Multi-modal Machine Learning in Engineering
Design: A Review and Future Directions

Multi-modal machine learning (MMML), which involves
integrating multiple modalities of data and their corre-
sponding processing methods, has demonstrated promis-
ing results in various practical applications, such as text-
to-image translation. This review paper summarizes the
recent progress and challenges in using MMML for en-
gineering design tasks. First, we introduce the differ-
ent data modalities commonly used as design represen-
tations and involved in MMML, including text, 2D pixel
data (e.g., images and sketches), and 3D shape data (e.g.,
voxels, point clouds, and meshes). We then provide an
overview of the various approaches and techniques used
for representing, fusing, aligning, synthesizing, and co-
learning multi-modal data as five fundamental concepts
of MMML. Next, we review the state-of-the-art capa-
bilities of MMML that potentially apply to engineering
design tasks, including design knowledge retrieval, de-
sign evaluation, and design synthesis. We also highlight
the potential benefits and limitations of using MMML in
these contexts. Finally, we discuss the challenges and fu-
ture directions in using MMML for engineering design,
such as the need for large labeled multi-modal design
datasets, robust and scalable algorithms, integrating do-
main knowledge, and handling data heterogeneity and
noise. Overall, this review paper provides a comprehen-
sive overview of the current state and prospects of MMML
for engineering design applications.

1 INTRODUCTION

We perceive and interact with the world around us
in multiple ways - by seeing, hearing, feeling, smelling,
and so forth. Information is often delivered and commu-
nicated to the senses of the interpreter using a certain
medium or multiple media, such as images and sound.
A modality refers to the medium through which an ob-
ject exists or is experienced. Common data modalities
include [1]:

(1) Natural language (both spoken and written);
(2) Visual (images, videos, sketches, renderings, 3D ge-

ometries);

(3) Auditory (e.g., voice, sounds, and music);

(4) Haptics or Touch;

(5) Smell, taste, and self-motion;

(6) Physiological signals, such as electrocardiogram,
and skin conductance;

(7) Other modalities, such as infrared images, depth im-
ages, and functional magnetic resonance images.

In machine learning (ML), a modality refers to a certain
type of information or the representation format in which
information is stored and input to ML models. A model is
multi-modal when it works with multiple such modalities.
Since we often rely on multiple media to fulfill tasks in the
real world (e.g., sound and visuals to understand a video),
multi-modal machine learning (MMML) is needed to de-
velop ML models that emulate humans for these tasks.

The concept of “multi-modalities” was first explored
in behavioral and sensory research by David McNeill [2].
It has since been applied to computational systems for
audio-visual speech recognition and multimedia informa-
tion retrieval. Before the rise of deep learning (DL),
MMML relied on traditional ML models such as hidden
Markov models [3], shallow artificial neural networks,
dynamic Bayesian networks [4], and discriminative se-
quential models [5]. The representation-based DL era
of MMML began around 2011, thanks to the increas-
ing availability of multi-modal data such as VQA [6]
and CLEVR [7], the increased power and affordability
of graphics processing units, the ability of DL to learn
high-level visual features, and the vectorization of seman-
tic features. The strides in MMML first revitalized the
area of media description like image or video caption-
ing [8], visual question answering (VQA) [9], and cross-
modal information retrieval (IR) [10]. In recent years,
MMML has gained significant attention. Particularly, the
advent of deep generative models (DGMs) like genera-
tive adversarial networks (GANs) [11], diffusion models
(DMs) [12], and their variations [13, 14] has led to the
rapid development of various cross-modal DGMs, such
as DALL-E [15] and Stable Diffusion [16].



1.1 Definition of Multi-Modal Machine Learning

Most traditional ML models have been trained using
a single type of input data or unimodal data, which we
call unimodal machine learning in this paper. For exam-
ple, a model might be trained on text data, audio data, or
image data but not a combination of these types. The core
of unimodal ML is to learn the latent unimodal represen-
tations, based on which we can conduct various down-
stream ML tasks, such as classification, regression, gen-
eration, and clustering. In comparison, MMML involves
training a model on multiple types of input data or multi-
modal data. It can be more challenging, as it requires
understanding and integrating multiple different forms of
data. However, it can also be more powerful, as it can
exploit the complementarity, alignment, and redundancy
of multi-modal data, leading to a more complete under-
standing of an instance and enabling cross-modal prob-
lem solving.

In this paper, we refer to an instance as a data point
from a multi-modal dataset that is represented by multiple
modalities and a feature as a vectorized latent representa-
tion of input data at different learning stages that reflects
the characteristics of the data in the real world. Under
this setting, complementarity means the information com-
ponents from different modalities complement each other
for describing an instance. Alignment refers to the cor-
respondence between the information components of an
instance from different modalities. Redundancy signifies
that the information components from different modali-
ties have the same meaning, which enhances the robust-
ness of the models learning them.

Currently, most MMML efforts focus on handling
two data modes, also known as bimodal machine learn-
ing (BML). However, it is expected that MMML will
evolve beyond BML to involve more data modes, po-
tentially up to six, in the near future. Additionally, as
the internet continues to connect more and more cyber-
physical systems, MMML may advance to what we call
“many-modal learning”, where models can use all kinds
of data collected by various sensors. This type of many-
modal learning will present new challenges, such as the
curse of dimensionality and ambiguity among the differ-
ent data modes. The evolution of MMML may resonate
with the multi-objective and many-objective optimization
literature, where algorithms developed for multi-objective
problems do not work well for many-objective problems
due to the large dimensionality.

Since MMML enables ML models to “see” beyond
single data modes, it enhances model performance. It has
the potential to transform ML research and practical ap-
plications across a variety of domains. For example, in
the healthcare industry, MMML could improve the accu-

racy of diagnosis and treatment recommendations by in-
corporating data from various sources, such as medical
records, images, and patient-reported symptoms. In fi-
nance, MMML could detect fraudulent activities by com-
bining data from transactions, account activity, and so-
cial media posts. In the retail industry, MMML can po-
tentially personalize customer recommendations by com-
bining data from their browsing and purchase history, as
well as data from social media and other sources. The im-
pact of MMML extends beyond specific industries. It has
the potential to drive innovation and increase efficiency
across a range of sectors, leading to increased productiv-
ity and competitiveness of the US economy. However, the
adoption of MMML in engineering design applications
has been slow. In this paper, we review existing work in
MMML, discuss different methods and applications, and
highlight the key challenges for its applications in engi-
neering design.

1.2 Multi-modality in Design Representation

In recent years, design researchers have made signif-
icant progress in exploring the state-of-the-art DL mod-
els for design synthesis [17, 18, 14, 19], evaluation [20],
and optimization [13]. The representation of the de-
signs learned by the ML models affects the model ef-
fectiveness [21]. A representation framework with suf-
ficient power to capture the nature of designs for formal
and functional reasoning is necessary during the design
process [22]. Distinct representation modes require dif-
ferent design resources, such as skill and time, and re-
sult in different levels of representation resolution and
fidelity, ranging from rough sketches to realistic render-
ings [23, 24, 25], and detailed 3D models. The selec-
tion of design representation mode impacts human per-
ception and creative design performance, and design fix-
ation [24, 25, 26, 27, 28, 29].

Traditionally, hand-drawing hand-drawing sketches
are commonly used to express and communicate concepts
at the early design stages. This approach permits efficient
exploration at different abstraction levels and preserves
ambiguity in this process, which is beneficial for innova-
tion and creativity [26, 30]. Likewise, line drawings cre-
ated with assistive instruments or by computer can also
serve as design representations [31]. The digital revolu-
tion and advances in computer-aided design (CAD) soft-
ware provide us with more options for design representa-
tion. Two-dimensional (2D) and three-dimensional (3D)
representations are typically used to generate interactive
and potentially complex solutions during the detailed de-
sign stage [30]. Researchers found that the adoption of
CAD in concept generation facilitates the exploration in



depth, rather than in breadth [27]. Through computer
graphic applications (e.g., Autodesk Maya), 3D represen-
tations can be converted to simplified or realistic render-
ings or view silhouettes from given perspectives to repre-
sent a design concept [32].

Physical prototypes provide another representation
approach. Design details can be more clearly and accu-
rately interpreted and understood in terms of 3D spatial
relationships when represented by such prototypes [30,
33]. Clay modeling is commonly used for prototyping in
automobile styling design, which not only brings a design
and its spirit to life but also enables intuitive design, fine-
tuning, and improvement. When physical prototypes are
unavailable, designers use their photographs to communi-
cate the corresponding designs instead [31]. In addition,
textual descriptions are also used separately or along with
visual representations to convey design concepts [34].
In other cases, design concepts can be represented by a
set of continuously valued attributes [35], such as dis-
play length and pixel density, or functions [36]. To pro-
mote information exchange during conceptual design, re-
searchers have also explored theoretical design represen-
tation methods, such as function model [37], functional
decomposition and morphology [38], problem solution
network [39], and morphological charts [39]. Recently,
researchers have also explored virtual reality, augmented
reality, augmented virtuality, and mixed reality to repre-
sent designs [40].

In engineering design, multiple data modes are of-
ten used together to represent a design, such as sketches
with textual descriptions and prototypes with tabular, ver-
bal, or textual descriptions. Design representation evolves
across different design stages, from more abstract for-
mats to more detailed formats. Through experimental
studies, researchers have suggested that adopting differ-
ent representation modes at different design stages can
enable a fluent exploration process [41, 42]. Despite
the wide usage of multiple modalities in design prac-
tice, most ML applications supporting design research
are unimodal. MMML, being able to capture the com-
plementarity and alignment between different modalities,
has great potential for a more comprehensive Al-based
comprehension of designs. This may enable more accu-
rate design evaluation to reduce the human efforts needed
for manual assessment. Furthermore, MMML allows for
cross-modal syntheses, such as text-to-image and image-
to-shape generation, facilitating design exploration.

1.3 The Scope of This Paper
This paper provides a technical review of the funda-
mental concepts and exemplary applications of MMML.

As most of the recent ML strides happen in DL, we
focus our review of MMML on DL. Figure 1 illus-
trates the scope of this paper. Since engineering de-
sign is the target application domain, our study mainly
focuses on applications involving texts, images (e.g.,
sketches or images), and shapes (e.g., voxels, point
clouds, meshes) that have been adopted in engineering
design or have the potential to be adapted to engineer-
ing design. On this basis, we also discuss the future di-
rections and challenges of adopting MMML in engineer-
ing design. This paper differs from the prior MMML
review papers from a few perspectives. Compared to
the review papers published in ML [43], signal pro-
cessing [44], and medical domains [45], this paper fo-
cuses more on the approaches and applications involv-
ing sketches and 3D shapes but less attention to those re-
lated to modalities less used in engineering design, such
as video and audio. Moreover, the emergence of the
DMs [12] and the large pre-trained multi-modal repre-
sentation models (e.g., contrastive language-image pre-
training (CLIP) [46]) have promoted the development of
cross-modal synthesis greatly, which was not covered in
the previous review papers. Compared to the review pa-
per published in the Journal of Mechanical Design [47],
this paper reviews the fundamental concepts supporting
various applications, categorizes and discusses the rele-
vant approaches, and covers a more comprehensive set of
applications.

The remainder of this paper is organized as follows.
Section 2 reviews the fundamental concepts of MMML
and the mainstream approaches to handling them. Sec-
tion 3 reviews the exemplary applications of MMML and
proposes the potential for adopting or adapting them for
engineering design. Section 4 discusses the challenges
and opportunities that the engineering design community
faces in applying MMML to engineering design. We con-
clude the paper by providing a summary and prospects of
MMML in engineering design in Section 5.

