Graphical Abstract

Beyond Statistical Similarity: Rethinking Metrics for Deep Gen-
erative Models in Engineering Design

Lyle Regenwetter, Akash Srivastava, Dan Gutfreund, Faez Ahmed

Generated | _ maxFio " Generated Gond. Val
maxFy Beyond Statistical Similarity: @ [Conditioning Target |
g Rethinking Metrics for Deep o
] * st s Generative Models in Engineering >K o B
Ll Design % » \611\
k2 k3 recieon s

Generated :
{[] Conditional Subset

[
o ~ ol 12 .
H - | E— o
9 s S di
= a &8 []
8 8 8| B ° I I
° 112
w2 a5
Objective 1
. Inst {® Generated |
2 :
82:; O invalid
2] @ Dataset
2 I3 2 I ---------------
Ol.. Cum.
Opt.
Gap

Design Parameter

P {® Generated |

Omald |
H o
P P @ pamser |2 g
B g g £ : g
8 H 2 3 . 1 3
3] s] 5
© : s o \“ e o 212 : S

H H 12
? ! e 3 2% : H
Objectve 1 Objectve 1 Constrant 1 Constraint 1 Constraint1

Highlights

Beyond Statistical Similarity: Rethinking Metrics for Deep Gen-
erative Models in Engineering Design

Lyle Regenwetter, Akash Srivastava, Dan Gutfreund, Faez Ahmed

e Present a practical guide to evaluation metrics for deep generative mod-
els in design.

e Discuss 25+ metrics measuring similarity, diversity, performance, and
validity.

e Train and evaluate six deep generative models on easy-to-visualize 2D
problems.

e Evaluate state-of-the-art models on bike frame and optimal topology
design problems.

e Release all datasets, models, metrics, scoring utilities, and visualization
code publicly.

Beyond Statistical Similarity: Rethinking Metrics for
Deep Generative Models in Engineering Design

Lyle Regenwetter®, Akash Srivastava®, Dan Gutfreund®, Faez Ahmed?

@ Department of Mechanical Engineering, Massachusetts Institute of Technology, 77
Massachusetts Avenue, Cambridge, 02139, MA, United States
YMIT-IBM Watson AI Lab, 314 Main St, Cambridge, 02142, MA, United States

Abstract

Deep generative models such as Variational Autoencoders (VAFEs), Gener-
ative Adversarial Networks (GANs), Diffusion Models, and Transformers,
have shown great promise in a variety of applications, including image and
speech synthesis, natural language processing, and drug discovery. However,
when applied to engineering design problems, evaluating the performance of
these models can be challenging, as traditional statistical metrics based on
likelihood may not fully capture the requirements of engineering applications.
This paper doubles as a review and practical guide to evaluation metrics for
deep generative models (DGMs) in engineering design. We first summa-
rize the well-accepted ‘classic’ evaluation metrics for deep generative models
grounded in machine learning theory and typical computer science applica-
tions. Using case studies, we then highlight why these metrics seldom trans-
late well to design problems but see frequent use due to the lack of established
alternatives. Next, we curate a set of design-specific metrics which have been
proposed across different research communities and can be used for evalu-
ating deep generative models. These metrics focus on unique requirements
in design and engineering, such as constraint satisfaction, functional per-
formance, novelty, and conditioning. Since data-driven design problems are
hugely varied in nature, we discuss which evaluation metrics are best suited
to different design objectives and representation schemes. We structure our
review and discussion as a set of practical selection criteria and usage guide-
lines. Throughout our discussion, we apply the metrics to models trained
on simple-to-visualize 2-dimensional example problems. Finally, to illustrate
the selection process and classic usage of the presented metrics, we evaluate
three deep generative models on a multifaceted bicycle frame design problem

Preprint submitted to Computer Aided Design May 20, 2023

considering performance target achievement, design novelty, and geometric
constraints. We publicly release the code for the datasets, models, and metrics
used throughout the paper at|decode. mit. edu/projects/metrics/.

decode.mit.edu/projects/metrics/

1. Introduction

Deep generative models (DGMs) have seen explosive growth across engi-
neering design disciplines in recent years. DGMs like Generative Adversarial
Networks (GAN) [I] and Variational Autoencoders (VAE)[2] have dominated
image generation problems since 2014, but only bridged the gap to the de-
sign community in 2016 [3]. DGMs have since been applied across design
domains to problems such as optimal topology generation, airfoil synthesis,
and metamaterial design. As promising new methods for image synthesis
like diffusion models [4,] are introduced in other machine learning fields,
researchers in design adapt them to solve challenging design problems [6].
Similarly, transformers, a leading class of generative models for sequences,
have dominated natural language generation for years [7, 8, 9], and have seen
extensive use in the textual generation of design concepts [10, [11].

DGMs are powerful learners, boasting an unparalleled ability to process
and understand complex data distributions and mimic them through batches
of synthetic data. In the context of data-driven design, these ‘data distribu-
tions’ are often comprised of a collection of existing designs that lie in some
multidimensional design manifold in the same way that a collection of points
would form a density distribution in a Euclidean space. From this perspec-
tive, it’s clear why DGMs are promising data-driven designers. They can
study collections of existing designs, understand their distribution, and gen-
erate new ones that should belong in the same manifold but do not yet exist.
This ability of a DGM to learn and match a distribution is often measured
using statistical similarity (i.e, how similar is the distribution of generated
designs to the dataset?).

While DGMs’ amazing distribution-matching ability is often beneficial,
it is limited because, in many design problems, we desire designs to be sig-
nificantly unique or distinct from existing designs. Additionally, even if
distribution-matching is desirable, it is often secondary to meeting prob-
lem constraints and achieving functional performance targets. As a result,
relying solely on similarity as an objective can lead to misguided design ef-
forts, since very similar designs can have drastically different performance,
as illustrated in Figure [I] Historically, design researchers have failed to ac-
count for this gap when selecting evaluation metrics, often opting for the
classic similarity-based metrics that are prominent in other machine learn-
ing domains. In this paper, we provide an exposition of evaluation metrics
for DGMs, which we show are important for design practitioners and design

(a) Deflection: 0.05cm (b) Deflection: 10.46 cm

Figure 1: Two very similar bike frames adapted from [12] with drastically different struc-
tural performance. By most distance metrics, these bike frames would be the most similar
designs among a dataset of thousands. Yet, due to the disconnected geometry highlighted,
they experience deflections that differ by over two orders of magnitude when subjected to
the in-plane loading scenario in [12].

automation researchers. We intend for the metrics presented to apply to
a variety of DGMs for design, and we do not go into detail about specific
model architectures. For an introduction to DGMs and an overview of design
engineering research using DGMs to date, we refer readers to a review paper
on DGMs in engineering design [3].

We broadly divide metrics into five categories which each address an im-
portant facet of engineering design. The first of these is similarity, the class
of metrics commonly used to evaluate DGMs. Though often overused, sim-
ilarity is still important, and we present several perspectives and metrics to
consider various aspects of similarity. The second category is design explo-
ration, the idea that generated designs are often desired to be unique and
varied. The third category is constraint satisfaction, the idea that generated
designs must often adhere to a set of explicit or implicit constraints in order
to be considered a valid design. The fourth is design quality, the idea that
generated designs often have associated functional performance attributes
that designers want to optimize. Designers may also want generated designs
to meet specific performance targets, necessitating a related set of metrics
pertaining to performance target achievement. Finally, the last category is
conditioning, the idea that conditional generative models should respect and

4

adhere to their conditioning information. Additionally, although we discuss
a wide variety of evaluation criteria within the five focus areas, this is not
an exhaustive review. Many important considerations, such as those listed
in the Appendix in [9} are not discussed in detail.

2. Relevant Reviews of Evaluation Metrics

Several papers have discussed and contrasted methods for evaluating
DGMs, which are briefly discussed here. Many of these are dedicated re-
view papers discussing metrics in adjacent fields to design or other applica-
tion domains for DGMs. For example, many of the research and metrics for
engineering optimization reviewed in [I3] are largely relevant for evaluating
DGMs in design. Within design, many research papers partially touch upon
metrics for DGMs in specific design sub-disciplines. Certain code repositories
have also been introduced, such as the Maryland Inverse Design Benchmark [[
To our knowledge, however, the existing body of research lacks a dedicated
discussion of applicable metrics for DGMs which generally apply across de-
sign disciplines. We will organize our discussion of relevant work according
to several focus areas of this paper: statistical similarity, design exploration,
constraint satisfaction, and design quality.

Ezisting Literature in Similarity Metrics. Image generation [1l 2, 14, [15]
16] and natural language generation [7, 8, [0 [I7] remain dominant research
thrusts for DGMs. In these fields, the overwhelming majoring of metrics fo-
cus on statistical similarity. As such, similarity-related metrics for generative
models in these domains have received much attention and careful consid-
eration. Borji [I8, [19] provides two complementary reviews which outline a
few evaluation metrics for GANs, though most of these metrics generalize to
other generative models in computer vision problems. Gatt & Krahmer [20]
and Dong et al. [21] review the state of natural language generation, including
detailed discussions of similarity-based evaluation metrics.

Design domains heavily focused on image-based data have also seen re-
views of metrics focusing on statistical similarity. For example, Shah et al. [22]
review evaluation methods for generative models in synthetic microstructure
images. While the metrics discussed in the mentioned papers focus on statis-
tical similarity, this paper argues that thinking beyond statistical similarity

thttps:/ /pypi.org/project /midbench/

to include factors such as performance, diversity, and constraints is crucial
for design and engineering.

Ezxisting Literature in Design Exploration Metrics. The ability of a model
to explore is often captured through diversity and novelty. Diversity and
novelty are prevalent concepts in design ideation and can be challenging to
evaluate even in other context besides DGMs. Mueller & Ochsendorf [23]
analyze numerous metrics for design diversity quantification. While useful,
these design metrics are often set up to evaluate “generic” designs and may
not be sufficient to measure “AI” generated designs. In particular, many
metrics struggle with the extreme non-convexity and high dimensionality of
the complicated design spaces typically learned by DGMs. This makes their
use as an evaluation metric challenging.

