
the whole text in the prompt, LLaVA only has a 4,096 token
context window and cannot. Thus, LLaVA requires the use of
a Retrieval Augmented Generation (RAG) system to retrieve the
appropriate context relevant to the question from the FSAE rule
document. RAG is a natural language processing technique that
enhances text generation by incorporating external knowledge,
dynamically retrieving relevant information from a database or
corpus to inform and improve the content being produced. It is
especially helpful for models with small context windows, as it
selectively pulls relevant information from an extensive document
to assist in generating more informed and contextually accurate
text outputs. While we need RAG to test the open-source LLAVA
model, our goal is not to study different RAG techniques. To this
end, we implement a very simple RAG system using LlamaIn-
dex and using OpenAI’s text-embedding-3-large to embed the
information in the FSAE rule document [36]. We index the text
from the rule document into 250-token chunks, with a 50-token
overlap. From the embeddings, the cosine similarity between the
question and each of the embedded chunks is then computed, and
the top-15 (top-12 for Compliance QAs) most relevant pages are
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Table 2: This table presents a detailed comparison of various MLLM models on our dataset, revealing GPT4’s superior performance of
the models tested. The results underscore that despite the advancement of these models in understanding and applying complex technical
specifications, there is significant room for improvement for AI models to understand engineering requirements.

Evaluation Metric Baseline Model
Section Subset (Metric) Naive GPT4-AllRules GPT4-RAG GPT4-NoRules LLaVA-RAG LLaVA-NoRules

Extraction Retrieval (F1 BoW) 0.082 0.750 0.181 N/A 0.112 N/A
Compilation (F1 rules) 0.137 0.298 0.362 N/A 0.281 N/A

Comprehension Definition (F1 BoC) 0.358 0.470 N/A 0.420 N/A 0.393
Presence (ACC) 0.5 0.629 0.532 N/A 0.484 N/A

Compliance Dimension (ACC/Bleu/Rouge) 0.5/-/- 0.533/0.118/0.296 0.300/0.091/0.235 N/A 0.408/0.097/0.241 N/A
Functional Performance (ACC/Bleu/Rouge) 0.5/-/- 0.563/0.167/0.342 0.563/0.121/0.306 N/A 0.536/0.163/0.321 N/A

then fed into the prompt as context, before posing the question in
the benchmark.

While there are few images in the FSAE rule document, they
were not considered for our evaluation, as they require further
processing, and LLaVA was not trained on multiple image inputs.
The few tables in the FSAE rule document will not receive any
special treatment and will be fed into the models just as simple
text from the PDF text-extracting script, together with the rest of
the text on the page.

For all subsets of the benchmark, except the Definition ques-
tions, we evaluate the performance of GPT4 given the full rule
document via its context window (GPT4-AllRules), GPT4 given
the rule document via the LlamaIndex simple RAG (GPT4-RAG),
and LLaVA given the rule document via the LlamaIndex simple
RAG (LLaVA-RAG). While the Retrieval and Compilation ques-
tions in the dataset could be answered with text-only models,
we pose the questions in this segment with a null image to the
MLLMs. For the Definition questions, RAG always returns the
same portion of the rule document since the questions across each
QA are the same (i.e., “tell me the name of the highlighted com-
ponent," even though the images vary across QAs). Because of
this, we do not test GPT4-RAG and LLaVA-RAG on the Defini-
tion questions, but we instead test GPT4 and LLaVA without any
input of the rules (GPT4-NoRules, LLaVA-NoRules) in addition
to GPT4-AllRules.

4.2 Results and Analysis
Table 2 shows all the baseline and model results. First, we

discuss some overall findings and then we specifically delve into
the results for each subset of the benchmark.

Overall Results For all subsets of the benchmark, models per-
formed better than the naive baseline. While no single model
performed the best across all subsets of the benchmark, GPT4-
AllRules was the dominant model in all subsets except the Com-
pilation questions, where GPT4-RAG was the best performer.
This finding reflects that the simple LlamaIndex RAG model
used was not very effective at providing relevant rule information
to the model, while inputting the full rule text into the context
window allowed GPT4-AllRules to access necessary informa-
tion. For the Extraction and Comprehension segments of the
benchmark, GPT4 (-RAG or -NoRules) performed better than
the corresponding LLaVA model. The reverse was true for the

Compliance Segment: LLaVA-RAG was equivalent to or outper-
formed GPT4-RAG.