2 FUNDAMENTAL CONCEPTS

MODAL MACHINE LEARNING

This section reviews the fundamental concepts of
MMML, including representation, fusion, and align-
ment of multi-modal data, cross-modal synthesis, and
co-learning. These concepts enable MMML to handle
the heterogeneity and exploit the complementarity, align-
ment, and redundancy of multi-modal data. They are also
the key ideas that differentiate MMML from unimodal
ML and support various multi-modal applications. For
example, multiple of these concepts may be involved in
multi-modal prediction, such as representation and fu-
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Figure 1. The scope of this paper is exemplified by car designs. Engineering design involves data from multiple modalities, which

MMML can employ for a variety of applications

sion for capturing and integrating features from multiple
data modes to exploit their complementarity, alignment
for capturing the salient features, and co-learning for han-
dling missing modalities or small datasets.

Before the review, we first describe the structures of
multi-modal data briefly to help readers understand the
following concepts. In MMML, multi-modal data can be
parallel, non-parallel, or hybrid [43]. Parallel data com-
prises associated instances from multiple modalities, such
as images and their captions. In contrast, non-parallel
data does not require instances of multiple modalities to
be associated but to share common categories, such as im-
ages from different categories and the Wikipedia pages of
these categories [48]. With hybrid data, multiple modal-
ities are not paired directly but linked indirectly through
a pivot modality, i.e., each modality is partly paired with
the pivot modality, such as different languages connected
via English as the pivot language [49]. We begin with our
discussion about multi-modal representation.

2.1 Multi-modal Representation

Information representation is the basis of any reason-
ing conducted by humans or computers. Information can
be represented in many forms, such as physical or digital.
In general, computers operate with digital representation.
As for MMML, representation refers to learning vector
representations of multi-modal data that can capture the
complementarity, alignment, and redundancy of multiple
modalities. To learn multi-modal representation, multiple
unimodal representations are often first learned from the
corresponding data modalities and then brought together
at earlier or later learning stages.

2.1.1 Different Representation Forms

Multi-modal representations can be categorized into
two classes: 1) joint representation and 2) coordinated
representation [43]. Figure 2 exemplifies the joint rep-
resentation and coordinated representation of a design
instance represented by a sketch and a text description.
Joint representation fuses multiple unimodal representa-
tions into a single multi-modal representation through one



or multiple shared layers, enabling different modalities
to complement each other (Figure 2-A). Different fusion
methods will be reviewed and discussed in the follow-
ing subsection. This representation is commonly used for
multi-modal prediction [50, 51, 52, 53]. Coordinated rep-
resentations are multiple coordinated unimodal represen-
tations learned from the associated modalities (Figure 2-
B). Typically, it projects different modalities to a com-
mon subspace and maximizes the similarity [46], corre-
lation [54, 55, 56], mutual information [57], or agree-
ment [58] between the associated unimodal representa-
tions through the loss function. This approach facili-
tates capturing the correlations and the mutual informa-
tion across modalities, which has been applied to cross-
modal IR [10, 59, 56] and synthesis [10]. Coordinated
representations can be learned at the instance level and
finer levels, such as image or sentence fragments, to fa-
cilitate fine-grained reasoning [60, 61, 62, 63]. Joint rep-
resentation applies to two or more modalities, while coor-
dinated representations mostly apply between two modal-
ities.
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Figure 2.  Architectures of joint representations and coordinated
representations. Joint representations are projected to the same
space using all modalities as input. Coordinated representations,
on the other hand, exist in their own space but are coordinated
through a similarity or correlation metric.

2.1.2  Learning Process of Representations
Multi-modal representations can be learned through

supervised, unsupervised, or semi-supervised learning.

Since coordinated representations are learned in a task-

agnostic way, different modalities can serve as the “su-
pervision” of each other, which falls in self-supervised
learning (i.e., a type of unsupervised learning) [46, 54,
55, 57, 58]. In comparison, joint representations can
be obtained through either supervised or unsupervised
learning. When high-quality labels are available, super-
vised learning captures rich intra-modal and cross-modal
interactions useful for single or multiple tasks simul-
taneously [52, 64]. Alternatively, bimodal autoregres-
sive transformer models can learn joint representations
in a self-supervised way via pre-training tasks, such as
masked content prediction [65, 66, 67, 68, 69]. Addi-
tionally, both joint representations and coordinated repre-
sentations can be learned by multiple streams of DGMs
(e.g., deep Boltzmann machines [50] or auto-encoders
(AE) [70, 71, 56]) that are joined together or work sep-
arately in an unsupervised manner. With generative abil-
ity, this approach can fill in unexpected missing modali-
ties [72, 50]. When labeled data is limited, but a large set
of non-parallel data is available, semi-supervised models
can transfer knowledge across modalities to learn better
multi-modal representations [73, 74].

2.1.3  Pre-trained Bi-modal Representations from Liter-
ature

Since it is non-trivial to learn effective multi-modal
representations for single tasks, researchers have re-
leased a couple of pre-trained multi-modal representa-
tions that are generalizable to various tasks. Due to
the easy availability of a large amount of paired tex-
tual and visual data, most pre-trained multi-modal rep-
resentations are for these two modalities. The main-
stream pre-trained joint representations are learned by
transformer-based autoregressive models (ARMs), such
as Unicoder-AL [65], VL-BERT [66], VisualBERT [67],
and B2T2 [68], LXMERT [75], VILBERT [76], and
OmniNet [77]. Benefiting from attention mechanisms,
these models are good at capturing cross-modal align-
ment (please see the Alignment Subsection for more de-
tail) and are commonly used for cross-modal reasoning,
such as VQA [65] and image captioning [66]. In compar-
ison, CLIP [46] is a popular coordinated representation.
It is pre-trained to predict which caption goes with which
image to maximize the similarities between the represen-
tations of the associated images and captions. The learned
representations are transferable to various tasks and com-
petitive with a fully supervised baseline without the need
for any dataset-specific training. It has since become one
of the most commonly used multi-modal representations
for cross-modal synthesis tasks. Similarly, contrastive
image-shape pre-training (CISP) [78] is a newly pro-



posed coordinated representation for images and shapes.
It matches images and shapes to patch embeddings us-
ing 2D and 3D convolutions and embeds the 2D and 3D
patch embeddings using two transformer-based encoders,
respectively. CISP has been employed for image-to-shape
synthesis.

2.1.4 Discussion on Multi-modal Representation in En-
gineering Design

MMML in engineering design exploits multi-modal
representations to inform the design process. While
MMML can capture rich and diverse information for de-
sign tasks, it also poses unique challenges that may im-
pact the performance and effectiveness of such models.
In engineering design, design representation often needs
to transform from highly abstract modes (e.g., textual de-
scriptions), to more expressive modes (e.g., sketches),
and to higher-fidelity modes (e.g., 3D models). In ear-
lier design stages, abstract design representations are ex-
pected to avoid design fixation and help induce creativ-
ity. As the design process goes on, designers need more
expressive representations to accommodate more design
details reflecting the working principles or mechanisms
and spatial relationships. In later design stages, high-
fidelity representations are used to accurately articulate
design parameters and configurations to prepare designs
for downstream tasks, such as evaluation, optimization,
and manufacturing. These perspectives are barely consid-
ered for MMML in other domains, which makes it more
difficult to learn effective multi-modal representations for
engineering design.

First, engineering design needs more effective multi-
modal representation to model complex design spaces.
Design representations convey structural, functional, and
behavioral information about a design, making design
spaces more complex than other data spaces. The infor-
mation is often contained in different modalities. For ex-
ample, visual representations (e.g., sketches, shapes) can
demonstrate the structural and spacial relations between
different components more straightforwardly, while text
descriptions can describe the functions and behavior of a
design more clearly. Engineering design requires MMML
models to effectively integrate and analyze information
from different modalities to model such design spaces and
obtain a deep understanding of them.

Second, engineering design requires MMML to han-
dle noisy design representations when learning multi-
modal representations. When visualizing design con-
cepts, especially through hand-drawing sketches, de-
signers tend to express design concepts with their per-
sonal styles, leading to variations in design representa-

tions. Moreover, annotations are often present in design
sketches and diagrams as shown in Figure 2 to clarify cer-
tain design information, which are informative but need
careful processing to extract the useful information and
be removed for visual feature learning. We need specific
techniques to handle the stylistic differences and the an-
notations. Otherwise, they may disguise or mix with the
conceptual differences between design instances and hin-
der the learning of effective multi-modal representations.

Third, engineering design demands MMML to work
more effectively with small design datasets. In many
cases, the available design datasets for MMML are small,
which can negatively impact multi-modal representation
learning. This is especially true when a design space
is highly diverse and varied, as MMML models may
not have sufficient examples to learn from. Missing or
non-parallel data is also a common issue in engineer-
ing design. That is, certain modalities may be unavail-
able or difficult to collect, or different modalities of de-
sign instances are not properly synchronized or matched.
Accordingly, we need proper techniques to learn effec-
tive multi-modal representations from complex, noisy,
and small design datasets to promote the application of
MMML to engineering design.

The learning of joint representations needs a step to
fuse multiple unimodal representations. In the next sec-
tion, we review the different ways of doing this, each uti-
lizing the unimodal features to a different degree.

2.2 Multi-modal Fusion

Multi-modal fusion is the concept of joining infor-
mation from two or more modalities for prediction tasks
(e.g., classification or regression). Such tasks benefit
from fused joint representations from three aspects: 1)
the multi-modal information redundancy makes predic-
tions more robust; 2) the multi-modal information com-
plementarity can be captured to make predictions more
accurate; 3) predictions can still be conducted when a cer-
tain modality is missing [43].

Classical methods of multi-modal fusion: Before the
advent of deep neural networks (DNNs), multiple kernel
learning [79] and shallow graphical models [80, 81, 82]
were commonly used to fuse information from multiple
modalities [83, 84]. They are more suitable when train-
ing datasets are small or model interpretability is impor-
tant [43]. Since DNNs have overtaken other ML meth-
ods in many tasks in recent years, this paper focuses
on multi-modal fusion in DL. Inspired by the definitions
from [43, 44, 45], we categorize multi-modal fusion into
three classes, namely, operation-based fusion, bilinear



pooling fusion, and graph-based fusion. Figure 3 illus-
trates how they work.

2.2.1 Operation-based Fusion

The operation-based approaches integrate unimodal
representations using simple operations (Figure 3-A),
such as concatenation [85, 86, 87, 52], averaging [88],
element-wise multiplication [89], (weighted) summa-
tion [86, 87, 90], linear combination [86], and majority
voting [91]. For element-wise operations, the pre-trained
unimodal representations for all modalities need to have
the same dimension and be rearranged in an order suit-
able for such operations [92]. Operation-based fusion can
be done at early or late learning stages, or in a hybrid
manner. Early fusion integrates low-level features ex-
tracted from each modality, allowing for the exploitation
of inter-modality correlations and interactions [92]. It is
easy to implement but results in high-dimensional multi-
modal representations, which may cause over-fitting if in-
sufficient training data is available. Late fusion combines
high-level unimodal features or unimodal decision val-
ues [91]. It allows for more intra-modality interactions
and higher flexibility of the unimodal models, enabling
them to learn better unimodal representations. Late fu-
sion can also handle unexpected missing modalities more
easily than early fusion. However, it overlooks the low-
level interactions between modalities. Hybrid fusion is a
solution that takes advantage of both early and late fusion
at the cost of more complex fusion mechanisms [86, 93].
For a specific dataset and task, the optimal fusion archi-
tecture in terms of fusion stage and operation often needs
to be figured out by researchers through experiments. Re-
searchers have proposed to exploit reinforcement learning
to search the possible solution space for the optimal archi-
tecture [94] or using a surrogate model to predict promis-
ing architectures [92].