Diversity metrics are also found in optimization literature, and are some-
times even built into optimization algorithms as objectives, such as in NSGA-
IT [24]. However, many metrics from optimization, such as the hypervolume
metric, simultaneously evaluate diversity and functional performance. Spe-
cialized metrics introduced for DGMs may be better able to evaluate diversity
and novelty for complex design distributions [25] and decouple diversity from
other performance considerations.

Existing Literature in Constraint Satisfaction Metrics. Because design con-
straints differ widely by domain, constraint satisfaction has largely been ad-
dressed within individual design subdisciplines. For example, Bilodeau et al. [26]
present several interesting constraint-related metrics for DGMs in their re-
view of generative models for molecular discoveryf] In some design subdisci-
plines, similarity-based metrics are being used to indirectly infer constraint
satisfaction [22]. In this paper, we will present a set of generalized domain-
agnostic constraint satisfaction metrics that extend beyond similarity.

Ezisting Literature in Design Quality Metrics. Design quality (functional
performance) is a ubiquitous consideration across design disciplines. Many
relevant functional performance metrics can be found in design optimiza-
tion literature, as optimization is heavily focused on maximizing functional
performance. Metrics in this domain are often used to compare different

2This paper also discusses other sorts of metrics, such as rediscovery, which we discuss
in this paper

optimization algorithms or to quantify the strength of a set of optimized
solutions. However, they can be adapted to measure the relative strength
of design sets generated by different DGMs. Riquelme et al. [13] review
evaluation metrics for multi-objective optimization, documenting their pop-
ularity in optimization research and classifying them by type. In this paper,
we show that many functional performance evaluation metrics developed for
single and multi-objective optimization algorithms are nonetheless relevant
to DGMs and should be adopted by researchers. To better handle inverse
design problems, Regenwetter & Ahmed [27] propose several evaluation met-
rics focused on evaluating functional performance in design problems where
a performance target is given.

Contributions. In the context of existing work, this paper has the following
contributions:

1. We provide a structured review and practical guide on metrics used to
evaluate deep generative models on engineering design problems.

2. We highlight the fallacies of statistical similarity and propose a suite
of metrics to evaluate design exploration, design constraints, design
quality, and conditioning requirements. For each category, we propose
multiple metrics, many of which originate in other disciplines, such as
multi-objective optimization, natural image generation, and molecule
synthesis.

3. We train numerous deep generative models, including GANs, VAEs,
MO-PaDGANs, DTAI-GANSs, cVAEs, and cGANSs, on two-dimensional
examples to demonstrate how deep generative models can be evaluated
in different circumstances.

4. We present a design case study on bike frame synthesis focusing on
performance, diversity, and constraints and discuss how to select and
apply appropriate metrics.

5. We present a second design case study on optimal topology generation,
evaluating and contrasting state-of-the-art models using the evaluation
metrics discussed.

3. Background

Many data-driven design practitioners are intimately familiar with the
challenges of model selection. Say a designer wants to train a model to gen-

erate a set of optimal structural topologies that meet several manufacturabil-
ity constraints and performance targets. The designer trains a BigGAN [16]
and a StyleGAN2 [15] and generates thousands of design options using each
model. How should the designer select which model to use? The go-to eval-
uation method for many practitioners using these types of GANs would be
the Fréchet Inception Distance (FID) [28], a metric that attempts to quantify
similarity to the training dataset. FID can indicate which model generates
sets of designs that are most similar to the dataset, but it doesn’t provide
information on how well they meet specific design constraints, performance
targets, or diversity goals. Additionally, FID is calibrated for natural image
datasets, so it may not accurately measure similarity for other types of data
or structures.

For design researchers looking to train deep generative models (DGMs),
commonly used evaluation metrics should be revisited. In this paper, we
present a structured guide to help researchers select better evaluation met-
rics for design problems, focusing on five main facets: similarity, diversity,
constraint satisfaction, functional performance, and conditioning. However,
before introducing individual metrics in Section[d] we will discuss terminology
and several background concepts. Notably, we will discuss common require-
ments and prerequisites needed to apply the metrics as well as classifications
to categorize metrics. We include a tabular summary of the metrics, their
requirements, and their categorizations in Table

3.1. A Note on Terminology

In this paper, we broadly use the term ‘metrics’ to loosely refer to ‘evalua-
tion criteria,” not specifically distance metrics. To avoid loss of generality, we
broadly use the term ‘samples’ to refer to the output of a generative model.
We also refer to the original data entries as ‘datapoints.” Though in genera-
tive design problems, ‘datapoints’ are often existing designs and ‘samples’ are
often generated designs, this may not be universally true. In Section [6] we
also refer to constraint-violating data entries as ‘invalid datapoints,” which
typically correspond to existing design concepts that fail to meet some set of
constraints or design requirements.

3.2. Calculating Distance Between Designs

Many distance-based metrics presented in this paper require the ability
to calculate distances amongst and in between datapoints and samples. We

Table 1: Overview of metrics discussed in the paper. For each metric, we discuss: 1.
The requirements and auxiliary computational cost necessary to evaluate the metric (key:
Aux — Auxiliary predictive task & training, CL — Clustering method, CFC — Closed-Form
Constraints, Cond — Condition parameter calculation, Const — Constraint violation test,
Dist — Distance metric, DP — Differentiable method to calculate design performance,
Emb — Vector embedding, Inv — Dataset of invalid designs), Perf — Method to calculate
design performance. 2. Whether the metric characterizes points or sets of generated
samples. 3. Whether the metric uses a reference set (binary) or not (unary). 4. Rele-
vant spaces to which the metric can reasonably apply. 5. Whether the metric depends
on hyperparameters. 6. The metric’s bounds. 7. The optimal direction of the met-
ric. Notes: *Assuming L2 Norm (Euclidean) Distance Kernel. Distance Kernel impacts
hyperparameters, bounds, and objective. For example, switching to an RBF kernel would
result in bounds of [0,1] ([-1, 1] for signed distances), flipping the direction of the objec-
tive, as well as adding a hyperparameter to tune. ** Depending on the clustering method
used, a distance metric may suffice instead of a full embedding. *** Problem parameters
such as reference points or sets, objective weights and DTAI priority parameters are not
considered to be hyperparameters.

Requirements/ Point/ Unary/ Hyperpara- Bounds/

Category Metric: Eval Costs: Set: Binary: Space: meters***: Values: Direction:
Statistical Distance/Divergence Depends Set Binary Both Depends [0, 0] Minimize

Precision-Recall Curves Emb**, CL Set Binary Both Yes N/A N/A
Similarity and Precision (Fs<<1) Emb**, CL Set Binary Both Yes [0—1] Maximize
Distribution Nearest Datapoint™* Dist Point B?nary Both No [0, 0] Mini‘mi.zc
Matching Recall (Fj>1) Emb**, CL Set Binary Both Yes [0—1] Maximize
© Nearest Generated Sample* Dist Set Binary Both Yes [0,00] Minimize
Rediscovery* Dist Set Binary Both Yes [0,00] Minimize

ML Efficacy Aux Set Binary Both Yes Varies Varies
Inter-Sample Distance® Dist Point Unary Both No [0, 0] Maximize
Nearest Datapoint™® Dist Point Binary — Both No [0,00] Maximize
Novelty & Distance to Centroid* Emb Point Unary Both No [0,00] Maximize
Divcr.;itv Entropy Depends Set Unary Both Depends [0, 0] Minimize
: DPP Diversity Score Dist Set Unary Both Yes [0, 00] Minimize
Smallest Enclosing Hypersphere EVAEmb Set Unary Both No [0, 0] Maximize
Convex Hull Emb Set Unary Both No [0,00] Maximize
Constraint Satisfaction Const Point ~ Unary N/A No {0,1} Maximize
Design Constraint Satisfaction Rate Const Point Unary N/A No [0—1] Maximize
Constraints Signed Distance to Constraint Boundary* CFC Point Unary Design No [—00, 0] Maximize
Predicted Constraint Satisfaction Inv, Aux Point Unary Both Yes [0—1] Maximize
Nearest Invalid Datapoint™® Inv, Dist Point Binary Design No [0, 0] Maximize
Hypervolume Perf Set Unary Perf. No 0-k Maximize
Target Achievement Perf Point Unary Perf. No {0,1} Maximize
Performance Target Achievement Rate Perf Point Unary Perf. No [0—1] Maximize
and Target Signed Distance to Target* Perf Point Unary Perf. No [—00,00] Maximize
Achievement Design Target Achievement Index Perf Point Unary Perf. No 0-1 Maximize
Generational Distance* Perf Point Binary Perf. No [0,00] Minimize
Inst/Cum. Optimality Gap* DP Point Unary Perf. No [0, 0] Minimize
Conditioning Conditioning Adherence* Cond Point Unary Both No [0, 00] Minimize
) Conditioning Reconstruction Aux Point Binary = Both Yes [0, o0] Minimize

indicate which metrics require distance calculations in the requirements col-
umn of Tab. [[Depending on the design representation used, calculating
distances between designs can be a significant challenge. We present some
strategies to calculate distances in different representation schemes in the
appendix. In general, practitioners can choose to directly calculate distances
in the original space and modality of the data, or can instead compute an
embedding over which to calculate a distance.

3.3. Hyperparameters

Most metrics depend on some parameters, which must be decided before
using the metric. This can be viewed as an opportunity for practitioners to
carefully consider the parameters they use and to report them clearly when
evaluating models. This allows for fair and consistent comparison of models.
Additionally, by standardizing parameter values, practitioners can ensure
that the evaluation metrics are being used in a fair and unbiased manner.
We indicate which metrics depend on hyperparameters in Table

3.4. Point vs. Set Metrics

Certain metrics, such as statistical distance metrics, measure the proper-
ties of a set while other metrics measure the properties of an individual point
(though point metrics can also be aggregated over a set of points to describe
the set). This distinction is particularly significant in design problems where
designers may desire to select a single ‘finalist’ or an elite group of ‘finalists’
from a set of designs generated by a DGM. Only a subset of the metrics
presented will be valuable in evaluating and contrasting individual designs.
Hence, we classify the metrics as point metrics or set metrics in Table

3.5. Unary vs. Binary Metrics

We also distinguish between unary and binary metrics. Unary metrics,
such as hypervolume, generate a score based on a single design or a set of
designs. In contrast, binary metrics such as statistical divergence utilize an
additional reference set in generating a score. Often, this reference set is the
dataset itself. Hence, we classify the metrics as unary or binary in Table [I]

3.6. Design Spaces and Performance Spaces

In design, we often frame a design as a point in some design space, without
loss of generality across data modalities. However, we also often care about
the functional performance of generated designs. We can similarly frame a

10

design’s multi-objective performance as a point in some multi-dimensional
performance space. In Table [we indicate which metrics make sense to
apply to the performance space and which make sense to apply to the design
space.