Rule Extraction: Retrieval Of the models tried, GPT4-
AllRules does the best job at retrieving the requested rule ver-
batim (0.750 average BoW score). When the model’s answer
diverged from the ground truth answer, we noticed that it was
often because the model was reporting a nearby rule rather than
the rule requested (e.g. V.3.2.5 instead of V.3.2.4). Sometimes
GPT4-AllRule’s answer was different from the ground truth be-
cause it included all child rules in addition to the requested parent
rule (e.g when asked for V.1, V.1 was reported along with V.1.1
and V.1.2). While not technically wrong, this result was not han-
dled differently by our evaluation metric and may be a result we
would want to handle specifically in the future.

Providing the rules to GPT4 via RAG instead of via context
resulted in a much lower average BoW score (0.181 for GPT4-
RAG). For a number of questions (like the GPT4-RAG Retrieval
example shown in Figure 3) the model replied that it could not
produce the text for the rule because it was not included in the
rule text given to it, indicating that the simple LlamaIndex RAG
failed to provide the relevant portion of the rule document to the
model. When GPT4-RAG did provide an answer to the question,
it had similar responses to that of GPT4-AllRules. LLaVA-RAG
received the same portion of the rule document as GPT4-RAG,
but its average BoW score was even lower (0.112). Unlike GPT4-
RAG, LLaVA-RAG would hallucinate rules rather than indicate
that the requested rule was not contained within the portion of the
document it received via RAG. Furthermore, instead of returning
rules verbatim, LLaVA-RAG would frequently offer an interpre-
tation of the requested rule (as in the LLaVA-RAG Retrieval
example in Figure 3).

Rule Extraction: Compilation GPT4-RAG performs the best
at the Compilation questions (0.362 F1 rules). We noticed that
GPT4-RAG returns many fewer rules per question on average
(9.57 rules) than GPT4-AllRules (17.53 rules), as seen in Figure
3. This could explain the improved performance of GPT4-RAG
relative to GPT4-AllRules: when given the full 140-page rule
document, the model tends to over-predict relevant rules, resulting
in low precision and reducing the average F1 score. When given
the top-15 most relevant pages via RAG, the model has fewer rules
that it can draw from and therefore does not include as many false
positives in its responses. LLaVA-RAG has the lowest score of
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the models tested (0.281). For five out of the 30 questions, its
predicted rule list has a score of zero (no overlap with the ground
truth rule list). In contrast, GPT4-RAG has a score of zero for
two out of the 30 questions.

Table 3: Performance analysis of MLLM models on definition
QA, highlighting the impact of component mention types within
rule documents. GPT4-AllRules leads in direct definition men-
tions, while all models show varied effectiveness across multi-
mention and no-mention scenarios, underlining the challenges in
extracting definitions without explicit mentions.

F1 BoC GPT4
-AllRules

GPT4
-NoRules

LLaVA
-NoRules

Definition 0.74 0.56 0.50
Multi-mention 0.42 0.39 0.37
No-mention 0.35 0.35 0.37

Rule Comprehension: Definition As explained in Section 4.1,
-NoRules versions of GPT4 and LLaVA were used for this subset
of the benchmark rather than -RAG versions, since the iden-
tical question text across QAs resulted in RAG always incor-
rectly returning the same section of the rule text. Of the models
tested, GPT4-AllRules has the highest score (0.470 average F1
BoC). However, GPT4-NoRules performs better than we expected
(0.420 average F1 BoC), indicating that identification of some
components in an FSAE vehicle can be performed with knowl-
edge from the web. As explained in Section 3.1.3, we tracked
how the component-in-question in these QAs was mentioned in
the rule document (definition-component, multi-mention compo-
nent, or no-mention component). As to be expected, the drop
in F1 BoC score between GPT4-AllRules and GPT4-NoRules is
due mostly to a drop in score for the definition-component QAs
(Table 3), which without the definitions spelled-out in the rule
document, become harder to answer.

Rule Comprehension: Presence GPT4-AllRules performed
the best (0.629 accuracy) on the Presence questions of the models
tested. GPT4-RAG has a lower average accuracy (0.532), likely
because the model has access to limited (15 or fewer) rule docu-
ment chunks that reference the component in question. Like the
Dimension questions, LLaVA-RAG performs marginally worse
than GPT4-RAG.