2.2.2 Bilinear Pooling Fusion

Bilinear pooling fusion (Figure 3-B), which is also
known as tensor-based [45] or bilinear model-based fu-
sion [95], integrates multi-modal feature vectors by calcu-
lating their outer product [95] or Kronecker product [96,
97]. This approach can capture the high-order multiplica-
tive interactions among all modalities, leading to more
expressive and predictive multi-modal representations for
fine-grained recognition [95, 96]. Each feature vector is
often extended with an extra value of one to preserve uni-
modal features [96]. However, bilinear pooling that takes
vectors of n-dimensional and m-dimensional as input and
outputs a joint o-dimensional feature is equal to working
with a 3D tensor of m X n X o, which can be huge when

the unimodal dimensions and output dimension are high.
Handling such a high-dimensional tensor is complex and
impractical. A few low-dimensional approximations have
been proposed to optimize the trade-off between expres-
siveness and computation efficiency. These models either
decompose the high-dimensional 3D tensor into multi-
ple low-dimensional 2D tensors [98, 99, 100, 101, 102]
or replace the high-dimensional 3D tensor with a low-
dimensional 3D tensor and two 2D tensors [103, 104] or
a set of low-dimensional 3D tensors [105].

2.2.3 Graph-based Fusion

The graph-based methods utilize the strengths of
graphs in modeling relations between individual elements
to fuse multi-modal features (Figure 3-C). In such graphs,
each node represents an instance, and an edge indicates
the relationship between a pair of instances, while the
node embeddings and edge embeddings carry informa-
tion from different modalities [106]. Such graphs can
be learned by graph neural networks (GNNs) to update
the node embeddings by passing information through the
edges between the nodes. The passed information fuses
both node and edge information from multiple modali-
ties. A few studies [107, 108] used this approach to fuse
image and non-image features and evidenced that it out-
performed simple fusion via concatenation operation.

2.2.4  Discussion on Multi-modal Fusion for Engineer-
ing Design

Effective joint representations learned through multi-
modal fusion are the core of multi-modal prediction (e.g.,
classification and regression) tasks. The engineering per-
formance evaluation of the designs represented in multi-
ple modalities falls in this task category, which is an im-
portant aspect of engineering design. Compared to other
classification or regression tasks, design evaluation re-
lies on (1) more sophisticated structural, functional, and
behavioral design features from different modalities, (2)
more effective fusion to learn the interactions between the
features learned from different modalities, and (3) more
complex cross-modal reasoning with the multi-modal fea-
tures and interactions. Effective fusion can help capture
complementary information from multiple modalities, fa-
cilitating multi-modal design evaluation. Accordingly,
MMML models in engineering design need to capture and
fuse complex and sophisticated design features more ef-
fectively to support the corresponding reasoning for de-
sign evaluation.

Besides the approaches reviewed above, attention is
also commonly used for multi-modal information fusion.
Since it is a powerful mechanism to align features across
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Figure 3. Architectures of different fusion methods

modalities, it is reviewed separately in the following sub-
section regarding alignment.

2.3 Alignment

Alignment is defined as aligning unimodal features
by finding the correlations and correspondences between
elements from multiple modalities. Alignment in DL
does not explicitly align features or need explicit super-
vision to learn the alignment [109]. In recent years, atten-
tion mechanisms have become a popular method of align-
ing multi-modal features [44, 45]. They can model de-
pendencies between a query and different data elements
dynamically and assign higher weights to the elements
more relevant to the query [110, 111]. The query can be
seen as the focus drawing attention. Multi-head atten-
tion allows us to focus on multiple data elements and pre-
serve the important information comprehensively [110].
In MMML, cross-attention often uses queries from one
modality to search for relevant features from another
modality [44, 112]. Various attention mechanisms have
enabled better model performance and interpretability
in various tasks. We review the attention mechanisms
used in MMML. Figure 4 demonstrates different atten-
tion mechanisms in aligning information of the textual
descriptions and sketches.

2.3.1 Customized Attention

In DL, attention mechanisms can be customized for
different data and tasks. Commonly used attention mech-
anisms include directional attention and symmetric at-
tention (or co-attention), as shown in Figure 4. Direc-
tional attention uses queries from one modality to at-
tend to another modality (Figure 4-A). In previous stud-
ies, researchers have used visual attention (i.e., using vi-
sual features to identify important semantic features) for
VQA [113, 9] and image captioning [8, 114] and se-

mantic attention (i.e., using semantic features to iden-
tify important visual features) for text-to-image synthe-
sis [115, 116, 117]. In symmetric attention (Figure 4-
B), queries from each modality are used to attend other
modalities, which can highlight salient information from
multiple modalities simultaneously to better reason cross-
modal interactions [118, 119, 120]. Previous studies
have evidenced its effectiveness in multi-modal classifica-
tion [51], regression [52], IR [119, 118], and VQA [121]
tasks. Additionally, multiple attention layers or stages can
be stacked to capture richer alignment information and
facilitate progressive reasoning. Such methods have been
applied to VAQ [122, 123, 124, 8, 125, 114, 126] and text-
to-image synthesis [16].

2.3.2  Multi-modal Transformer

Transformers [110] are a type of autoregressive mod-
els (ARMs) following the AE architecture built only with
attention layers and feedforward layers. They were pro-
posed for language comprehension and have become a
powerful tool to learn sequential data, especially long
sequences. The effectiveness of the multi-head self-
attention mechanism of transformers in unimodal text
learning has motivated researchers to generalize trans-
formers to multi-modal use. Such models, such as
Unicoder-AL [65], VL-BERT [66], VisualBERT [67],
and B2T2 [68], take the visual tokens (e.g., regions of
images) and textual tokens as input to learn the semantic,
visual, and contextualized multi-modal embeddings (Fig-
ure 4-C). They are trained with different pre-trained tasks,
such as masked token or image region prediction, without
explicit supervision. Another strand of models extends
transformers to multi-modal two-stream models, such as
LXMERT [75] and ViLBERT [76]. They first derive uni-
modal features from unimodal tokens (e.g., semantic and
visual tokens) using two streams of transformers and then
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use a cross-modal attention mechanism to align the uni-
modal features. Data2Vec [127] takes one step further
to extend bi-modal transformers to multi-modal trans-
formers and aims at creating a general multi-modal self-
supervised learning scheme. Its goal is to produce con-
textualized latent representations for the full input data.
To accomplish this, a standard transformer with a masked
view of the input in self-distillation is used.

Besides attention mechanisms, researchers have also
explored other mechanisms to weigh different data el-
ements, such as multi-modal residual networks [128],
gated multi-modal units [129], and dynamic parameter
layers [130]. Interested readers can refer to the specific
papers for more details.

2.3.3 Discussion on Alignment in Engineering Design
The effectiveness of various attention mechanisms
for capturing implicit multi-modal alignment has been ev-
idenced in fulfilling a variety of tasks. In MMML, learn-
ing the alignment between different modalities is the basis
of cross-modal synthesis. Since the current approaches
can only capture implicit cross-modal alignment, there
are few labeled datasets [131, 63, 74] with explicit an-
notated alignment to train models that can directly learn
explicit cross-modal alignment from one or multiple de-
fined perspectives. However, none of these datasets are
from the engineering domain or for design applications.
It is beneficial to learn explicit cross-modal alignment in
a more straightforward way for applications in engineer-
ing design, since precise multi-modal design reasoning
for evaluation, synthesis, and optimization relies on more
sophisticated functional, structural, or behavioral align-
ment. Accordingly, we need well-labeled datasets to learn
the finer-grained cross-modal alignment more straightfor-
wardly to promote applications in engineering design.
Moreover, most existing models for alignment learn-
ing are constrained to aligning image and textual data, due
to the rich data available from these two modalities. In en-

gineering design, other modalities, such as sketches and
shapes (e.g., voxels, meshes, and point clouds), are also
commonly used to represent designs. We still lack models
that can learn the alignment between these modalities and
text or image representations. Additionally, while coor-
dinated representations learn global correlation at the in-
stance level, the attention mechanisms complement them
by learning local alignment at the feature level. The effec-
tive cross-modal correlation and alignment have enabled
powerful cross-modal synthesis, which is the focus of the
next section.

2.4 Cross-modal Synthesis

Synthesizing information from one modality to an-
other, known as cross-modal synthesis, is a difficult task
that involves generating output in a target mode based
on input in a source mode. It requires an understand-
ing of the information in the source mode as well as
the ability to produce corresponding signals or symbols
in the target mode. In ML, cross-modal synthesis in-
cludes cross-modal translation and editing. The former
refers to generating nonexistent samples in one modal-
ity using input from another modality, while the latter
means editing existing samples according to guidance
from another modality. While advances in DGMs have
made this task easier, it still presents a significant chal-
lenge. In this subsection, we focus on two categories
of models for cross-modal synthesis, namely, GANs and
likelihood-based models. Likelihood-based models are a
class of DGMs that model data distribution using like-
lihood functions, including multi-modal AEs, denoising
diffusion models (DDMs), ARMs, and flow-based mod-
els. Figure 5 visualizes the architectures of different mod-
els using the case of synthesizing car sketches from text
descriptions. We also review the metrics used to evaluate
synthesis quality.
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2.4.1 Conditional Generative Adversarial Networks

Conditional  generative  adversarial  networks
(CGANs) are one of the mainstream approaches for
text-to-image synthesis (Figure 5-A). A GAN model
comprises a generator and a discriminator, which are
alternatively trained to compete with each other. The
adversarial training of the generators of GANs allows
them to synthesize compelling images [11]. CGANs are
GANS with both discriminators and generators condi-
tioned on input text prompts [132, 133]. Specifically,
the generator is conditioned by taking the combination
of the noise sample and the text embedding as input.
The discriminator views the pair of the generated image
and the text input as a joint observation and judges the
observation as true or fake. CGANs need to be trained on
parallel data. On this basis, researchers have made efforts
from different perspectives to improve image quality
and the alignment between text prompts and generated
images, such as using conditioning augmentation [134],
stacking multiple CGANs [134, 135, 116], applying
semantic attention [116] or dynamic memory [136],
or adding additional loss elements or evaluation mod-
ules [135, 116, 136, 137, 138, 139, 140]. Additionally,
CGANs have also been extended to take semantic
concept layouts (i.e., bounding boxes with object class
labels) [141, 142, 143, 144] or scene graphs [145] as
input and fine-grained control to synthesize complex
images with multiple objects.

2.4.2  Multi-modal Autoencoders

Multi-modal AEs consisting of encoder and decoder
pairs are one of the most popular approaches for bidi-
rectional cross-model synthesis (Figure 5-B). Different
from unimodal AEs [146, 115, 147], the encoders of
multi-modal AEs first encode instances in the source
mode into latent multi-modal representations, and then
the decoders generate instances in the target mode from
the representations [148]. In this approach, the multi-
modal representations bridge the source and target modes
for text-to-image [115, 147] and text-to-geometry [146]
syntheses. Multi-modal AEs can be trained on paral-
lel data [10] or nonparallel data with pre-trained coor-
dinated representations like CLIP [146]. Multi-modal
AEs have been integrated with GANs, which can im-
prove synthesis quality in an adversarial way [149]. As
key building blocks, proper encoder and decoder mod-
els should be selected according to the source and tar-
get modes. For example, image processing mainly re-
lies on convolutional neural networks (CNNSs) [150, 151],
while language processing is largely enabled by recur-
rent neural networks (RNNs) [152] and distributed mod-
els [153, 154]. In recent years, transformer-based mod-
els [155, 156, 157, 158] have become the default options
for language processing and also been employed for im-
age processing. shape processing is built on 3D CNNs
for voxel data, GNNs for meshes, and PointNets for point
clouds [159]. On the whole, the DDM, ARM, and flow-
based DGMs follow the AE structure, but we review them
separately as their encoder and decoder modules differ



significantly.