4. Evaluating Statistical Similarity

Having touched on some broad classifications of metrics, we begin our
detailed discussion with the first of our five main categories: Similarity. In
classic machine learning theory and many classic DGM tasks, such as image
generation and natural language generation, deep generative models have a
single overarching objective: To generate convincing samples that are new,
but generally indistinguishable from the dataset. We typically frame this as
a distribution-matching problem, i.e. is the distribution over generated sam-
ples identical to the distribution over the dataset? Accordingly, the dominant
evaluation metrics in both image synthesis (FID [28], IS [29], KID [30], etc.)
and natural language generation (ROUGE [31], BLEU [32], METEOR [33],
etc.) have focused on similarity. Historically, similarity has also been the
central objective of deep generative models in design tasks [3], since it en-
forces that generated designs have a general resemblance to the designs used
to train the model. For example, if a hypothetical design practitioner trains a
model on a dataset of centrifugal pumps, similarity should enforce that their
model generates new centrifugal pump designs, rather than reciprocating
pumps (or nonsensical designs). However, in practice, the designer probably
doesn’t want to generate just any pump, but rather a novel and functional
one that meets a variety of constraints and performance objectives. Broadly
speaking, mimicking the dataset is often not the only desirable objective in
design. Accordingly, designers must decide how to trade off similarity against
other design objectives, depending on the unique requirements of their prob-
lem. In this section, we discuss metrics and tools to evaluate similarity and
reserve discussion about other objectives for later sections.

Statistical Divergence/Distance Metrics. Quantifying the discrepancy between
two random variables is one of the central themes in machine learning, par-
ticularly in MIL-based generative modeling [2 [1}, 34], 35 [36] B7]. Within the
field of deep generative modeling, the two classes of statistical discrepancy
measures have been popular, namely ¢-divergences and Integral Probability

11

...............

'@ Generated
'@ Dataset

maxFro 1@ Generated
'@ Dataset

max Fq

Recall
o?

max Fg 1 :2/. ® S
K1 kz_ _k3 — | . ‘
Precision
(a) Precision-Recall Curves (b) Nearest Datapoint

...............

'@ Generated
'@ Dataset

@ Generated :
'O Holdout

< ds a;.'\dzn
da
de ® ®
(c¢) Nearest Generated Sample (d) Rediscovery

Figure 2: Illustrations of select similarity-related metrics.

12

Metrics (IPMs). Let P and Q be two probability distributions on a measur-
able space M, such that P << Q. Then, ¢—divergence is defined as,

D¢(IP>,@)=/ ¢(Q)d@ (1)

Here, ¢ : R — R is a convex function such that ¢(1) = 0. A popular
example of this class is the Kullbeck-Leibler (KL) divergence, where ¢(t) =
tlog(t). Similarly, IPMs can be defined as

#(P,Q) = sup ‘/ fdP — / fdQ). 2)
fer

A popular member of this class is the Maximum Mean Discrepancy (MMD),
where F is set to be the Reproducing Kernel Hilbert Space (RKHS). An
intuition behind these two classes of metrics is that the first one tries to
measure the ratio (where a ratio of one corresponds to identical sets), while
the second one measures the distance between two distributions (where a
distance of zero corresponds to identical sets).

Naturally, statistical distances are the optimal choice to measure the sim-
ilarity of the generated sample distribution to the true data-generating dis-
tribution. However, for most high-dimensional problems of interest, com-
putation of such statistical similarity measures is intractable as it requires
estimation of the densities induced by the distributions. This has led to the
development of estimators of these measures |38, 39, 40, [41], 42]. A popular
class of plug-in estimators includes pre-training a classifier |41}, 42 40] to
first estimate the log-ratio of the densities and then taking its Monte-Carlo
expectation. Another class of estimators relies on neural density estima-
tion [43], where individual densities are estimated using highly non-linear
bijective functions [44], 45] and then used to estimate the discrepancy. Sim-
ilar projection-based approaches also exist for IPMs [38|, [46]. However, the
efficacy of such estimators is dependent on the modality and the dimensional-
ity of the problem’s data. Therefore domain-agnostic estimators of statistical
similarity remain largely an open problem.

Consequently, many of the leading similarity metrics are domain-specific,
leveraging certain advantages of the domain to calculate. In computer vi-
sion, countless domain-specific metrics have seen widespread adoption [18].
Fréchet Inception distance (FID), for example, uses a pre-trained Inception
network to calculate vector embeddings for images, assumes a Gaussian dis-
tribution over this embedding space, then trivially calculates Wasserstein-2

13

Distance (Fréchet distance under the Gaussian assumption) between the gen-
erated and dataset distributions in this embedding space [28] In text gener-
ation methods, the commonly used perplexity metric is also a close relative of
statistical distance. Perplexity is defined as the exponential of cross-entropy,
which itself is the entropy of the data distribution plus the KL divergence
between the generated distribution and the data distribution.

FID and perplexity have been empirically found to correlate well with
the human perceptual evaluation of image and text realism. Since human
perceptual evaluation is relatively uniform in computer vision and natural
language, FID and perplexity are among the most commonly used metrics
for model evaluation in their respective fields. In other fields, like design, the
perception of realism is much more varied. This non-uniformity, alongside
other challenges like data modality, may preclude any generalizable design-
specific statistical distance metric from rising to prominence.

Instead, practitioners should evaluate the viability of applying domain-
specific methods to design problems on a case-by-case basis. For example,
when evaluating similarity in a structural topology generation problem, one
may consider using image-based metrics like FID, KID, and IS, which utilize
a pre-trained image classifier. These pre-trained image classifiers are often
trained on ImageNet, a large computer vision dataset [47]. Accordingly,
these metrics are highly biased towards ImageNet [48]. For example, even
when evaluating models trained on CIFAR-10, a very similar natural image
dataset, researchers have found that inception score significantly misrepre-
sented model performance [49]. At the beginning of Section [3| we shared
an anecdote about a practitioner considering whether to evaluate generated
structural topologies using FID. In a case like this, it is uncertain whether
the low-dimensional latent representations extracted from a network trained
on animal or food images in ImageNet would contain any useful information
about structural topologies, making metrics like FID a dubious choice for this
type of problem. Therefore, practitioners must be cautious about applying
image-based metrics in other domains and carefully evaluate their suitability.

In general, statistical distance metrics are excellent tools to evaluate sim-
ilarity and ensure that generated designs are similar to the training data, but

30ther popular metrics calculate different IPMs, such as Maximum Mean Discrepancy
in Kernel Inception Distance (KID) [30]. Other variants like Inception Score (IS) use the
statistical distance between marginal and true label distributions [29].

14

are often challenging to estimate in high-dimensional problems. When design
data is similar to natural image datasets or natural text corpora, off-the-shelf
variants of statistical divergence methods can be effectively used. However,
when reliably estimating statistical distance is infeasible or when practition-
ers desire more nuance in evaluating similarity, they can instead turn to a
variety of other methods, which we present in the following subsections.

4.1. Decoupling ‘Realism’ and ‘Coverage’

Researchers often point to a key shortcoming of statistical distance met-
rics, namely their inability to decouple two separate ideas in distribution
matching: ‘realism’ and ‘coverage.” Realism is the idea that generated de-
signs should resemble the datasetﬂ Coverage is the idea that the entire
spread of the dataset should be represented by generated designs. While any
model that achieves perfect (zero) statistical distance must achieve both per-
fect realism and coverage, an imperfect model can suffer from an unknown
balance of imperfect realism or coverage, which is difficult to diagnose with
only a single score. To combat this, methods like precision-recall curves ana-
lyze generative models with an entire precision-recall tradeoff front between
these two factors.

Precision-Recall Curves(Fig. @) Precision-recall curves are borrowed con-
cepts from supervised classification but have been adapted as metrics for
generative models. The concept was originally proposed by Lucic et al. [50]
as a method to benchmark generative models on datasets with known data
manifolds. It was then extended to data with unknown distributions by Saj-
jadi et al. [51], allowing for practical evaluation of DGMs on ‘real” datasets.
In Sajjadi et al.’s framework, generated data and original data are pooled,
then clustered using k-means. A precision-recall (PR) curve is then calcu-
lated by comparing the proportion of generated versus original data within
each discrete cluster over a sweep of a weighting parameter. Other methods
have also been proposed to generate PR curves from arbitrary distributions,
bypassing the need for discrete binning of the data [52]. From the curve,
summary scores like Area-Under-the-Curve (AUC) and a maximum Fj score
can also be derived. We refer the reader to [51] for mathematical reasoning
and visual examples behind the PR curves for generative models.

4The term ‘realism’ can be misleading since it implies that the dataset reflects reality
(i.e., covers the entire space of ‘realistic’ data), which is typically untrue.

15

4.2. Similarity of Generated Data to Dataset (‘Realism’)

Although precision-recall curves demonstrate how a DGM model tends
to balance realism and coverage, in some cases, we may care more for one
or the other. In problems where we particularly care about realism, we can
calculate a ‘biased’ version of the F; score to estimate precision or use a
simple distance-to-dataset metric.

Precision. Precision for generative models captures the fraction of generated
designs falling within the support of the dataset. Extracting singular preci-
sion values from PR curves is challenging since it’s unclear which value to
select, or how to average values. Instead, Sajjadi et al. [51] propose using
the maximum Fj score for some 3 << 1 over all precision-recall pairs in the
PR curve as a proxy for precision.