Rule Compliance: Dimension GPT4-AllRules is the best per-
forming model on the Dimension questions, although its average
accuracy (0.533) is marginally better than the naive baseline (ran-
dom yes-no guessing). We noticed several recurring issues that
caused the model to not answer questions correctly. First, the
model sometimes struggled to reference the relevant rule (as seen
in the Retrieval questions), and this meant that the model would
not be set-up to answer the question correctly. For example,
when asked three different questions pertaining to Rule F.5.7.5,
GPT4-AllRules quotes the rule differently in each of its three
explanations: one time it quotes the correct rule, another time it

mistakenly quotes the text of the preceding rule (F.5.7.4), and the
third time it mistakenly quotes the text of a rule two rules ahead
(F.5.7.7). Second, we notice that GPT4-AllRules sometimes has
difficulty in extracting dimensions from the engineering drawing.
For example, in two scale bar questions each which has a scale bar
of 3202.4 mm, the model says that the scale bar is 1000 mm in one
instance and 500 mm in another instance. Third, we note that the
model faces difficulty in answering questions where the drawing
contains two dimensions, and the correct answer can only be ob-
tained by adding or subtracting the two together. For example, in
two questions about the same rule, the model scrapes one of two
dimensions from the provided engineering drawing and uses it
to answer the compliance question, when the difference between
the two dimensions should actually be used.

The drop in accuracy score between GPT4-AllRules and
GPT4-RAG can largely be attributed to the fact that the RAG
does not provide the model with the relevant portion of the rule
document (as seen in the Retrieval questions). In many cases
when this happens, GPT4-RAG refuses to provide a yes/no an-
swer (as in the example in Figure 3), resulting in an accuracy
score of zero for that question. LLaVA-RAG receives the same
portions of the rules as GPT4-RAG, but it does not indicate when
the portion of the rules doesn’t contain the rule-in-question. As a
result, LLaVA5-RAG provides yes/no answers to most questions
(51/60) while GPT4-RAG provides yes/no answers to many fewer
questions (21/60). Because providing a yes/no answer improves
the chances of guessing correctly (while refusing to answer au-
tomatically results in a score of zero), LLaVA-RAG receives an
inflated average accuracy score on the dimension questions com-
pared to GPT4-RAG. We also observe that many of the expla-
nations that the models provide are significantly longer than the
reference explanations we have (see Figure 3). It is therefore dif-
ficult to capture the correctness of explanations through the Bleu
and Rogue scores. The interpretability of these scores would be
improved by obtaining more human reference explanations, so
as to better capture the distribution of possible explanations that
could be considered correct.

As explained in Section 3.1.2, one-third of the questions
comprising the Dimension QAs used scale-bars in the engineer-
ing drawings, while the other two-thirds used direct dimensions.
We were curious to see what impact these two different dimen-
sioning systems had on model performance. As seen in Table
4, all models perform better on the direct-dimensioned drawings
than on the scale-bar drawings. The models seemed to strug-
gle with the scale-bar, sometimes indicating in their explanations
that they were using it for “rough" or “estimated" dimensions
rather than precise ones and in some cases explaining that their
“image capabilities...do not include measuring dimensions." As
explained in Section 3.1.4, half of the Dimension questions were
given additional context that we believed would help in answer-
ing the question while the other half were not. Surprisingly, we
did not see any obvious trends in model performance with versus
without the additional context. GPT4-AllRules and LLaVA-RAG
performed worse with additional context, while GPT4-RAG per-
formed better. More investigation into the effect of additional
context is needed.
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Table 4: Effect of dimensioning system used in engineering draw-
ings on model accuracy on Dimension QAs. These results high-
light the fact that the MLLMs tested are better able to answer
questions about engineering drawings that are direct-dimensioned
rather than those that have a scale-bar.

ACC by Dimension
System GPT4-AllRules GPT4-RAG LLaVA-RAG

Direct 0.663 0.45 0.41
Multi-mention 0.275 0 0.400

Rule Compliance: Functional Performance All of the
MLLMs tested received the same accuracy score on the Func-
tional Performance questions, although they did not provide iden-
tical yes/no responses for each question. Similar to the Dimension
questions, we notice that the models sometimes cite the wrong
rule, setting up the rest of the question for failure. We also notice
some instances of not extracting information correctly from the
provided images (e.g. not identifying that an image of FEA has
a numerical scale bar or not correctly identifying the peak force
in a force-displacement graph). We also observe some instances
where a model makes additional assumptions about the question
that are not incorrect, but encourages it to choose the wrong
yes/no answer. For example, in one question, GPT4-AllRules is
presented with a graph showing gearbox temperature over time,
which approaches but does not exceed 60 °C. The rule in ques-
tion specifies that the maximum temperature should not exceed
60 °C; while data provided does not, the model explains that it
could if tested for more time, so it is not rule compliant. This is a
valid answer, but not what we intended. Additional context in the
prompt could help improve the clarity of these questions. More-
over, this set of questions was limited to just 16 due to limited
resources and the time and expertise required to obtain and write
these questions. Future work will focus on expanding this sub-
set to better characterize model capabilities on more functional
performance-type questions.