2.4.3 Denoising Diffusion Models

DDMs are a type of latent variable DGMs that con-
sist of a forward diffusion process and a reverse dif-
fusion process [160] (Figure 5-C). The former corrupts
training data by progressively adding noise to samples
from the data distribution. The latter learns to reverse
the corruption by gradually reducing noise to gener-
ate samples. Each of them can be parameterized by
a set of time-dependent Gaussian transitions. Different
Gaussian transition definitions result in different types of
DDMs, such as denoising diffusion probabilistic mod-
els (DDPMs) [161], denoising diffusion implicit mod-
els (DDIMs) [162], and score-based models [163, 164].
During training, DDPMs and DDIMs attempt to maxi-
mize the variational lower bound of the likelihood func-
tions representing the data distributions, while score-
based models aim to minimize the losses of match-
ing time-dependent gradients, i.e., scores. DDMs have
achieved great success in conditional and unconditional
image synthesis [163, 161, 165, 166] and geometry syn-
thesis [167, 168, 169]. To improve sample efficiency of
DDMs, researchers proposed to encode high-dimensional
data samples into low-dimensional latent spaces and train
latent diffusion models (LDMs) within the compressed la-
tent spaces [16, 170].

For cross-modal image or shape synthesis tasks,
DDMs are often conditioned through two approaches,
which we term the parameter-based approach and the
embedding-based approach. The parameter-based ap-
proach perturbs the means and variances of Gaus-
sian transitions according to classifier guidance [12],
similarity-based guidance [165, 166], or classifier-free
guidance [171] to guide the reverse diffusion process.
Classifier or similarity-based guidance requires separate
classifiers or similarity evaluation modules to predict the
classes or similarity scores of the samples synthesized in
the current step. These modules should be noise-aware,
as they also need to make predictions for intermediate
noised samples. Classifier-free guidance simply takes
the embedding of the guiding data as input and has been
proven more effective and employed by a couple of mod-
els [165, 166, 16]. Such conditioning effect can be aug-
mented through cross-model attention mechanisms [16].
The embedding-based approach embeds the conditioning
information into the noised embeddings through separate
conditioning models, such as ARMs [172] or diffusion
models (DMs) [173], as depicted in Figure 5-C. This ap-
proach improves the diversity of the generated samples
with minimal loss in sample realism and cross-modal cor-

respondence.

2.4.4  Autoregressive Models

The encoders of deep generative ARMs learn dis-
tributions over sequences using the chain rule of condi-
tional probability, whereby the decoders predict the next
sequence element from the previous elements in each
step. ARMs are specific to the syntheses of tokenized
sequential data, such as text [74, 174, 175] and quantized
images [176, 177]. Recurrent neural networks (RNNs),
long short-term memory (LSTM), and transformer-based
models are common ARMs for cross-modal text synthe-
sis [178, 179]. Among them, transformer-based models
have also been employed for image synthesis. The en-
coders and decoders of these models often work with dif-
ferent modalities for cross-modal synthesis. The models
can also take multi-modal tokens as input to apply self-
attention, enabling better cross-modal understanding and
manipulation [176, 177]. However, ARMs for image syn-
thesis generate quantized pixels one by one, impairing
synthesis efficiency.

2.4.5 Other Models

Besides the models reviewed above, other models
have also been explored for cross-modal synthesis. For
example, flow-based models aim to explicitly learn the
probability density function of real data through a se-
quence of invertible transformations [180]. The learned
data distributions enable data generative by sampling un-
observed but realistic new data points. This approach has
been explored for cross-modal synthesis [181, 146]. In
general, the synthesis performance of flow-based models
is not on par with the other models. Additionally, im-
plicit field models trained as classifiers have been used
for shape synthesis, such as [182, 183, 184]. They take
embeddings from separate shape encoders and point co-
ordinates as input and assign a binary value to each point
that indicates if this point is outside a shape or not. A
shape can be inferred by sampling a set of points on its
surface.

2.4.6 Model Evaluation

For cross-modal image synthesis, the quality of the
generated images is often evaluated in terms of discrim-
inability and diversity. The inception score [185] and
Frechet inception distance [186] are discriminability met-
rics, measuring how realistic the generated images are.
Previous studies have shown that they exhibit high cor-
relations with human judgment. Multi-scale structural
similarity [187] estimates the diversity of the generated



images. R-precision [116] and visual-semantic similar-
ity [137] evaluate if a generated image is semantically
consistent with an input text prompt. For text-guided im-
age editing, the generated images need to be evaluated in
terms of two aspects: 1) the attribute adaption according
to the text prompts and 2) the preservation of the irrel-
evant attributes in the original image. Cosine similarity,
peak signal-to-noise ratio, and structural similarity [188]
only focus on the second aspect to assess the similar-
ity between the generated images and the text prompt.
Manipulative precision is a metric considering both the
above similarity and the preservation of the irrelevant at-
tributes [189].

The synthesis quality of 3D shapes is mainly eval-
vated in terms of similarity. Chamfer distance [190],
Earth Mover distance [190], and latent feature compari-
son [191] were introduced to evaluate shapes represented
by point clouds. Light field descriptor [182] and Mini-
mum Matching Distance [192] were proposed for surface-
represented shapes like meshes. Intersection over union
and F-score are used to evaluate the reconstruction accu-
racy of shapes represented by voxels [78]. Human evalu-
ation has also been utilized to assess how realistic or con-
sistent with the input guidance the generated samples are.

2.4.7 Discussion

Cross-modal synthesis is a more challenging task
compared to other tasks (e.g., classification, regression).
In general, CGANs have been heavily explored for such
tasks and achieved higher synthesis fidelity compared to
likelihood-based models. However, they need to trade off
diversity for fidelity and are difficult to train. In recent
years, DPMs have been exhibiting comparable or supe-
rior 2D and 3D data synthesis capabilities and attracting
extensive interest [12]. In engineering design, common
cross-modal synthesis models are challenged from a few
other perspectives. First, the more complex and sophisti-
cated design spaces make it more difficult to synthesize
high-quality designs. Besides authenticity and confor-
mity, synthesized designs need to be evaluated in terms
of validity. The evaluation of validity involves the assess-
ments of structural, functional, and behavioral aspects of
designs, which are not considered in other domains. Ac-
cordingly, generalizable evaluation metrics and effective
evaluation models are needed to make cross-modal syn-
thesis models aware of sample “validity” in engineering
design.

Second, as engineering products are designed to ful-
fill certain functions with given requirements and con-
straints, engineering performance is important to a de-
sign. However, the cross-modal synthesis models in other

ML domains are not performance-aware. The perfor-
mance of a design can be evaluated from a variety of
aspects. For example, the evaluation of a car body de-
sign needs to consider the drag coefficient, lift coefficient,
manufacturability, weight, crash safety, and so on. In tra-
ditional engineering design, these performances are of-
ten assessed through physics-based simulations or experi-
ments. Since simulations and experiments are often time-
consuming and not gradient-based, it is difficult to evalu-
ate the generated designs in real time to inform the train-
ing of cross-modal synthesis models. Therefore, more
gradient-based surrogate models for design performance
evaluation should be developed and integrated into cross-
modal synthesis models to support performance-aware
cross-modal synthesis. Cross-modal synthesis would
make more sense in engineering design when these gaps
are filled.

Besides cross-modal synthesis, cross-modal correla-
tion and alignment also allow for co-learning between
modalities. We review the relevant topics in the next sec-
tion.

2.5 Cross-modal Co-learning

According to the definition in [43], co-learning refers
to transferring knowledge from modalities with richer re-
sources to modalities with limited resources. It helps
model data spaces of resource-limited modalities during
training MMML models. In many relevant studies, only
resource-limited modalities are present during test time.

2.5.1 Cross-modal Transfer Learning

In MMML, coordinated representations enable the
transfer of data space topology (e.g., the distance be-
tween two instances) from one modality to a different
modality for various tasks. Figure 6-A depicts an ex-
ample of transfer the representation difference between
two design instances from the text domain to the image
domain to infer the unknown instance within the image
domain. Such cross-modal knowledge transfer allows
for zero-shot prediction in the knowledge-scarce modal-
ities [193, 48, 72, 194, 195]. When working with hy-
brid multi-modal data, MMML models can use the pivot
modality as the bridge for knowledge transfer between
modalities without direct association, which has seen ap-
plications in machine translation [49, 196] and document
transliteration [197]. When limited parallel labeled data
and large amounts of non-parallel, unlabeled data are
available [198], semi-supervised MMML models can be
trained to transfer knowledge from label data to unla-
beled data across modalities. For example, knowledge
of context and feature similarities between visual objects



learned from large text corpora can be transferred to facil-
itate image segmentation and annotation trained on lim-
ited labeled data [73]. Prior studies have also shown
that MMML models trained on multi-modal data can ob-
tain improved unimodal representations when only one
modality is present during test time [178, 179].

2.5.2 Concept Grounding

Concept grounding is defined as learning semantic
concepts not purely based on semantic input but also
on additional modalities (e.g., vision, sound, or even ol-
factory perception) to mimic how we humans ground
concepts through sensorimotor experience and percep-
tual information. In ML, a set of models project se-
mantic and visual concepts to a common space and uti-
lize the cross-modal association to strengthen seman-
tic representations [199, 200]. An example of bike de-
sign is shown in Figure 6-B. With non-parallel multi-
modal data, the semantic and visual representations can
be learned separately and then concatenated to enrich se-
mantic representations [88, 199, 201]. For example, Vis-
W2V [202] adapts the original word2vec [153] word em-
beddings by capturing visual notions of semantic related-
ness. ViCo [203] extends GloVe [204] word embeddings
to include visual co-occurrence information from Visual
Genome [205].

In this paper, we extend the definition of concept
grounding to include visual concepts. Visual concept
grounding refers to learning visual concepts based on se-
mantic information, besides visual information. Supervi-
sion from natural language instead of human-generated
labels has been explored for visual concept grounding,
which improves data efficiency in supervised learning
and the generality and usability of the learned visual
embeddings [206, 207, 208, 209]. In contrast, another
set of models exploits weak supervision, such as Insta-
gram hashtags or noisy labels, to learn image represen-
tations [210]. Since datasets providing weak supervision
are often larger and richer in information content than the
high-quality labeled datasets, representations learned by
these models also exhibit high transferability. Addition-
ally, recent studies have shown that the visual embeddings
learned for image captioning can be transferred to var-
ious tasks effectively [178, 179]. It is noteworthy that
grounding is beneficial only if the additional information
used for concept grounding applies to the downstream
tasks [179]. Otherwise, concept grounding may not re-
sult in better performance [211].