Nearest Datapoint (Figure @) For a simple estimate of ‘realism,” practition-
ers can calculate the distance to the nearest datapoint for every generated
sample. Despite its simplicity, the score is an effective method to capture
local proximity to the dataset. Nearest datapoint can also be averaged over a
set of samples to estimate the ‘realism’ performance of a DGM. This metric
is particularly important for applications of DGMs in data augmentation, as
it demonstrates that generated synthetic designs (samples) are similar to a
dataset of existing designs (datapoints).

4.3. Dataset Coverage

In some design applications, there might be a need to focus more on
design space coverage to ensure that all key modalities of the design space
are reflected in generated designs. In such cases, practitioners can instead
estimate recall or use other metrics to quantify coverage.

Recall. Like precision, recall is a metric introduced by Sajjadi et al. [51].
Though extracting singular recall values from PR curves is similarly chal-
lenging, practitioners can select some maximum Fjy score for some § >> 1
to estimate recall.

Nearest Generated Sample (Figure @ For a simple approach to capture
dataset coverage, practitioners can calculate the distance to the nearest gen-
erated sample for every original datapoint. This score can be averaged over
the dataset to evaluate a set of generated samples. However, this score de-
pends on the size of the generated sample set, necessitating the selection of
a set size tuning parameter for standardization.

16

Rediscovery (Figure @) Rediscovery is an evaluation technique that evalu-
ates an algorithm’s ability to rediscover datapoints that were withheld during
training. It has been used in the molecule synthesis domain [26], to check
whether a DGM could rediscover a known molecule that was withheld from
the training data. However, we hypothesize that rediscovery can be a use-
ful metric for many other design problems. While rediscovery is originally
used in discrete problems where the rediscovery rate can be calculated as
the exact proportion of withheld designs rediscovered in a generated set [22],
the metric can easily be relaxed to support other data modalities. Instead
of calculating a proportion of datapoints exactly rediscovered, practitioners
can instead calculate the distance from a withheld datapoint to the nearest
sample in a generated sample set. Effectively, this performs a nearest gener-
ated sample evaluation over the set of withheld designs H Though it requires
both a tuning parameter (holdout size) and the foresight to remove a split
of the dataset before training, rediscovery is an elegant extension of pure
‘coverage’ metrics that further quantifies simple generalization capabilities
of the model. As such, we feel that this metric deserves consideration in
other design disciplines beyond molecular design.

4.4. FEvaluating Effective use of Generated Data in Downstream Tasks

A common approach to measuring the similarity of a generated sample
set to the training dataset is to check whether the generated set serves as
an effective stand-in for some auxiliary task. If a practitioner is generating
design data with a specific downstream task in mind, it may be viable to
directly evaluate generated samples on this task as a metric. In other scenar-
ios, artificially constructed tasks can serve as an effective method to evaluate
generated samples.

ML FEfficacy. Auxiliary machine learning tasks, such as classification, are
often used to evaluate generated sample sets in a process known as ML
efficacy testing. Several variations of these scores have been proposed, as
in [53, 54]. Often a supervised machine learning model is trained on the gen-
erated dataset and then tested on the original data. Ideally, the performance
on the original data should be as strong as possible. Alternatively, one model
is first trained on the original dataset and tested on a split of the original

SWe also note that other metrics can also be evaluated on a “test set,” though we feel
that evaluating coverage on a holdout set is a particularly insightful choice.

17

data. Then, an equivalent model is trained on a set of generated samples but
still evaluated on the same split of original data. In this case, the difference
in performance constitutes the ML efficacy score, which is minimized in the
ideal case where the two models have comparable performance.

4.5. Demonstration of Statistical Similarity Metrics

Thus far, we have introduced a variety of metrics to quantify a model’s
ability to generate distributions of designs that match the training dataset.
To showcase the use of these metrics, we evaluate two classic generative mod-
els, a Variational Autoencoder (VAE) and a Generative Adversarial Network
(GAN)H on a synthetic dataset which challenges models to learn six non-
overlapping data modes. Details on model architecture, metrics settings,
and training are included in the appendix. Plots of the generated data are
shown in Figure [3] Gray points denote training data, and red points denote
samples. Scores for a few selected metrics for these two models are shown
in Table 2] If a practitioner was using a single distribution-matching met-
ric, such as MMD, to compare the two models, they would think that the
GAN is the stronger performer among the two. However, when looking at
an array of metrics, one can note that the GAN is the stronger performer
in accuracy-based metrics such as F10 and nearest datapoint (better per-
formance is highlighted by bold text). In contrast, the VAE outperforms
the GAN in many coverage-based metrics such as nearest generated sample,
rediscovery, and FO.1. In overall distribution-matching metrics, results are
mixed, with the GAN outperforming in MMD and falling behind in F1 and
AUC. The GAN also performed significantly better in machine learning effi-
cacy on this dataset. Compared to a single metric, this suite presents a more
nuanced picture, and the final model selection could vary based on the end
goal. If coverage is more important, then the VAE may be preferred, while
the GAN may be preferred for realismﬂ However, even the best coverage
of the design space does not guarantee the novelty or diversity of generated
designs. Therefore, in the following section, we introduce and discuss metrics
to evaluate the capabilities of DGMs to generate diverse and novel designs.

6The goal of this example is to compare any two DGM models; hence, the state-of-art
models and strong instantiations were intentionally not chosen as they performed very
well on a two-dimensional case.

"We note that these results need not generalize to other datasets or architectures.

18

(a) VAE (b) GAN

Figure 3: Distributions generated by a Variational Autoencoder and Generative Adver-
sarial Network (red) overlaid over training data (gray). The GAN dominates in accuracy-
related metrics while the VAE outperforms in coverage.

Table 2: Distribution-matching scores for models in Figure The GAN dominates in
accuracy-related metrics while the VAE outperforms in coverage. Point metrics are aver-
aged over the generated set.

(Avg.) Scores: VAE GAN
Nearest Datapoint 0.043 0.018
Nearest Generated Sample 0.090 0.100
Rediscovery 0.093 0.099

Precision-Recall Curve F1 0.475 0.386
Precision-Recall Curve F10 0.907 0.934
Precision-Recall Curve F0.1 0.804 0.753
Precision-Recall Curve AUC 0.468 0.379
Maximum Mean Discrepancy 0.045 0.013
Machine Learning Efficacy 0.675 0.765

19

...

® © Generated : '@ Generated 1@ Generated |
'@ Dataset o '@ Dataset ! '@ Dataset

1@ Centroid
............... °
o [
. b 3
o ¢ N
da o o
®..
(a) Inter-Sample Distance (b) Distance to Centroid (c¢) Sm. Enclosing Hypersphere

................

1@ Generated

' P1 P2 PpP3 P4
® . @ Dataset

3 P | . Y P1
o ® p2
: L
. B ~! /// . P3
o ® pa
(d) Convex Hull (e) DPP Diversity Score

Figure 4: Hlustrations of select diversity and novelty metrics.

5. Evaluating Design Exploration

Design exploration can be an important consideration in many fields,
such as product design, architecture, and engineering, where new and inno-
vative solutions are often sought after. A model that successfully explores the
design space will typically generate diverse sets of novel designs. Diversity
often goes hand-in-hand with generalizability of a model and diversity-aware
DGMs have even been shown to avoid common generalizability pitfalls such
as mode collapse [55, 25]. Design novelty refers to the degree to which a
design is new or unique compared to existing designs. Achieving novelty is
particularly difficult for data-driven generative models since it is somewhat
contrary to its default objective of learning and mimicking a dataset. In
design methodology literature, novelty is typically considered a point met-
ric, whereas diversity (or variety) is typically considered a set metric. In
this section, we discuss several metrics with which to quantify the novelty of
generated samples and the overall diversity of generated sample sets.

20

5.1. Nowelty

The design methodology community has a rich body of work classifying
and defining novelty. A common distinction is ‘psychological novelty’ (P-
novelty) versus ‘historical novelty’ (H-novelty). A design is considered P-
novel if the idea is new for the person who generated it. In contrast, a
design is H-novel if an idea has never appeared in history before [56]. If we
treat our generative model as the ‘designer’ and consider the dataset as the
set of designs that the designer has seen, we argue that the P-novelty can
be estimated for a DGM. However, since we can’t assume that our dataset
is comprised of every design ever conceptualized, estimating H-novelty is
challenging, even if we use the dataset as a reference distribution.

Inter-Sample Distance (Figure @) A simple metric to measure the P-novelty
of a generated sample is the distance to the nearest other generated sample.
In this simple form, the metric is a strong assessment of local novelty. How-
ever, the metric has also been relaxed to use the distance to the n'* nearest
neighbor [57].

Nearest Datapoint (Figure [28]). The nearest datapoint metric (previously in-
troduced as a similarity metric in Section is a P-novelty metric, measur-
ing how far from the nearest datapoint a generated sample is. Whereas the
metric was best minimized as a metric for accuracy, when used to evaluate
novelty, a larger score is preferable. Nearest datapoint is a very insightful
metric when checking for data copying, where the DGM will overfit and mem-
orize individual datapoints to replicate while sampling. One limitation of the
metric is its large sensitivity to individual datapoints. Nevertheless, the near-
est datapoint metric has been used in design literature [25] to demonstrate
the capability of deep generative models to create novel designs.

Distance to Centroid (F igure. Instead of using the distance to the nearest
samples, practitioners can instead quantify the novelty of a generated sample
using the distance from the sample to a single point which summarizes a set of
generated samples, such as the centroid or the geometric median. As Brown
& Mueller [58] note, the choice of centroid or median can yield very different
results. Though simple and cheap to compute, the metric may carry implicit
assumptions about convexity. For example, in a torus-like distribution, the
centroid may in fact be quite novel. Mueller & Ochsendorf [23] propose a
variant to adapt the metric into a diversity score using the maximum distance

21

to the centroid or median. We discuss diversity in more detail in the next
subsection.