Recommendations for Models for This Benchmark In the
results presented thus far, we have demonstrated how two state-
of-the-art models, with and without simple RAG, perform against
our benchmark. Here, we present some observations on how one
might modify these models to achieve improved performance on
our benchmark.

First, experimentation with the RAG model would be worth-
while so that relevant portions of the rule document are better
retrieved. While we generally saw better performance when the
full rule document was included in the model’s context window
instead of provided to the model via RAG (GPT4-AllRules vs.
GPT4-RAG), including the full rule document in the context of
every question is very expensive (around $800 for all questions
in the dataset, at the time of writing, when using the latest vision
model through the OpenAI API). As such, effective RAG could
help reduce the computational burden. As seen in the results pre-
sented for the Retrieval questions, the simple LlamaIndex RAG
used in this paper often does not provide the relevant section of
the rule document to the model. Since the benchmark contains

VQAs, we expect that models coupled with multimodal RAG –
where the QA image could help in selecting the relevant portion of
the rule document – could help improve scores on the benchmark.
The RAG could also perhaps be improved by experimenting with
different chunking methods. Nevertheless, as models become
cheaper, more computationally efficient, and trained with larger
context windows, RAG approaches might become less useful.

Second, improving the quality of the instructions provided
to the MLLM models, by using techniques such as prompt-
engineering, might result in improved performance on the bench-
mark. For example, extracting specific portions of the prompt to
be fed to the RAG would likely improve the scores of models with
RAG. Few-shot learning or including chain of thought reasoning
[22] may also improve model scores. Third, we suspect that
fine-tuned models would exhibit improved performance on the
benchmark. Since many tasks in the benchmark require that the
model can first extract a relevant rule and then answer a question,
fine-tuning a model on the Retrieval QAs may result in improved
performance across the entire benchmark. This capability could
also be obtained by hybrid models that combine rule-based search
and deep learning. Lastly, while we presented the results of two
base models in this work, many other closed and open-source
models could be evaluated on our benchmark and might perform
better.

5. FUTURE WORK AND LIMITATIONS
Engineering design, inherently grounded in practical appli-

cations, necessitates a deep understanding of technical documents
to ensure that designs not only meet but also adhere to stringent
requirements and standards. One of the critical insights emerg-
ing from our benchmark evaluations is the realization that modern
AI models are still in the nascent stages of truly understanding
engineering documentation. This limitation highlights a signif-
icant gap in the path toward fully automated design processes.
As highlighted in the prior section, there is therefore substantial
future work to be done to improve MLLM models’ abilities to
solve engineering design and design requirement problems.

While this benchmark presents a first step into formally eval-
uating a model’s ability to interpret and understand design re-
quirement documentation, the size of our current benchmark is
limited to just one requirement document, and the creation costs
(requiring expert manual validation) pose limitations on the gen-
eralizability and scalability of the dataset. Moreover, the metrics
used to evaluate models against the benchmark could be further
improved, as Bleu and Rouge have known limitations and quali-
tatively do not perfectly capture the correctness of the generated
answers.

6. CONCLUSION
This study introduces DesignQA, a novel MLLM bench-

mark with 1451 questions and answers based on data from MIT
Motorsports and the FSAE competition rule document. The
benchmark is designed to assess large language models’ abilities
to answer questions about design according to technical require-
ments. The benchmark is divided into six subsets - Retrieval,
Compilation, Definition, Presence, Dimension, and Functional
Performance - representative of tasks performed by engineers
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when designing according to technical specifications. Each sub-
set of the benchmark has its own automatic evaluation metric,
so that new MLLMs can be seamlessly tested. The questions
in the benchmark are designed by humans - MIT Motorsports
members, industry professionals, and researchers - to ensure a
high-quality benchmark. Different from many existing MLLM
benchmarks, DesignQA contains document-grounded VQAs, in
which the input image and document come from differing sources,
characteristic of many real-world scenarios.

Using DesignQA, we conducted a rigorous evaluation on
variants of two state-of-the-art MLLMs: GPT4 and LLaVA. We
uncovered significant limitations in their current abilities to ac-
curately interpret complex technical documents, specifically in
referencing relevant requirements and extracting numerical infor-
mation from technical images. Our research highlights the need
for advancements in AI models to enhance their comprehension of
engineering requirements and documentation, suggesting direc-
tions for future efforts. Our work aims to bridge the gap in AI’s
capability to support engineering design processes more effec-
tively, paving the way for sophisticated AI-assisted engineering
solutions.
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