Cross-modal co-learning is also an effective tool for
data augmentation. Parallel multi-modal data supports
the co-training of multiple weak predictors for individ-

ual modalities. By bootstrapping each other, these co-
trained predictors can discover more labeled training sam-
ples, enabling the use of inexpensive unlabeled data to
augment much smaller labeled datasets [212, 213]. Such
co-training processes can also identify unreliable training
samples [214]. However, this may cause biases in training
data and result in over-fitting [43].

2.5.3 Discussion

Cross-modal co-learning exploits complementarity,
alignment, and redundancy between different data modal-
ities. Through co-learning, knowledge residing in one
modality can influence, augment, and ground represen-
tations and models of other modalities. It is also an effec-
tive technique to mitigate the challenges caused by data
scarcity, which is a major issue faced by MMML in engi-
neering design. As shown in Figure 6-A, we could have
more data samples or generate data samples more easily
in one modality compared to another modality. For exam-
ple, it is easier to generate design concepts described by
natural language, but needs more skills and time to create
designs visually in general. Cross-modal transfer learn-
ing allows us to model the design space more compre-
hensively with the sample-rich modality (e.g., text) and
generate more new design instances in the sample-scarce
modality (e.g., images or sketches). The learning of ef-
fective coordinated representations is the basis of such
knowledge transfer, which has been greatly empowered
in recent years by the emergence of the pre-trained multi-
modal representations, such as CLIP. However, since such
pre-trained multi-modal representations were not trained
on design data particularly, the design knowledge con-
veyed by the learned coordinated representations is lim-
ited.

Moreover, concept grounding with multi-modal data
enables us to model a design space more accurately, as ex-
emplified in Figure 6-B. This would benefit design evalu-
ation and better inform designers about design optimiza-
tion. For example, assessing the novelty and usefulness of
a group of designs relies on the accurate modeling of the
associated design space. If we define a design as more
novel if it is more distant from other designs, “electric
bike” is the most novel design among all three within
the semantics space, while “exercise bike” has the high-
est novelty when the semantic concepts are grounded with
visual information, which is in line with human judgment.
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3 EXEMPLARY APPLICATIONS OF MULTI-
MODAL MACHINE LEARNING

The fundamental concepts reviewed above are the
building blocks of many multi-modal applications. In this
section, we review the exemplary applications of MMML
that potentially apply to engineering design. Our scope
covers three major categories: 1) cross-modal synthesis,
including cross-modal translation and editing, 2) multi-
modal prediction, and 3) cross-modal reasoning. Since
cross-modal synthesis has been reviewed as a fundamen-
tal concept in the last section, we will focus on how to
apply the cross-modal synthesis models to text, image,
and shape syntheses in this section. Multi-modal predic-
tion will cover the studies that exploit MMML to improve
classification and regression outcomes. Cross-modal rea-
soning comprises studies that rely on reasoning knowl-
edge in one modality in response to search queries or
questions present in another modality. Table 1 summa-
rizes the fundamental concepts involved in each applica-
tion category.

3.1 Cross-modal Synthesis

Cross-modal synthesis is an important part of
MMML, which has attracted extensive research efforts in
recent years. It is also a challenging task from three per-
spectives. 1) Cross-modal synthesis models need to fully
understand the instance in the source mode and precisely
identify its salient elements. 2) They need to produce the
instance accordingly in the target mode correctly, com-
prehensively, and concisely. 3) The evaluation of the pro-
duced instance is difficult, as this task is open-ended. In
this subsection, we review cross-modal synthesis models
aiming for synthesizing text, images, and shapes.

3.1.1 Visual-to-Text Synthesis

Compared to the other modalities, visual-to-text syn-
thesis is most explored, especially for visual captioning
that generates semantic descriptions of image or video
scenes. Although rule-based models were commonly
used for this task before 2014 [215, 216, 217, 218, 219],
we focus our review on DL-based models that comprises
image encoders to capture visual features and ARM de-
coders to synthesize captions correspondingly. Different
CNN- and transformer-based image encoders have been
explored to capture visual features at the instance or finer
(e.g., region, object) levels [220, 157]. RNNs and trans-
formers are common ARM decoders. RNN-based models
(e.g., LSTM) rely on memory units and recurrent connec-
tions to predict word sequences [74, 174, 175]. These
models are powerful to caption simple images but lack
the ability to capture the finer alignment between image
regions and words in captions. In response, visual atten-
tion [8, 114] and guide vectors [19] have been applied to
condition the generated texts on the visual information
more tightly. Transformers have been becoming dom-
inant since they first appeared in 2017. They rely on
masked self-attention and cross-modal attention to pre-
dict caption words in a sequence and align the caption
with visual features [221, 157]. Since the position en-
coding and attention mechanism of original transformers
have been found arduous to capture the spatial relations
between visual regions [222], a few variants adapt their
inner architecture by adding memory modules to retain
spatial relations [223, 224] or injecting spatial attention
to the original attention mechanism [222]. Alternatively,
another model employs dual-stream transformers to en-
code visual and semantic information simultaneously and
a gated bilateral controller to guide the interactions be-
tween two modalities [225]. Besides ARMs, 1D CNNs
have also been explored as the decoder [226, 227].



Table 1.

The challenges faced by different multi-modal learning applications

Representation  Alignment Fusion Synthesis Co-learning
Cross-modal Translation v’ v’ v’ v’
Cross-modal Editing v’ v’ v’ v’ v’
Multi-modal Prediction v’ v’ v’ v’
Cross-modal Reasoning v’ v’ v’

In engineering design, sketch-, image-, or shape-to-
text synthesis can be applied to automatically create nat-
ural language descriptions of designs represented visu-
ally. In recent decades, the pervasion of the internet
has greatly facilitated idea sharing, saving, and discov-
ery through websites such as Pinterest and Fusion 360
Gallery. In many cases, design ideas are shared through
sketches, images, 3D models, and their renderings, with
simple titles or no description at all. The absence of tex-
tual descriptions is detrimental in two aspects. First, since
we mainly rely on natural language for information re-
trieval, the absent textual descriptions make design idea
retrieval and inspiration search from such websites less
guided and more time-consuming. Second, this also af-
fects our access to multi-modal data and hinders the train-
ing of effective MMML models for applications in engi-
neering design. The visual-to-text synthesis models re-
viewed above can play a role in addressing this roadblock.
As of now, most attention goes to image and video cap-
tioning in other problem domains, while sketch- or shape-
to-text synthesis is relatively under-explored. Since de-
sign ideas are usually created and shared using sketches
and shapes, the design community should make more ef-
forts to fill this gap.

3.1.2 Cross-modal image Synthesis

Text-to-2D synthesis is a challenging task that has
attracted the most research interest in MMML. This task
conditions image synthesis on text descriptions in differ-
ent ways. In recent years, various CGANs, DDMs, and
ARMs have shown great potential in synthesizing high-
quality images from abstract input, such as text prompts,
semantic maps, or depth maps. In this subsection, images
are broadly defined to include sketches, 2D line drawings,
and other 2D visuals besides normal images. Figure 7-
A illustrates an example of text-to-image translation pro-
duced by Stable Diffusion [16].

CGANSs witnessed the early development of text-
guided image synthesis. The first few CGANs could only
generate rough and low-resolution images until stacked
CGANSs were developed. For instance, StackGAN [134]

Text input: planar linkage mechanism tracing a straight line.
Image output from Stable Diffusion:

(A) Text-to-image translation
Text input: a red muscular sports car.
3D shape output from Point-E:

Point cloud Mesh

(B) Text-to-shape translation

Figure 7. Examples of cross-modal synthesis. A: None of the
planar linkage mechanisms generated by Stable Diffusion [16]
meets the requirement that “tracing a straight line”. B: The car
generated by Point-E [172] has a hole on the hood and does not
exhibit obvious “muscular sports car” features.

is a two-stage CGAN. The first-stage CGAN is condi-
tioned on input text to sketch the primitive shape and col-



ors of the object, yielding low-resolution images. The
second-stage CGAN is conditioned on the low-resolution
image and text input to generate high-resolution photo-
realistic images. It also uses a conditioning augmentation
module to stabilize the training process and improve the
diversity of the generated images. On this basis, DM-
GAN [136] improves synthesis quality by adding a dy-
namic memory module to the second-stage CGAN. Al-
ternatively, StackGAN++ [135] stacks multiple genera-
tor and discriminator branches in a tree-like structure to
jointly approximate multiple distributions through differ-
ent branches, further improving training stability. At-
tnGAN [116] further modifies StackGAN++ [135] by in-
troducing a visual attention mechanism to correspond text
tokens with image sub-regions and enforce the alignment
between the text input and generated images. Other vari-
ants have also been developed to improve image resolu-
tion or alignment from different perspectives [137, 189,
228]. Different from modifying model architectures, an-
other strand of studies improves image quality by adopt-
ing additional loss elements and evaluation modules. For
example, some models use both the conditional and un-
conditional losses to determine whether a generated im-
age is real and whether it matches the text description
simultaneously [135, 116, 136, 137, 138]. Additionally,
semantic relevance between text input and generated im-
ages [139] and the image-to-text reconstruction loss [140]
have been considered in other models.

To synthesize spatially controlled or complex im-
ages, another group of CGANSs is conditioned on concept
layouts. Among them, the model proposed by Reed et
al. [141]is able to generate images with one spatially con-
trolled object. It first encodes the object and its spatial
position into a semantic map and then employs a staked
CGAN conditioned on the semantic map to create the
global and local scenes in two stages. Layout2Im [142]
extends this to multi-object synthesis by fusing multi-
ple objects into a single semantic map. Other alterna-
tive models take scene graphs (i.e., graphs of text de-
scriptors) [145] or text descriptions [144, 117] as input
and convert them to semantic maps using specifically de-
signed modules to condition the following CGANSs. In-
stead of using semantic maps, another model uses two
pathways to take the entire layout and the object class
labels as input to generate the background and objects
separately [143]. In general, stacked CGANs featuring
two-stage processes are still limited to synthesizing low-
resolution images due to computational cost. Deep fu-
sion GAN (DF-GAN) [229] circumvents this issue using
a one-stage process, which contains a text-image fusion
block for deeper fusion between semantic and visual fea-
tures and a target-aware discriminator. Besides CGAN:Ss,

StyleGAN [230] has also been adapted for cross-modal
image synthesis. StyleGAN can control the style of the
synthesized images through a style-based generator that
uses a matching network to learn the target style and in-
tegrate that into the synthesis process [230]. To adapt it
for cross-modal image manipulation, a couple of models
revise the matching network to condition image synthesis
on text or image input and aim to maximize the similarity
between the CLIP embeddings of the generated images
and the input [231, 232, 233].

The adaption of transformer-based ARMs to the im-
age domain is enabled by quantized image representa-
tions, which can be seen as a context-rich codebook of im-
age constituents. They are often learned using a discrete
CNN-based variational auto-encoder (VAE) consisting of
a quantized encoder and a quantized decoder [147]. Vec-
tor quantized-variational auto-encoder (VQVAE) [147]
and DALL-E [15] employ such ARM:s for text-guided im-
age manipulation through a two-stage training procedure.
The first stage trains the discrete VAE and uses the en-
coder to generate quantized image representations. Then,
the second stage trains an ARM decoder conditioned on
text input for image generation. Vector quantized-GAN
(VQGAN) [234] attaches a quantized encoder before a
GAN with an ARM generator, which conditions the GAN
on the encoded input to the model. A variety of variants
have been developed to adapt VQVAE and VQGAN for
image manipulation using textual or visual guidance, such
as text prompts, category names, depth maps, semantic
images, or poses [235, 176, 177, 236]. Such models com-
bine the effectiveness of CNNs’ in learning local interac-
tions with transformers’ expressiveness in handling long-
range interactions and learning fine-grained cross-modal
controls, facilitating the synthesis of high-resolution im-
ages.