5.2. Diversity

Design diversity is closely related to the concept of “entropy” in informa-
tion theory and refers to the variety or range of different solutions or designs
that are generated for a given problem. In the context of design problems, it
can refer to the degree to which a set of solutions to a problem encompasses
different styles, forms, or variations. While novelty is a point metric, diver-
sity measures a property of a set of designs, though many averaged novelty
metrics may often closely correlate with diversity.

Diversity can be broken down into two components: uniformity and
spread. Uniformity measures the relative distance between designs. Spread,
also known as ‘extent’ in multi-objective optimization literature, measures
the range of designs within the generated distribution [I3]. Imagine the de-
sign space as a balloon with small balls inside it. The spread can be thought
of as the diameter of the balloon. A bigger balloon will have a higher extent
diversity score. However, two balloons with the same diameter may have dif-
ferent uniformity diversity scores, for example, if one balloon has all the balls
evenly distributed, while the other has most of the balls stuck in one corner.
Many diversity metrics, such as entropy, combine uniformity and spread into
a single value. Below, we discuss a few of these diversity metricﬂ

Entropy. In general, entropy scores are a metric for design diversity when
evaluated on a set of generated designs. Some popular metrics include
the Shannon entropy index, Herfindahl-Hirschman Index (HHI) [59], Gini-
Simpson index, and inverse Simpson index [58]. When practitioners have dis-
crete data, they can directly calculate the entropy. When working with con-
tinuous representations, however, practitioners must estimate entropy from
samples, a well-studied statistical problem [60]. Entropy captures both uni-
formity and spread, and its properties are well-grounded in mathematics and
information theory.

8 Averaged novelty metrics are also often more focused on either spread or uniformity.
For example, averaged inter-sample distance and averaged nearest datapoint are often
strong measures of uniformity, whereas averaged distance to centroid is more focused on
spread.

22

Smallest Enclosing Hypersphere (Figure @) The smallest enclosing hyper-
sphere metric is a purely spread-focused metric that identifies the hypervol-
ume of the smallest hypersphere that encloses all generated samples. Orig-
inally proposed for novelty measurement [61], the calculation is nontrivial
for high-dimensional data and is often approximated to reduce cost [5§].
Smallest enclosing hypersphere is highly sensitive to relative scaling between
parameters. It also makes a convexity assumption and is sensitive to outliers.

Convex Hull (Figure @) The convex hull is another spread-focused metric
defined as the smallest convex set that includes a set of generated samples.
The total hypervolume enclosed within the generated set’s convex hull is a
common metric for diversity [62]. Brown & Mueller [58] found the convex
hull to agree with human assessments of novelty in small low-dimensional
design problems, compared to competing metrics. Like the smallest enclosing
hypersphere, the convex hull makes a convexity assumption and is often
sensitive to outliers.

DPP Diversity Score (Figure[{d). Determinantal Point Processes (DPP) can
be used in conjunction with distance metrics to evaluate a diversity score of
a generated sample set. DPPs calculate a score based on the eigenvalues of a
matrix constructed using distances between points from a generated sample
set [63]. Like entropy, DPP diversity captures both uniformity and spread.
The benefit of DPP is its ease of calculation for high-dimensional data, as
it only requires a positive-semidefinite kernel as an input. However, it is
sensitive to design duplicates, as the determinant collapses to zero when any
of the eigenvalues is zero. We note that DPP diversity is highly nonlinear
and small changes in score may imply sizeable changes in diversity

5.3. Demonstration of Design Exploration Metrics

In this section, we introduced a variety of diversity and novelty-related
metrics. To demonstrate their performance, we use the same representative
synthetic data problem introduced in Figure [3f] Scores are shown in Table [3]
The VAE dominates in average novelty metrics (nearest datapoint and inter-
sample distance), owing largely to the fact that the generated samples are
more spaced apart and span regions of the space outside of the dataset.
However, the GAN outperforms the VAE in diversity metrics focused on

9Point metrics (novelty) are averaged over generated samples.

23

Table 3: Diversity and novelty scores for generated distributions from Figure|3] The VAE
dominates in average novelty, while the GAN dominates in spread-focused metrics. Point
metrics are averaged over the generated set.

(Avg.) Scores: VAE GAN

Nearest Datapoint 0.043 0.018
Inter-Sample Distance 0.030 0.019
Convex Hull 5.651 7.173
DPP Diversity 14.398 14.688
Distance to Centroid 1.120 1.391

spread (convex hull and distance to centroid) because samples generated by
the GAN span a larger convex space. This illustrates a shortcoming with
certain diversity metrics where the potentially diverse samples in the center
of the space generated by the VAE do not contribute to the score. The DPP
diversity score, which takes into account both uniformity and spread, favors
the VAE when using a Euclidean radial basis function (RBF) kernel.

From this two-dimensional example, we would like to highlight two points.
First, average novelty metrics are easily confused for diversity metrics, but
as this example illustrates, they do not always agree with diversity scores.
Second, practitioners need to be aware of convexity assumptions and consider
both uniformity and spread when evaluating a model’s diversity.

6. Evaluating Design Constraints

Many design problems have constraints, which are limitations placed on
the possible designs within a given problem or task. These constraints can
be physical, such as geometric constraints, or functional, such as perfor-
mance or cost requirements. They are used to guide the design process and
ensure that the final solution meets certain requirements and is feasible to
implement. Constraints are commonly driven by materials or manufacturing
limitations, industry standards, or nonnegotiable safety requirements. Un-
like performance targets, which we discuss in Section [7.2] we must satisfy
constraints for the design to be valid. Appropriately handling constraints
is extremely important for generative models in design, and ensuring that
DGMs can respect design constraints is a critical consideration in evaluating
their performance. In this section, we propose several techniques for quan-
tifying constraint satisfaction in DGMs. Much like functional performance

24

A 1@ Generated A 1@ Generated ! '@ Generated |
o :7 Constraint ! o 17 Constraint 0/5 1 Invalid ;

L I O I V7 '
< [£ [)]
] D 0 Sl
@ ° i 2 1
[} : 5] i
o 1] [) o 2/2] o

o : 0 ® E 12

1] > 212 >

Constraint 1 Constraint 1

(a) Constraint Satisfaction (b) Constraint Satisfaction Rate (c) Neighbor Validity Fraction

.dyl:l '@ Generated
'O invalid !

dz

Constraint2

Constraint 1

\4

(e) Signed Dist. to Constraint
(d) Nearest Invalid Datapoint Bound.

Figure 5: Illustrations of select constraint satisfaction metrics.

metrics, constraint evaluation metrics are highly dependent on known infor-
mation about the problem. Therefore, when little or no information about
constraints is available, it is possible that no metric will be practically viable
for a particular problem.

6.1. Leveraging Constraint Violation Tests

In many design problems, there exist known methods (using analytical
equations, rules, simulations, or physics knowledge) to test whether a design
is valid with respect to each of the problem constraints. Since closed form
constraint definitions are rare in design problems practioners may instead
have to turn to such methods to evaluate constraint satisfaction. Below,
we list a few methods that leverage such constraint violation tests, when
available.

Constraint Satisfaction (Figure @) Provided that practitioners have access
to some black-box constraint satisfaction test, perhaps the simplest possible
constraint violation metric is a simple binary constraint satisfaction score

25

(i.e., does a generated sample simultaneously meet all constraints?). When
averaged over a generated sample set, this can effectively serve as an indi-
cator for the proportion of generated samples that are valid. In practice,
more versatile scores are often more informative, especially in problems with
multiple constraints.

Constraint Satisfaction Rate (Figure @) A variant of the simple constraint
satisfaction score is the constraint satisfaction rate, which quantifies the pro-
portion of all constraints met by a single generated sample. If different
constraints have different priority weightings, this score can be weighted by
the priority of the various constraints.

6.2. Metrics that Leverage Datasets of Invalid Designs

Unfortunately, it is common not to have even a black box constraint
evaluator or methods allowing the direct estimation of the distance to the
constraint boundary. In such cases, practitioners may have access to or may
be able to procedurally generate a large collection of infeasible or invalid
designs. These datasets of constraint-violating (invalid) designs provide a
tool to approximate the constraint adherence of generated designs.

Predicted Constraint Satisfaction. When practitioners have access to a refer-
ence set of constraint-violating datapoints, they can use a classifier to predict
the constraint satisfaction of their generated samples. This classifier can be
something complex like a neural network, or something simple and robust
like k-nearest neighbors. In the case of k-nearest neighbors, the fraction of
neighbors that are valid provides a likelihood that a generated sample satis-
fies constraints, which serves as the score, as shown in Figure [5d

Nearest Invalid Datapoint (Figure @) When practitioners have access to a
reference set of constraint-violating datapoints, they can calculate the dis-
tance from each generated sample to the nearest known invalid datapoint.
The underlying assumption is that samples near constraint-violating data-
points are also likely to be constraint-violating. This gives a rough approxi-
mation of the distance to the constraint boundary.

6.3. Leveraging Mathematically-Defined Constraint Boundaries

Though rare, practitioners may sometimes have access to a closed-form
mathematically-defined constraint boundary. They can usually then calcu-
late distances from generated design samples to the constraint boundary,
which can be highly informative.

26

Signed Distance to Constraint Boundary: (Figure @) The distance to con-
straint boundary metric is most informative as a signed distance field (SDF),
with generated samples satisfying the constraints having positive distances
and samples violating the constraints having negative distances. Indicating
by what margin samples are satisfying or violating constraints can be sig-
nificantly more informative than a simple binary criterion or proportion of
constraints met.

6.4. Demonstration of Design Constraint Metrics

Having presented a variety of metrics for evaluating constraint satisfac-
tion, we again showcase these metrics on a simple 2-dimensional problem.
To demonstrate the constraint adherence task, we test a GAN and a VAE on
a variant of a concentric ring problem that we created for this task. In this
problem, we create a non-convex feasible design space consisting of a con-
centric circle and ring, separated and surrounded by two infeasible regions,
respectively (Figure . To support the nearest invalid datapoint metric,
we also include a dataset of invalid datapoints, shown in Figure [6b] though
these invalid datapoints are not used during training. Both the GAN and the
VAE struggle to avoid the invalid area of the design space, as seen by points
overlapping with the infeasible regions in Figures [6d and [6dl However, as
shown in Table[d] the GAN outperforms the VAE in every metric, indicating
that it is better suited to generate feasible designs in this problem. Note that
the metrics presented use differing amounts of problem information. In cases
when these metrics don’t agree, giving the more informed metric precedence
is recommended (e.g. if available, use constraint satisfaction over predicted
constraint satisfaction). With this, we conclude our discussion about con-
straint adherence metrics and move on to consider metrics that evaluate
design performance.

7. Evaluating Design Quality

In problems like image synthesis, ‘quality’ and ‘realism’ are almost syn-
onymous. The more realistic the generated images, the higher their ‘quality’
and the higher the performance of the generator. This makes sense for prob-
lems like human face generation, where if a generated image looks like an
existing human face, it might be considered a more realistic and higher-
quality image. In design, ‘quality’ is typically not associated with similarity
to existing designs. Instead, the quality of designs is often governed by an

27

(a) Valid Datapoints (b) Invalid Datapoints

(c) VAE (d) GAN

Figure 6: Distributions generated by a Variational Autoencoder and Generative Adver-
sarial Network. Both the VAE and GAN struggle to observe the non-convex constraint
dividing the two valid regions of the design space. Generated samples that violate con-
straints are shown in black, while valid generated samples are shown in blue. The GAN
demonstrates generally higher constraint satisfaction performance.

Table 4: Constraint adherence scores averaged over the generated distributions in Figure@
The GAN demonstrates generally higher constraint satisfaction performance. Point met-
rics are averaged over the generated set.

Average scores: VAE GAN

Constraint Satisfaction 0.713 0.833
Constraint Satisfaction Rate 0.857 0.917
Predicted Constraint Satisfaction 0.698 0.823
Nearest Invalid Datapoint 0.17 0.173

28

associated set of functional performance characteristics, often modeled as a
mapping from the design space to some performance space. Let us consider
a bicycle design problem. As demonstrated in Fig. [1| earlier, two frames that
look visually similar in the pixel space still have orders of magnitude different
deflection values. Quality characteristics in design may include factors such
as cost, weight, efficiency, etc., and are highly problem dependent. We’d like
to note that a generated design’s innate performance attributes can also serve
as simple but effective evaluation metrics for the design and the method that
generated it.

7.1. Performance Optimality

In many engineering problems, designers want to find a distributed set of
solutions that are performant across multiple objectives. This is especially
common in multi-objective optimization problems, where designers often seek
to identify a Pareto-optimal set of points. Pareto-optimal designs have the
property that any performance improvement in some objective must come
at the expense of performance in some other objective. This means that
Pareto-optimal designs cannot be ‘dominated’ by any other design, i.e., there
exists no design that has superior performance in every objective. Identify-
ing a strong approximation set for the Pareto-optimal front can be extremely
valuable in design problems because it effectively provides an optimal design
given any arbitrary choice of objective priorities by the designer. If prac-
titioners seek to generate a diverse set of near-optimal designs, they may
seek to quantify how close a set of generated designs is to the true Pareto-
optimal front. Below, we discuss a few metrics that could be adopted by
design researchers to quantify performance optimality and refer readers to
more detailed reviews, such as [I3] for other metrics.

Hypervolume Metric (Figure . The hypervolume metric, often simply re-
ferred to as ‘hypervolume,’ is a staple metric in the multi-objective optimiza-
tion field [13], which estimates the proximity of a set of generated samples to
the (often unknown) Pareto-optimal front. In simple terms, the metric cal-
culates the hypervolume comprised of all points that are dominated by some
point in the generated set but simultaneously dominate some fixed reference
point. In any problem where a diverse near-Pareto-optimal set of samples
is desired, hypervolume could be used to quantify the performance of gen-
erated samples. For example, the metric was used in [55] to compare the
performance of different GAN models for airfoil synthesis.

29

(d) Target Achievement

4

Objective 2

(g) Design Target Achievement Index

(e) Target Achievement Rate

Er1

A Fooomoomoooes ' A '@ Generated ! A
i @ Generated | P ;.]
® : @ Reference
N 1 N ’(11/. _______________
gl ® 2 2
3 ! 3 ® Jd 3
9 | %)
8 . -I . (@} d3 O
1
@--------- Id4
> >
Objective 1 ” Objective 1 Design Parameter
a) Hypervolume enerational Distance c) Optimality Gap
H 1 b) G i 1 Di Optimality G
A '@ Generated | A 1@ Generated ' A 1@ Generated |
] 171 Target [] 171 Target d 17 Target
o~ 0 ""; """"" o~ | 12 ""; """"" o~ | Y TTTTTTTTTTTTT
2 g 2 -d2
gl 0 gl or sl /.
5 e S e | 5 & L
h -dg
O 1 Y O 2p2) © o @
o] 0 ®] 12 ._5;
1 o 22 R : R
Objective 1 ” Objective 1 ~ Objective 1 ~

(f) Signed Distance to Target

Erz

N\ ® Generated | [| A

] : $2

11 Target ')

o O L R
""""" p T E 1 1 8 Sq
; . : : Sfretees
............. .I|. - . E t4 E to
Objective 1 r1=0.8 rp=1.7

Target/ Performanci

3
>
e

Figure 7: Hlustrations of select design quality and target achievement metrics.

30

Generational Distance (Figure . When a set of ‘optimal’ reference designs
is known, generational distance could be used to measure design optimal-
ity. Generational distance, another staple of the multi-objective optimiza-
tion community [I3], measures the distance from a generated sample to the
nearest point on the ‘optimal’ reference set [64]. This reference set may not
consist of truly optimal designs but is typically taken as a reliable approx-
imation for a true Pareto-optimal design set. Generational distance is not
widely adopted as a metric for deep generative models but can serve as an
excellent metric for evaluating the quality of generated designs in cases when
an optimality frontier is known or could be constructed from the training
data using non-dominated ranking methods.

Optimality Gap (Figure @) When working on well-defined problems, prac-
titioners may be able perform gradient-based optimization on their problem.
In these cases, they can estimate the distance to an optimal design using ‘op-
timality gap’ metrics. The distance from the generated design to the local
minimum discovered by the optimizer is often referred to as the ‘cumulative
optimality gap’ or simply the ‘optimality gap.” A variant, the instantaneous
optimality gap, has also been proposed to measure the distance to the mod-
ified design after the first step of gradient descent [65].

7.2. Target Achievement

While generating an entire set of Pareto-optimal designs can be helpful
when exact design goals are not yet decided, practitioners may also need
to apply generative models to design problems where performance targets
are specified. These types of problems necessitate a suite of metrics that
quantify a model’s ability to achieve performance targets. We would like to
clarify that, in contrast to hard design constraints, performance targets are
intended to be negotiable. They are also different from soft constraints, as
exceeding a target by a larger margin is often desirable, which is not the case
with constraints. While many of the metrics for constraint satisfaction can
be modified to quantify target achievement, the handling of design targets
can call for more nuanced metrics which reflect their flexibility.

Target Achievement Scores. Reformulating several of the previously discussed
constraint satisfaction metrics, we can define analogs for the target achieve-
ment case. Target achievement (Figure, much like the constraint satisfac-
tion score, measures whether a design simultaneously meets all performance

31

targets across objectives. However, since simultaneously achieving all the tar-
gets in a given problem may be difficult, more nuanced scores are typically
more informative in quantifying proximity to the target. Target achievement
rate (Figure is analogous to the constraint satisfaction rate, quantify-
ing the weighted proportion of multi-objective design targets met by design.
When practitioners have a well-defined target criterion, they can calculate
a signed distance to target (Figure , indicating the degree to which de-
signs are outperforming or underperforming the set of multi-objective design
targets.

Design Target Achievement Index (Figure @ In problems with particularly
nuanced design goals and targets, practitioners may want an even more flex-
ible metric than the signed distance to the target. Regenwetter et. al. [27]
proposed the design target achievement index (DTAI), which considers the
relative importance of targets and the value of continued optimization be-
yond the target. The key idea is to aggregate weighted soft penalties when a
target in any of the objectives is not achieved and combine them with reward
functions when the target is exceeded. DTAI is also bounded and differen-
tiable, making it viable as a training loss in generative design problems where
design performance values are provided in the dataset.

7.3. Demonstration of Design Quality Metrics

Having introduced a variety of performance and target achievement met-
rics for DGMs in design, we once again present a 2-dimensional example
demonstrating the use of these metrics. We select the KNO1 test problem as
the objective function [66] and add it to the 2-dimensional example discussed
previously. We test a standard GAN, which ignores performance, and a
Multi-Objective Performance-augmented Diverse GAN (MO-PaDGAN) [55],
which attempts to generate a diverse set of high-performing designs. For
target-oriented metrics, we select a fairly demanding performance target of
(0.5,0.5), which is only attainable in small regions of the design space. The
model and metric parameters are included in the appendix, and the results
are plotted and tabulated in Figure[§land Table[5] The MO-PaDGAN largely
ignores the two low-performance modes and outperforms the standard GAN
in every performance metric tested. It achieves a stronger Pareto-optimal
set as indicated by the hypervolume metric. It generates designs that are,
in general, closer to the known Pareto-optimal reference set, as indicated by
the generational distance metric. Its designs achieve a greater fraction of

32

0.8 0.8 * *
0.6 0.6 Bl
= *

0.4 0.4

0.2 0.2 ?‘:ﬁ. *

(a) Objective 1 (¢) Target-achieving region
3‘ 3 ﬁe‘ -
» - 3
(d) GAN (e) MO-PaDGAN

Figure 8: Visual demonstration of a Generative Adversarial Network and Multi-Objective
Performance-augmented Diverse GAN on the 2-dimensional KNO1 objective. The MO-
PaDGAN, which considers functional performance samples predominantly from higher-
performing modes.

the performance targets, lie closer to the target boundary, and adhere more
closely to the target overall, as indicated by the weighted target achievement
rate, signed distance to target, and design target achievement index, respec-
tively. These metrics match our intuition and provide a way to quantify
differences between different models: A standard GAN underperforms in all
metrics, as it only maximizes distribution similarity, without any consider-
ation for other factors such as objectives and targets. Note that the GAN
would dominate the MO-PaDGAN in almost every statistical similarity met-
ric. In design problems, higher functional performance often comes at the
expense of statistical similarity.