Guided DDMs for image manipulation draw intense
attention in recent years. A few emerging text-guided im-
age synthesis models employ this approach, and many
of them condition the reverse diffusion process using
classifier-free guidance [165]. Guided language to im-
age diffusion for generation and editing (GLIDE) [165]
made an early attempt to compare the CLIP guidance
and classifier-free guidance conditioning approaches and
found that the latter achieves higher photo-realism and
caption similarity. Stable Diffusion [16] employs a two-
stage training process to improve the computational ef-
ficiency of DDMs. The first stage learns a 2D latent
space of images for conceptual compression through a
VAE, and the second stage trains a latent diffusion model
(LDM) within the compressed space for semantic com-
pression. A cross-modal attention mechanism is applied
during the reverse diffusion process to improve the align-



ment between the generated images and the input. Im-
agen [237] stacks multiple DDMs to improve the qual-
ity of generated images. Besides classifier-free guidance,
other conditioning approaches have also been explored.
DiffusionCLIP [166] utilizes a directional CLIP loss as
guidance, which allows for multi-attribute manipulation.
DALL-E 2 [173] conditions the reverse diffusion pro-
cess through the embedding-based approach. The authors
compared using ARMs and DMs to fuse conditioning in-
formation into noised embeddings and found that the lat-
ter is more efficient and effective. It stacks two DDMs as
the decoder to generate images conditioned on the noised
embeddings.

Additionally, gradient optimization has also been ex-
plored for this task. For example, CLIPDraw [238] syn-
thesizes novel drawings conforming to text input by opti-
mizing the colors and positions of a set of Bezier curves
through CLIP loss. In general, the ARMs and DDMs re-
viewed above can take an initial image along with con-
ditioning information as input, making them capable of
both translating instances in the source mode to images
and editing images according to guidance in the source
mode. The CGANs mainly aim for the translation task,
while those incorporating image encoders can do image
editing as well, such as ManiGAN [189], VQVAE [147],
DALL-E [15], and VQGAN [234].

Cross-modal image synthesis is one of the most
promising applications of MMML in engineering design.
In design education, free-hand sketching or drawing de-
sign ideas is a necessity, which disqualifies many people
without professional training as effective designers. How-
ever, even trained designers or engineers may have vary-
ing free-hand sketching or drawing abilities, and it is of-
ten time-consuming for them to manually create a sketch
or drawing. In contrast, it is relatively easier and faster for
most people to describe design ideas abstractly in natural
language or using simple semantic layouts. On this ba-
sis, the models reviewed in this subsection have great po-
tential to generate the corresponding sketches or images
automatically. This application can benefit engineering
design from a few perspectives. First, it can not only
reduce the workload of professional designers but also
make engineering design doable for non-professional de-
signers. Since automated design idea visualization brings
down the barrier to engineering design, it may invite more
people to design exercises and promote large-scale design
customization. Second, MMML-based design visualiza-
tion may improve design creativity. Visualizing a design
idea can be seen as a process of re-organizing a designer’s
usable knowledge, which is open-ended but limited by
the person’s knowledge basis. Since such cross-modal
synthesis models are often trained on large multidisci-

plinary datasets, their “knowledge basis” could be more
comprehensive compared to that of individual designers.
This may enable interdisciplinary knowledge transfer, re-
sulting in novel designs. Additionally, compared to the
sketches and drawings generated by humans, images gen-
erated through MMML could be more realistic, which
facilitates visual inspections and evaluations at early de-
sign stages. Since 2D visuals are often used as interme-
diate design representations, we need 3D design repre-
sentations for down-streaming detailed design, prototyp-
ing, and manufacturing. Accordingly, we focus on cross-
modal shape synthesis in the following subsection.

3.1.3 Cross-modal shape Synthesis

In engineering design, 3D representations (e.g.,
meshes, point clouds, voxel data) faithfully portray
shapes and can accurately represent sharp, extrinsic fea-
tures using a high level of detail. They are broadly
adopted in the middle and late design stages to evalu-
ate, optimize, and prototype designs in more detail and
prepare a completed design for manufacturing. Due to
the complexity of 3D representations, cross-modal shape
synthesis is the most challenging cross-modal synthesis
task as of now. Text prompts, images, 2D renderings,
and depth maps are commonly used guidance for manip-
ulating shape synthesis. In general, the DGMs for cross-
modal shape synthesis share similar architectures with
those for image synthesis at a high level, but work with
3D representations. Different from images that are mostly
represented by structured pixels, shapes can be presented
by structured voxels and unstructured meshes or point
clouds. Each representation affords the adoption of dif-
ferent DGMs. In the following, we review the DGMs for
cross-modal shape synthesis and the corresponding repre-
sentations they used. Figure 7-B exemplifies the text-to-
shape translation produced by Point-E [172].

Multi-modal AEs attracted early interest in image-to-
shape synthesis. With the success of CNNs in synthesiz-
ing images, a group of models employs 3D CNNs to syn-
thesize voxel-represented shapes. For example, the 3D re-
current reconstruction neural network (3D-R2N2) [239]
comprises an image encoder and a 3D voxel decoder is
trained with parallel data to convert one or multiple 2D
views into shapes. Voxel representations are often lim-
ited to low resolutions due to high computational costs.
To overcome this, Mesh R-CNN [240] integrates a mask
R-CNN 2D perception module (i.e., the encoder) with a
3D CNN voxel decoder to produce coarse voxel repre-
sentations, which are then converted to meshes and im-
proved by a GCN refinement module. Multi-View Stereo
(MeshMVS) [241] extends Mesh R-CNN by further con-



ditioning the GCN refinement modules on the depth im-
ages estimated from the input images. Another strand of
multi-modal AEs employs the point cloud representation.
PointOutNet [242] joins an image encoder with a decoder
to predict point coordinates of the output point clouds.
AtlasNet [243] modifies PointOutNet [242] by imposing
that the points of a point cloud are from multiple de-
formed parametric surfaces or a sphere for improved point
cloud quality. Target-embedding VAE (TEVAE) [244]
consists of a mesh VAE and a 3D extrusion (i.e., a mesh
generated by extruding 2D sketches) encoder, where each
mesh is represented by a feature matrix. During train-
ing, it minimizes the mesh reconstruction loss and the Eu-
clidean loss between the embeddings from the mesh and
extrusion encoders simultaneously, which allows for un-
conditional shape generation and sketch-to-shape transla-
tion.

CGANs and ARMs are popular for cross-modal syn-
thesis in the 2D domain but are under-explored in the 3D
domain. GANSs can generate high-quality images but are
limited to low resolutions for shape synthesis [245, 246].
To mitigate this issue, efforts have been made to repre-
sent shapes with 2D data. Achlioptas et al. [190] pro-
posed to represent point coordinates of a point cloud as
a matrix and train VAEs and GANs with the 2D repre-
sentation. The learned latent space enables semantic edit-
ing and other manipulation. A set of work maps shapes
to 2D parameter domains, then trains GANs to generate
samples in the 2D domains, and finally converts them
to 3D meshes [247, 248]. Rank3DGAN [249] and X-
dimensional GAN (XDGAN) [250] extend this approach
to conditional settings for semantic manipulation during
mesh generation. ShaperCrafter [251] adapted ARMs to
the 3D domain. It learns a vector-quantized grid-based
implicit representation for shapes using a point VQVAE
and conditions the ARM decoder on BERT embeddings
of text prompts for shape synthesis and editing.

Compared to CGANs and ARMs, DDMs have been
adapted to the 3D domain with greater success. Most 3D
DDMs work with 3D point clouds. Luo et al. [167] pro-
posed a DDPM working with point clouds. The model
conditions the reverse diffusion process on latent repre-
sentations learned via a normalizing flow module in an
unsupervised way. The shape latent enables the unsuper-
vised representation learning of different shapes. Point-
Voxel Diffusion (PVD) [168] marries DDMs with point-
voxel representations [170] of shapes. Besides uncondi-
tional synthesis, PVD enables conditional syntheses, such
as shape completion and depth-to-shape translation. Sim-
ilar to stable diffusion [16] for guided image synthesis,
LION [169] employs an LDM for guided shape synthesis.
It first encodes the voxel and point cloud representations

of the input shape into two latent spaces using two point-
voxel-CNN VAEs [170]. Then, two latent score-based
DDMs are trained in the latent spaces, respectively. The
latent point DDM is the main generator, which is aug-
mented by the latent voxel representation (i.e., indicat-
ing the global shape) to boost model expressivity. When
conditioned on CLIP embeddings, LION is capable of
image- and text-to-3D synthesis. Point-E [172] integrates
GLIDE [165] with a DDM working with point clouds to
convert text prompts to 2D images and then to 3D RGD
point clouds. Following the embedding-based condition-
ing approach, LION employs a transformer encoder to
condition the noised point cloud representation on the
CLIP embedding of the 2D image, enabling image- and
text-to-shape synthesis. Attempts have also been made to
apply DDMs to 3D voxels [78] and tetrahedral tessella-
tion (i.e., a type of mesh) [252] representations.

Implicit field representations enable a set of cross-
modal synthesis models specific to the 3D domain. An
implicit field model can be trained as a classifier, such as
implicit field net (IM-NET) [182] and deep signed dis-
tance function (DeepSDF) [184]. They take an embed-
ding of a shape and point coordinates as input and assign
a value to each point which indicates if this point is inside
or outside the shape. Researchers have developed a set of
multi-modal AEs consisting of image or text encoders and
implicit shape decoders for text- or image-to-shape trans-
lation [183, 253, 254]. These models need to be trained
on parallel data. Beyond that, Ibing et al. [192] proposed
to train an AE with a voxel encoder and an implicit de-
coder to learn latent 3D space. Then, a GAN is trained in
the latent space to generate new latent representations that
can be decoded into shapes. The GAN can be conditioned
on bounding boxes or class labels for shape manipula-
tion. Instead of training GANs in the latent space, CLIP-
Forge [146] uses a normalizing flow model to convert the
latent space to a normal distribution and condition ran-
dom samples from this distribution on input text prompts
or images for shape manipulation. Instead of AEs, auto-
decoders (ADs) have also been employed to learn latent
spaces of shapes [184]. 3D-LDM [255] trains an LDM
in the latent space learned by a DeepSDF-based AD to
generate diverse and high-quality shapes, which can be
conditioned on CLIP embeddings for shape manipulation.
Similarly, multi-modal variational auto-decoders (MM-
VADs) [256] train two 2D auto-decoders and a 3D im-
plicit auto-decoder simultaneously to learn a cross-modal
latent space applied to sketches, RGB views, and shapes.
The cross-modal latent representation allows for manipu-
lating shapes using sketches or RGB views.

Different from the reviewed DGMs, a few other mod-
els synthesize shapes by deforming existing shapes. For



example, Pixel2Mesh [257] generates 3D meshes using
a GCN to progressively deform an ellipsoid according
to the perceptual features extracted from input images.
Text2Mesh [258] and ClipMatrix [259] edit texture styles
of input meshes according to text prompts. They emplo to
predict vertex displacements and color details, which are
trained to maximize the CLIP similarities between mesh
2D renderings and text prompts.

In engineering design, the generation and editing of
shapes are more challenging and labor-intensive com-
pared to that of images for both human designers and
MMML models. The emergence of large pre-trained
multi-modal representations (e.g, CLIP and CISP) en-
ables the training of cross-modal shape synthesis models
with non-parallel data. This mitigates the scarcity of par-
allel data for training such models. Overall, engineering
design would benefit from cross-modal 3D synthesis from
a few perspectives. First, it would accelerate design visu-
alization and modeling in the early design stages, rang-
ing from concept generation to system-level design, and
to detail design. Effective early-stage design features the
generation and examination of a rich set of design ideas,
during which visualizing and concretizing design ideas
are as important as conceptually conceiving them. When
done manually, the creation of shapes requires profes-
sional skills and is time-consuming. High-fidelity shape
synthesis guided by text prompts, images, and sketches
can reduce human efforts and accelerate the design pro-
cess.

Second, it would enable broader exploration in the
early design stage. Traditionally, the time and efforts
needed for creating 3D design representations force de-
signers to select and focus on a limited number of de-
sign candidates quite early. When less time and effort are
needed to create shapes, designers can bring a larger num-
ber of designs to later stages and closely inspect them. 3D
shapes support various qualitative and quantitative design
evaluations, such as visual appeal evaluation, structural
inspection, and performance evaluation through finite el-
ement analysis. The detailed evaluation also opens up op-
portunities to further optimize existing designs or ideate
new designs, further extending the exploration range.
Moreover, designers can invest the spared time and ef-
fort in cognitive activities, such as analogies or inspira-
tion search, information integration, idea conceiving, rea-
soning, and decision-making to plan and guide the explo-
ration in a better way.

Third, it would boost knowledge transfer and reuse
during design synthesis. Human-conducted cross-modal
translation or editing is constrained by the knowledge
bases and imagination of designers, which are subject
to design fixation. Al-enabled design synthesis mod-

els make it possible to exploit the knowledge basis un-
derlying large datasets. Integrating cross-modal synthe-
sis models and pre-trained multi-modal representations
makes the multi-modal knowledge buried in huge multi-
modal datasets usable for cross-modal synthesis models.
Compared to unimodal synthesis, such extension and fu-
sion of the underlying knowledge basis may enable the
synthesis models to generate new designs beyond the
boundary of the existing solutions and transfer knowl-
edge across disciplines or product domains. Therefore,
cross-modal shape synthesis may generate more diverse
and more creative designs than human designers. For ex-
ample, (Refer to the figure.)

Better design concepts and final design outcomes are
more likely to emerge from accelerated iterations, broader
exploration, and boosted design creativity resulting from
automatic cross-modal translation and editing at the early
design stages. In practice, it is unusual for designers
to transition a design from abstract descriptions to de-
tailed 3D models directly. 2D sketches are often needed
as an intermediate representation to support the creation
of more complicated 3D models. Text-to-shape synthesis
will potentially enable us to simplify and accelerate the
design process by eliminating the step of sketching. How-
ever, although text-to-shape synthesis has great potential,
it is still a challenging task. The shapes generated by the
current models are subject to low precision and fidelity,
as shown in Figure 7-B. Two reasons explain this. First,
it is difficult to express 3D visual features using natural
language point for point. In comparison, it is relatively
easier to transfer visual features from 2D to 3D. Second,
the available text-shape datasets for training text-to-shape
translation models are much smaller in volume compared
to paired text-2D datasets. The scarcity of training data
hinders the trained models from learning a comprehen-
sive set of common features to generate high-quality new
designs. It is beneficial to follow the human design pro-
cess and break this challenging task down into two steps:
text-to-image synthesis and image-to-shape synthesis. As
of now, the first step is better solved, as suggested by the
strong capabilities of the text-to-image synthesis models
reviewed above.

3.2 Multi-modal Prediction

Multi-modal prediction (e.g., classification and re-
gression) allows us to utilize complementary information
of multiple modalities to assess instances more accurately
and comprehensively. For such tasks, the state-of-the-
art models usually first encode information from differ-
ent modalities and then fuse multiple unimodal embed-
dings into multi-modal representations before the predic-



tion heads. They differ in the approaches used to encode
different modalities and learning schemes.

3.2.1 Multi-modal Classification

Classification is the most common task in ML, which
is also true in MMML. We have seen the applications
of multi-modal classification in many domains. In Hy-
con [260], the authors proposed a novel method based
on hybrid contrastive learning for multi-modal sentiment
analysis. Specifically, the HyCon model learns both intra-
modal and inter-modal interactions through both con-
trastive and semi-contrastive learning based on audio, vi-
sual, and text inputs. DMDE [261] is a deep multi-
modal design evaluation model that features a bidirec-
tional encoder and a self-attention-based fusion model to
predict overall and category-specific sentiments with in-
puts of design images and view hierarchy. TechDoc [106]
exploits three types of information, including text, im-
ages, and document associations to predict patent classes.
The authors used a pre-trained CNN and a bi-directional
RNN to respectively learn image and text features and
fused them through concatenation. Then, they integrated
the fused features with association information through a
GNN and demonstrated the multi-modal model achieved
more accurate classification results than the unimodal
models. Additionally, Zhou et al. proposed a novel multi-
modal CLIP-based method for fake news detection [262].
The model named FND-CLIP first encodes visual infor-
mation with ResNet and CLIP model and textual informa-
tion using BERT and a CLIP model. The multi-modal en-
codings are processed through weighting by cross-modal
similarities and redundancy reduction. Further, their work
introduces a cross-modal attention mechanism before the
final classifier. Besides images, texts, videos, and audio,
there are also works that use novel modalities for new
tasks. For example, Deng et al. proposed a novel method
called DDIMDL for drug-drug interactions based on fea-
tures such as chemical substructures, targets, pathways,
and enzymes [263].

3.2.2  Multi-modal Regression

Because of the complex nature of regression tasks,
multi-modal information can be extremely important in
increasing the accuracy and effectiveness of the mod-
els. Most works focus on proposing more effective multi-
modal information fusion schemes to facilitate the down-
stream regression heads. For example, Song et al. [20]
proposed an MMML model to predict design metrics us-
ing design sketches and text descriptions. The visual and
semantic embeddings are fused and aligned through a
symmetric cross-modal attention mechanism. Similarly,

Yuan et al. [53] employed an attention mechanism to fuse
image and text descriptions to predict customer evalua-
tion scores. Besides incorporating multi-modal data such
as images and texts, other works improve the state-of-
the-art methods by allowing for even more modalities.
For example, Pakdamanian et al. introduced an architec-
ture named DeepTake [264] for the novel task of driver
takeover prediction. Specifically, they aimed to predict
the intention, time, and quality of human driver takeover
in an autonomous vehicle based on multi-modal informa-
tion such as vehicle states, non-driving related tasks, bio-
metrics, and pre-driving survey. The number of modali-
ties present in this work is significantly higher than that
in other tasks, making it both challenging and novel. The
proposed method features modality-specific preprocess-
ing and feature extraction methods. Then, the multi-
modal representations are fused and used by an MLP to
produce the final predictions.

As reviewed and discussed in the last subsection,
cross-modal synthesis has great potential for reforming
our traditional design process. Different from data syn-
thesis in the ML domain, the synthesized new designs
need not only to be visually realistic but also to meet
certain engineering standards, user requirements, or mar-
ket preferences. Although design instances are often
represented in multiple data modes, most prior surro-
gate models for design evaluation only utilize unimodal
data, limiting evaluation comprehensiveness and accu-
racy. Multi-modal prediction techniques reviewed in this
subsection can help overcome this issue. For example,
the MMML models proposed by Song et al. [20] and
Yuan et al. [53] attempted to address the challenging tasks
of evaluating designs based on images and text descrip-
tions. When compared with uni-modal schemes, both
of their approaches bring a performance increase in de-
sign evaluation. Taking multi-modal design representa-
tions as input, classification models apply to categorical
evaluations, such as if a generated design is valid or not,
while regression models apply to the evaluation of real-
valued attributes, such as drag coefficients of cars or fly-
ing ranges of drones. The input can be combinations of
common design representations, such as textual descrip-
tion and sketch pairs for evaluating the novelty and use-
fulness of conceptual designs, shapes and tabular speci-
fication pairs for evaluating the performance of detailed
designs, and image, tabular specification, and text de-
scription triplets for evaluating user preference and mar-
ket popularity of products from e-commerce websites.



3.3 Cross-modal Knowledge Extraction

Traditional knowledge extraction mainly focuses on
natural language processing to match queries with target
text content. Cross-modal knowledge extraction allows
for the search of relevant information across modalities
from a larger range. This is done by capturing the corre-
lations or alignment between different modalities.

3.3.1 Cross-modal Information Retrieval

Cross-modal IR aims to search instances in a target
mode that are closest to queries in a source mode. Ac-
cording to the representations used for retrieval, we can
classify cross-modal retrieval into unimodal retrieval and
multi-modal retrieval. The unimodal retrieval approach
only needs to learn the representations of instances in the
source mode. It first retrieves instances nearest to the
search query in the same mode through similarity met-
rics [154, 265] or k-nearest neighbor models [266, 267].
Accordingly, the counterparts of the selected instances in
the target mode are returned as the retrieved candidates.
This approach is simple but only applies to parallel data.
Moreover, high similarities in the source model do not
always lead to good cross-modal retrieval results, which
can be partly overcome by carefully designing suitable
metrics to rank potential candidates [154, 265]. Alterna-
tively, the multi-modal retrieval approach projects differ-
ent modalities to a common multi-modal space, within
which the most relevant instances can be found based on
similarities between search queries and candidates. Re-
searchers have explored a variety of multi-modal rep-
resentation spaces for this task, including manually de-
fined intermediate space [268], coordinated semantic-
visual spaces at the instance level [199, 269, 270] or the
element level [61], or a joint multi-modal space through
cross-modal hashing [89]. The multi-modal approach ex-
hibits two strengths compared to the unimodal approach.
First, it can learn more expressive representations that re-
flect both modalities, leading to better retrieval outcomes.
Second, the presence of a common multi-modal represen-
tation space allows for bidirectional retrieval. In practice,
more effective unimodal or multi-modal representations
are required for high-quality cross-modal retrieval.

In engineering design, cross-modal IR can facilitate
design knowledge gathering and design analogy and in-
spiration search. As mentioned before, several well-
known design repositories, such as Pinterest and Fusion
360 Gallery, provide rich design precedents with very
brief titles or no description at all. Since text queries are
most commonly used for IR, the absence of text descrip-
tions can be a barrier to the effective reuse of the design
knowledge shared in such repositories. With the existence

of annotated parallel datasets (e.g., PartNet), it is possi-
ble to train cross-model IR models, which can capture the
correlations between 2D or 3D design representations and
textual search queries. By transferring the learned knowl-
edge to unimodal repositories like Pinterest and Fusion
360 Gallery, the absence of textual information can be
overcome. On this basis, we can potentially achieve more
efficient and accurate design knowledge retrieval.

The above discussion on each potential application
also suggests that MMML may facilitate human-Al col-
laboration in engineering design. Design representations
involve a variety of data modes with varying levels of ex-
pressiveness, abstraction, and elaborateness. For exam-
ple, text descriptions and sketches as design representa-
tions are highly abstract, while shapes are more elaborate
and expressive. Humans and Al are respectively more ca-
pable of working and conducting reasoning with different
modalities for different tasks. With strong cognitive abili-
ties, humans do better in guiding the human-AI hybrid ex-
ploration process and making decisions at more abstract
levels, such as conceiving and describing highly abstract
design ideas. This abstract information processing and
reasoning is more challenging for Al to learn from data.
With powerful computational power, Al is better at pro-
cessing and reasoning more expressive and detailed in-
formation at more elaborated levels, such as creating or
evaluating more complicated design representations (e.g.,
shapes). With MMML, it is possible to have humans and
Al work on tasks that they are better at and apply their
strengths to a better degree.