33

Table 5: Performance and target achievement scores for distributions in Figure[§] The MO-
PaDGAN, which considers functional performance, samples predominantly from higher-
performing modes. Point metrics are averaged over the generated set.

(Avg.) scores: GAN MO-PaDGAN
Hypervolume 0.460 0.571
Generational Distance 0.215 0.315
Weighted Target Ach. Rate 0.162 0.430
Signed Distance to Target -0.275 -0.154
Design Target Ach. Index 0.324 0.433

8. Evaluating Conditioning Requirements

In DGMs, conditioning refers to the process of incorporating additional
information, such as labels or attributes, into the model when generating
new data. For example, in image generation, a deep generative model can be
conditioned on class labels, such as ‘dog’ or ‘cat’, in order to generate images
of specific animals, rather than randomly picking cats or dogs (or training
separate generators for each class of image). Conditional DGMs are often
more robust and data efficient than training many individual DGMs since
they allow designers to reuse a single model for many variants of a particular
design problem. This also differs from traditional optimization approaches
where a change in problem parameters usually necessitates re-optimization.

Conditional variants of many classic generative models have been pro-
posed [67, 68, 69], but are most commonly applied to class-conditional prob-
lems. In design, many tasks necessitate continuous conditioning, and spe-
cialized models have been proposed [70, [71]. Conditioning information varies
from problem to problem. It is commonly used to encode constraints, func-
tional performance targets, or parameters used to distinguish one version
of a problem from another. For example, DGMs for structural topologies
are typically conditioned on boundary conditions (normally thought of as
constraints), volume fraction (sometimes thought of as a functional perfor-
mance attribute), and load locations (used to distinguish different loading
problems) [72, [6].

8.1. Conditioning Adherence (Figure@)

When working with conditional models, practitioners may want to quan-
tify the degree to which their model respects the information on which it is

34

...

GeneratedCond.VaI.i Generated | 1 Generated

! 1 H Predictor ! I
: @ O Conditioning Target ; @ Dataset {0 Conditional Subset;
H |@® Otherdata
dq B () []
® 9.
do dg | ds) Y dq o do
ds3 T T
B < > ° o
Score

(a) Conditioning Adherence (b) Conditioning Reconstruction (c) Cond. Nearest Gen. Sample

Figure 9: Illustrations of select conditioning metrics.

conditioned. In some problems, practitioners are conditioning on informa-
tion that they can directly calculate for generated samples. For example, if
conditioning a structural topology DGM on volume fraction, the volume frac-
tion of generated samples can be calculated as the fraction of filled pixels to
total pixels. In this case, the difference in conditioned versus actual volume
fraction serves as a conditioning adherence metric. Broadly speaking, the
distance between condition and recalculated condition is a viable approach
to quantify conditioning adherence.

8.2. Conditioning Reconstruction (Figure

In the absence of a method to directly recalculate conditioning informa-
tion from generated samples, practitioners can instead use a predictive model
to reconstruct estimates of the condition. A reconstruction loss serves as the
score. The accuracy of this metric relies on the accuracy of the predictor,
since any prediction error incurred will factor into the score.

8.8. Adapting Unary Metrics to Conditional Problems

Many of the metrics presented in previous sections must be adapted for
conditional problems. We first discuss strategies to adapt unary metrics to
conditional settings and discuss the more challenging task of adapting binary
metrics in the following section. Unary metrics must be calculated and aver-
aged over numerous conditions. For a fair comparison, these conditions must
be identical or equivalent when evaluating different models on a particular
problem. For class-conditional problems, this may mean reporting a score
for each class or reporting a weighted average across classes. For continu-
ous conditioning problems, this may mean averaging over many conditions
sampled from some repeatable parametric statistical distribution.

35

8.4. Adapting Binary Metrics to Conditional Problems

In unconditional problems, binary metrics typically compare some gen-
erated posterior distribution to a reference distribution (often the dataset,
which we call the prior). In a conditional setting, our posterior is instead
a conditional distribution. In this case, we typically have two options, each
with its own strengths, which we discuss below. In either case, much like for
unary metrics, we typically average scores over a sweep of conditions to yield
an overall condition-agnostic score, or simply report metrics under several
individual conditions.

Comparing Conditionally Posterior to a Conditional Prior. The ‘standardﬂ
option to evaluate binary metrics in conditional settings requires us to com-
pare the conditional posterior distribution to a conditional reference distri-
bution (usually the conditional prior—the subset of the dataset which meets
the condition). We have illustrated the conditional nearest generated sample
metric in Figure but the principle applies broadly to many binary met-
rics. However, identifying a conditional reference is often nontrivial, espe-
cially when the reference distribution is something other than the dataseﬂ.
Even when we are simply using the dataset as a reference distribution, if we
have a continuous conditioning space, we can’t select a discrete subset of the
dataset which exactly respects the condition. Instead, we can approximate
by selecting a subset of the dataset whose conditions are proximal to the
condition used to create the generated distribution. However, this necessi-
tates calculating some distance in the conditioning space, such as the vicinal
loss defined in literature [70, [74]. Calculating these vicinity-based values
may again be nontrivial in problems with high-dimensional or multimodal
conditioning information.

Comparing Conditionally Generated Distributions to a Marginal Distribu-
tion. Alternatively, we can compare the conditional posterior distribution
to the full marginal reference distribution (usually the prior). Though less
intuitive, this can be the next best option when calculating a conditional ref-
erence is intractable. But in certain cases, comparing a conditional posterior

10This is the standard formulation for class-conditional variants of popular metrics like
class-conditional FID and IS [73].

HFor example the reference distribution in generational distance is a pareto-optimal
set. The conditional subset of this refence may no longer be pareto-optimal, defeating the
purpose of the metric

36

to a marginal prior may actually be preferable. This is particularly desirable
if we want new designs that meet some specific condition but resemble de-
signs from the dataset that don’t meet this condition. Consider a DGM that
was trained on a dataset of heavy mountain bikes and light road bikes and
is generating bike frames conditioned on frame mass. If this DGM discovers
how to generate lightweight mountain bikes, it will score poorly on similarity
metrics evaluated against the conditional prior, since the only lightweight
bikes in the dataset are road bikes. In contrast, this model would score well
on similarity metrics evaluated against the marginal prior. The comparison
to the marginal or conditional prior effectively balances a tradeoff between
two possible training objectives for the model. On the one hand, lightweight
mountain bikes are ‘unrealistic’, according to the data. On the other hand,
discovering adaptations of designs to meet the specified condition may be
innovative and desirable.

8.5. Demonstration of Conditioning Metrics

To demonstrate the conditioning of generative models, we construct a
fairly challenging continuous conditioning problem on the previously used
dataset. Each of the datapoints are labeled according to a highly nonlinear
conditioning function. The goal is to generate samples that have a condition
value of exactly 0.3. Though we would typically care about performance
across a variety of condition values, we will only examine this particular
conditioning value in this case study. In practice, we would likely perform a
weighted average across the conditioning variable to get a sense of the overall
conditional generational performance of the models. We train a conditional
VAE and a conditional GAN, the results of which are plotted in Figure[10|and
tabulated in [6] Details about the model architecture, training, and metric
settings are included in the appendix. We take the conditional prior to be the
10% of the dataset that most closely matches the condition, as shown in [10b]
Overall, the cGAN focuses heavily on the leftmost and rightmost modes,
struggles to accurately capture other areas of the distribution, and ignores
sparse areas. In contrast, the cVAE under-represents the two main modes,
but much more faithfully captures the remainder of the distribution. Over-
all, the ¢VAE significantly outperforms the GAN in conditioning reconstruc-
tion and adherence, indicating that it generated samples that, on average,
much more closely match the condition. In both conditional and marginal
F10 and F0.1, the cVAE and ¢cGAN repeat trends from their unconditional
counterparts in Section [£.5 Due to its focus on the main modes, the GAN

37

S *
(a) Original data (b) Conditional Prior (c) cVAE vs. marginal prior
o e
’i ¥ BF 2 ' 2 ¥
£ .

(d) cVAE vs. conditional prior (e) cGAN vs. marginal prior (f) cGAN vs. conditional prior

Figure 10: Visual demonstration of a conditional Variational Autoencoder and conditional
GAN on a continuous conditioning problem. Generated distributions are overlaid over both
the original dataset (marginal prior), as well as the nearest 10% of the data to the condition
(conditional prior).The ¢cVAE better matches the marginal prior, while the cGAN better
matches the conditional prior.

38

Table 6: Performance and target achievement scores for distributions in Figure The
c¢VAE better matches the marginal prior, while the cGAN better matches the conditional
prior on this dataset. Point metrics are averaged over the generated set.

(Avg.) scores: cVAE ¢GAN

Conditioning Reconstruction 0.007 0.026
Conditioning Adherence 0.008 0.026

Conditional F10 0.909 0.826
Conditional F0.1 0.879 0.960
Conditional MMD 0.035 0.021
Marginal F10 0.949 0.933
Marginal F0.1 0.447 0.554
Marginal MMD 0.068 0.097

significantly outperforms in maximum mean discrepancy when comparing to
the subset of the dataset that most closely match the condition. However,
when comparing to the marginal prior, the cVAE is the clear leader in MMD,
generating more samples that lie closer to the four underrepresented modes.
As illustrated, binary metrics can tell very different stories when compared
against conditional or marginal priors. Next, we move on to consider miscel-
laneous DGM evaluation metrics.

9. Other Metrics for Evaluating Deep Generative Models

Thus far, we have discussed metrics to evaluate similarity, diversity, con-
straints, performance, and conditioning. Below, we briefly summarize a few
more types of metrics that may be important to evaluate the performance of
DGMs in certain problems. A detailed, but not necessarily comprehensive
list of other considerations for DGMs in design is included in the Appendix

in [I5.1].