4 CHALLENGES AND OPPORTUNITIES OF
MULTI-MODAL MACHINE LEARNING IN EN-
GINEERING DESIGN

On the one hand, MMML has the potential to rev-
olutionize the engineering design process. By integrat-
ing multiple sources of information, including 2D visu-
als (e.g., images, sketches), text, 3D shapes, and others,

MMML models can learn about a problem more compre-

hensively from multiple perspectives, leading to a deeper

understanding and more informed decision-making. In
engineering domains, designers often evaluate design
candidates through simulations, experiments, or expert
assessments, which are time-consuming, expensive, and
resource-intensive in many cases. MMML will facili-
tate the applications of ML models to design evaluation
by achieving faster, cheaper, and increasingly more ac-
curate predictions. Moreover, MMML models can auto-
mate parts of the design generation process, which will
reduce the time and effort required significantly and en-
able broader design exploration. Personalized and op-



timized designs can be created by considering individ-
ual preferences and requirements and multiple objectives
and constraints, respectively. MMML is promising to en-
hance creativity, improve product quality, and increase ef-
ficiency, making it a valuable tool for the field.

On the other hand, MMML for engineering de-
sign faces several challenges, such as the availability
of multi-modal design datasets and high-quality labels,
modality-specific representation learning, scalability, al-
gorithm compatibility, explainability, and adaptation to
new modalities. Integrating different modalities of data,
such as images, text, and 3D shapes, can be difficult, and
the data quality of different modalities can vary, leading
to biases in the model. Labeling the data for all modali-
ties can be a time-consuming and resource-intensive task.
Different modalities may require different algorithms for
representation learning, making it challenging to build a
unified model. MMML models can also be computation-
ally expensive and difficult to interpret, making it chal-
lenging to understand how decisions are being made. Fi-
nally, incorporating new modalities for MMML can be
challenging, as it will increase the complexity of the in-
teractions between different modalities and require mod-
ifying the model architecture and retraining the model.
Below, we discuss some of these challenges in more de-
tail.

4.1 Large Multi-modal Design Datasets Are Needed
Unlike unimodal data, parallel multi-modal data is
more difficult to collect, resulting in fewer multi-modal
datasets supporting MMML. A few large parallel text-
image datasets are publicly available to support semantic-
visual representation learning, image captioning, and
text-to-image syntheses, such as MS-COCO [271], Visual
Genome [205], YFCC100M [272], JFT-300M [273], and
AVA [274]. Text2Shape [275] and Text2Shape++ [251]
are parallel text-shape datasets supporting semantic-
geometric representation learning and text-to-shape syn-
thesis. These two datasets only cover two object classes
(tables and chairs) and only the former is publicly avail-
able so far. Many of the existing MMML models were
trained on these datasets. Since the available multi-modal
datasets contain little design-specific information in terms
of structure, function, behavior, and performance, their
applications to engineering design are limited.

The scarcity of large and high-quality multi-modal
datasets is a challenge in engineering design. Most large
design datasets comprise design instances in a single
modality, such as sketches in Pinterest or 3D models in
ShapeNet and Fusion 360 Gallery. However, MMML
requires the datasets to include multiple modalities that

align with each other, limiting the options for model train-
ing. DNNs with large amounts of parameters can be dif-
ficult to train without sufficient quality and quantity of
training data. Transfer learning can help overcome this
challenge by transferring knowledge from large external
datasets [52], but these general ML datasets may not pro-
vide enough design knowledge for pre-training. To sup-
port the training of high-performing MMML models and
effective knowledge transfer for complex design tasks,
large multi-modal design datasets are necessary.

4.2 Design-specific Labels and Metrics Are Needed

For general ML, assigning an object class to each
data sample is a commonly used approach to label
datasets, supporting the training of various classification
models for computer vision and language comprehen-
sion. However, engineering design involves a set of fac-
tors beyond simple classification, such as novelty, use-
fulness, user preference, physical constraints, and perfor-
mance, to understand and assess a design solution. Train-
ing MMML models to comprehend engineering designs
automatically relies on high-quality labeled data. Since
simulation-, experiment-, or expert-based design labeling
process is often expensive and difficult to scale, we are
lacking in high-quality and large labeled design datasets.
To address this challenge, the community should work
together to create, organize, and maintain large design
datasets with high-quality labels. This can be achieved
by clarifying design requirements and goals during data
curation and sharing, collecting and storing aligned de-
sign data represented in different modalities, labeling the
datasets with design-related attributes (e.g., function, ma-
terial, structure, weight, dimension, physics-based perfor-
mances under different operating conditions, and appli-
cation context), and providing pre-trained embeddings or
latent representations of the data if available. These ef-
forts will benefit the entire engineering design community
greatly.

Additionally, the quality of the data samples pro-
duced by cross-modal synthesis models is often evaluated
in terms of fidelity and cross-modal consistency through
metrics like inception score [185], Frechet inception dis-
tance [186], Chamfer distance [190], and Earth Mover
distance [190]. Since a valid design has richer meaning
than fidelity and cross-modal consistency, these metrics
are not informative enough for engineering design appli-
cations. The design community needs to propose gener-
alizable design-specific evaluation metrics to assess if a
synthesized design is valid in terms of function, behav-
ior, and structure. Moreover, when more labeled design
datasets are available, various surrogate models need to be



developed to support various performance and constraint
satisfaction evaluations and optimizations during design
synthesis. This is an important step toward contextualiz-
ing MMML and general ML into engineering design.

4.3 Effective Design Representation Learning Tech-
niques Are Needed

The most popular data modes in ML are text and im-
age data due to their widespread availability. Accord-
ingly, most MMML research also focuses on these two
modalities. However, 2D design sketches or engineering
diagrams and 3D shapes, which are commonly used de-
sign representations, are under-explored in ML. Although
CNN-based image models apply to 2D design drawings,
the sparsity of these sketches or diagrams hinders the per-
formance of these models in comprehending them. Simi-
larly, 3D CNNs and GNNs generalized to non-Euclidean
spaces can learn different types of 3D data, but they are
only effective in capturing local or coarse global features
at low resolutions, struggling to capture fine-grained fea-
tures comprehensively. Since many different types of
design inspections (e.g., movement interference), perfor-
mance evaluations (e.g., computational fluid dynamics
and finite element analysis), and design optimizations are
conducted with 3D representations, effective 3D shape
learning techniques are particularly important and in de-
mand in engineering design. This presents an opportunity
for design researchers to develop specialized ML archi-
tectures for the modalities that are more common in de-
sign.

Furthermore, design representations, such as hand-
drawing sketches, can be noisy and exhibit distinctive per-
sonal styles. As different designers have inconsistent abil-
ities and preferences in expressing design ideas, similar
ideas may appear in various styles and contain levels of
detail. The variations in representation styles and levels of
expressivity, abstraction, and elaborateness can become
more substantial as the target product becomes more com-
plex. When represented in multiple modes, some design
instances may miss a certain mode as well. These chal-
lenges pose difficulties for design representation learn-
ing, as current ML models struggle to distinguish con-
ceptual differences from representation variations, com-
pensate for missing modes, and identify abstraction and
elaborateness levels. To overcome these issues, the design
community must train its own MMML models on large
design datasets to make them robust to personal styles
and varying abstraction and elaborateness levels for better
comprehension and reasoning. Building effective human-
Al hybrid teams where humans and Al can learn from
and complement each other for challenging tasks could

also be a future effort, as it is relatively easier for human
raters to handle representation inconsistencies and miss-
ing information.

4.4 Approaches to Sophisticated Design-related Rea-
soning Are Needed

The state-of-the-art information reasoning in general
multi-modal tasks is limited to aligning features and cap-
turing spatial relations across modalities. This is not
enough for applications in engineering design, as design
reasoning often involves interrelations among different
components from functional, structural, and behavioral
perspectives. For example, despite their different phys-
ical structures, both rotors and fixed wings can provide
lift for aircraft, while the former allows for vertical take-
off and landing and the latter relies on runways to take off
and land. MMML models need to capture and align these
complex engineering relationships from different sources
and conduct the corresponding reasoning in the design
process. While various cross-modal attention mecha-
nisms have been developed to capture these relations im-
plicitly, the community still requires large-scale carefully
annotated data and relevant MMML models that can learn
such relations explicitly and conduct corresponding de-
sign reasoning.

4.5 Pre-trained and Generalizable Multi-modal
Representations Are Needed

As reviewed in the last section, the emergence of pre-
trained semantic-visual representation, such as CLIP, has
greatly promoted the development of cross-modal synthe-
sis models. Although such pre-trained multi-modal rep-
resentations support text- or image-guided syntheses of
2D visuals or 3D shapes for general purposes, they do
not provide any implications specific to engineering de-
sign. That is, these pre-trained representations struggle to
capture and reflect detailed design features, requirements,
and descriptions properly, which may lead to invalid out-
comes when applied to design evaluation, reasoning, and
synthesis. For example, in Figure 7-A, the pre-trained
model fails to understand the design requirement con-
veyed by “planar linkage mechanism tracing a straight
line” and none of the generated linkage mechanisms meet
the requirement. To better support engineering design
tasks, the design community needs to adapt the existing
pre-trained models by adding more domain knowledge to
them or train new representation models on large design
datasets to capture more domain-specific knowledge dur-
ing learning multi-modal representations.



4.6 Effective Models to Integrate Additional Modal-
ities Are Needed

Besides the textual and visual data modes discussed
above, representing, inspecting, evaluating, and opti-
mizing engineering designs may involve additional data
modes, such as olfactory, haptic, auditory, emotional, and
ergonomic data. These data modes are under-explored
in ML and there is a need for effective models to pro-
cess such information in the design community. Bring-
ing more data modes into MMML models for engineer-
ing design can potentially enhance the comprehensive-
ness and effectiveness of such models in design under-
standing, reasoning, evaluation, and optimization. Since
most published MMML models are limited to two data
modes, a future direction is to explore MMML architec-
tures that can accommodate multiple data modes.

5 CONCLUSION

In inclusion, multimodal machine learning (MMML)
has the potential to revolutionize the engineering design
process by enabling better design knowledge capturing,
integrating, and reasoning with multiple forms of design
information. Through this review, we have reviewed the
approaches to addressing the fundamental concepts of
MMML, including multi-modal representation learning,
information fusion, alignment, synthesis, and co-learning.
On this basis, we have also discussed the current state of
the art in MMML research, including its applications in
cross-modal synthesis, multi-modal prediction, and cross-
modal reasoning along with the potential impact on de-
sign knowledge extraction, design synthesis, evaluation,
and optimization. However, MMML still faces several
technical challenges, such as the scarcity of high-quality
multi-modal design datasets, the difficulties in aligning
complicated design features across modalities, the need
for handling noisy and inconsistent design representa-
tions, and the lack of comprehensive MMML models that
can incorporate various design-related data modes. In ad-
dition, there is a need for more extensive empirical case
studies and evaluations to verify and demonstrate the ef-
fectiveness of MMML in real-world engineering design
applications.

Despite these challenges, the future of MMML in en-
gineering design looks promising, with the potential to
significantly impact how products are designed and man-
ufactured. Moving forward, there is a need for further re-
search to address the remaining challenges in MMML for
engineering design applications and to develop MMML
models to fully realize its potential and bring about the
next generation of intelligent design tools.
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