9.1. Latent Disentanglement

Many DGMs synthesize designs by taking randomized inputs from some
(usually multidimensional) latent variable space. Many design researchers
have attempted to link latent variables with the physical properties of the
generated designs [75, [76], which, ideally, would serve as a tool for human
designers to manually select or tune generated designs. If the latent space is

39

disentangled, the generation process becomes more interpretable. Tasks like
creating new functionally graded material or design space exploration could
also be enhanced by disentangled representations, as moving in the latent
space along certain dimensions corresponds to expected changes. Disentan-
glement metrics generally fall into one of three categories: Intervention-based
metrics such as Z-diff [77], predictor-based metrics such as attribute pre-
dictability score (SAP) [78], and information-based metrics such as mutual
information gap (MIG) [79]. We refer readers to reviews like [80] and [81] for
more detailed discussions on disentanglement metrics.

9.2. Human Evaluation

Though automated evaluation metrics are often the most practical, they
seldom provide as valuable of an analysis as people. Human evaluation ap-
proaches can roughly be divided into crowdsourced evaluation frameworks
and expert evaluation frameworks, where the primary tradeoff is cost versus
evaluation quality.

Crowdsourced Evaluation. Crowdsourced evaluation frameworks are common
in computer vision fields since untrained humans typically suffice for deter-
mining the ‘realism’ of images in computer vision problems. Metrics like
Human Eye Perceptual Evaluation (HYPE) [82], for example, quantify how
easily humans can discern between real and fake samples. In contrast, designs
may be difficult to properly evaluate since they are not always represented
in a visual medium and may have infeasibilities or inefficiencies that require
engineering expertise to discern.

Ezxpert Evaluation. Expert evaluation methods are often used in various ap-
plications of deep generative models to assess the quality of the generated
samples. Domain experts or linguists evaluate the samples based on specific
criteria such as realism, coherence, and relevance. The scores are then av-
eraged over a set of generated samples to compare different models. This
approach is considered to be a gold standard for evaluating the quality of
generated samples, but is time-consuming and costly.

10. Application Study: Exploratory Bicycle Frame Design with
Constraints and Performance Targets

Throughout the paper, we have applied metrics to simple 2-dimensional
problems to visually demonstrate how the presented metrics function. How-

40

ever, real design problems are typically higher-dimensional, often have more
constraints and objectives, and are generally highly non-convex. As such, we
feel that practical case studies on real engineering design problems may be
insightful. Therefore, in this section, we present the first of two case stud-
ies. In this problem, we want to design novel, diverse, and high-performing
bicycle frames that meet a set of ten structural performance targets and ad-
here to an unknown set of implicit design constraints. We seek a DGM that
consistently generates designs meeting performance targets and constraints,
but generates a wide enough variety to offer a broad selection of design can-
didates.

10.1. Dataset

The dataset we use [12] features roughly 4000 constraint-satisfying de-
signs and roughly 300 constraint-violating designs. Each frame design is in-
spired by a real bicycle design [83] and is parameterized over 37 parameters.
Each constraint-satisfying design is ‘labeled” with a vector of 10 structural
performance values, such as weight, safety factors, and deflections under var-
ious loading conditions. This dataset was previously used as a benchmark
for target-seeking deep generative models in [27] and we adapt the models
tested for our demonstration. We also adopt the objective weights and DTAI
parameters from [27].

10.2. Models

For our case study, we train and test three Generative Adversarial Net-
work (GAN) variants. The first is a ‘vanilla’ GAN, a type of network that
adversarially trains two networks, one which generates new designs and one
which discriminates between existing designs and generated designs. The
vanilla GAN is blind to design performance, only implicitly observes con-
straints, and does not promote exploration beyond the convex region of the
dataset. The second is a Multi-Objective Performance-augmented Diverse
GAN (MO-PaDGAN) which uses a performance-weighted DPP kernel to
augment the loss function of the GAN in an effort to simultaneously en-
courage higher performance and greater diversity among generated designs.
MO-PaDGAN generally encourages diverse, higher-performing designs, but
does not consider specific performance targets or explicit constraint handling.
The third is a DTAI-GAN which further augments the MO-PaDGAN with a
weighted target achievement loss and classifier guidance to avoid constraint-
violating designs. In this sense, DTAI-GAN is the only model that ‘explicitly’

41

considers constraints, while the other models ‘implicitly’ consider constraints
by training only on constraint-satisfying designs.

10.8. Selecting Metrics

We’d like to evaluate diversity, performance, target achievement, and
constraint satisfaction, alongside distribution matching. We discuss how we
select metrics for this problem and justify these choices.

Statistical Simalarity. While the goal is not just to mimic existing designs,
measuring similarity is important to make sure that we are still generating
bicycle frames. We would also ideally like our generated designs to span as
much of the design space as possible, thereby representing as many key types
of designs as possible. As such, we care about both ‘realism’ and coverage,
as well as general similarity. For this, we select nearest datapoint (NDP),
nearest generated sample (NGS), and F1 to capture realism, coverage, and
similarity, respectively. Since we primarily care about these metrics in the
design space, we evaluate all three in the design space, rather than the per-
formance space.

Design Exploration. As one of the stated objectives of the problem, we want
to generate a diverse set of novel designs. This is common in scenarios where
a final design will be selected by experts from a diverse set. While we could
look to maximize nearest datapoint as a novelty metric, we still want our
designs to resemble designs in the dataset. We instead calculate nearest
datapoint in the performance space, instead of the design space. Put plainly,
while we want generated designs to resemble existing designs, we would like
them to have different performance values. Since we also want generated
designs to be diverse, we select inter-sample distance and DPP diversity as
two diversity metrics of choice, which we evaluate in the design space.

Design Constraints. The FRAMED problem provides a method to evaluate
constraint adherence for generated samples, making the constraint satisfac-
tion metric a natural choice. Since closed-form constraint definitions are
not available, more informative choices such as signed distance to constraint
boundary are not feasible in this problem.

Design Quality and Target Achievement. In FRAMED, we do not have a
known set of Pareto-optimal designs. While we could infer an approximate
set from the dataset, we have no basis for assuming that dataset designs are

42

near-optimal, in part due to a randomization step in the FRAMED dataset
generation pipeline [12]. Therefore, we can feasibly expect to generate designs
that dominate the previously non-dominated designs in the dataset, making
generational distance a poor choice. We also do not have a differentiable
solver which we could query to calculate the optimality gap. As such, we use
hypervolume to capture the overall optimality of generated designs. Since we
are given performance targets with priority weights, we use a weighted target
achievement rate as a simple metric, but we can also use signed distance to
target since we have access to simple closed-form target criteria. Finally, we
use the design target achievement index (DTAI) to evaluate overall target
achievement performance.

10.4. Results

We demonstrate the performance of the three DGMs and their scores on
selected metrics in Figure

Statistical Similarity. Across the board, the vanilla GAN achieved superior
distribution-matching performance to the GAN variants focused on design
performance. As indicated by the demonstrated Principal Component Anal-
ysis embeddings, MO-PaDGAN identified a higher-performing region of the
design space and consistently generated many designs away from the original
design distribution. Similarly, DTAI-GAN identified a region of the design
space where designs were likely to meet performance targets and sampled
heavily from this region. Since there were a handful of dataset samples near
this region, DTAI-GAN outperformed MO-PaDGAN in nearest datapoint.
However, since it very consistently generated designs far away from the cen-
ter of the dataset distribution, it scored much worse in nearest generated
sample. Both models achieved very low F1 scores. Though the distribution-
matching scores indicate that the performance-aware models deviated signif-
icantly from the dataset, we don’t necessarily find this concerning since we
primarily care about finding novel high-performing designs.

Design Ezploration. The DTAI-GAN scored highest in performance-space
novelty, generating many designs whose performance differs greatly from
those in the dataset. These models also achieved much higher diversity ex-
ploring more of the space and generating more varied samples.

43

f Dataset GAN MO-PaDGAN

Des. Space NDP 8.5 10.9

Des. Space NGS 6.2 13.2
\ F1 Score 0.173 0.009
/" Dataset GAN MO-PaDGAN

& N N

Perf. Space NDP 2.70 2.85 2.86

Gen-Gen Distance 1.13 1.38 1.50
k DPP Diversity 3.51 3.32 1.78 j
f GAN MO-PaDGAN DTAI-GANV)

Example Constraint-
Violating Designs:

\Constr. Satisfaction 83.4% 87.1%

/ Objective: GAN MO-PaDGAN

Trv. Deflection (mm) /\7 /\7

Safety Factor (Inv.) /\ o f\

Weight (kg) . / \\ P A
Hypervolume 2.8E-7 3.2E-7 41E-7
Weighted TSR 79.0% 85.7% 87.6%

Signed Dist. to Target -1.04 -0.72 -0.32

DTAI 0.84 0.92 0.95 /

Figure 11: Evaluation of three models on FRAMED dataset. The first box, focused on
similarity shows a 2-D Principal Component Analysis embedding of generated designs
overlaid over the dataset. The second box, focused on diversity shows select generated
bike frames. The third box, focused on constraint satisfaction shows select invalid bike
frames. The last box, focused on functional performance shows kernel density plots of
structural performance scores of generated bikes (design target shown as the dotted line;
smaller is better).

44

Design Constraints. Since we don’t have access to closed-form constraint
tests, we are not able to evaluate distance to constraint boundary or other
more insightful constraint-related metrics. Instead, we simply know that,
as expected, the constraint-aware DTAI-GAN is a significantly stronger per-
former at constraint satisfaction than the two models that only implicitly
considered constraints.

Design Quality and Target Achievement. Across all performance and target
achievement metrics, DTAI-GAN scores the highest, and the vanilla GAN
scores the lowest. Kernel density plots for three of the ten performance
objectives are shown in the last panel of [11] and in each, DTAI-GAN’s dis-
tribution is most favorable. Interestingly, the DTAI-GAN’s average target
success rate was barely higher than MO-PaDGAN’s. However, its average
signed distance to the target was much higher, indicating that DTAI-GAN’s
designs that exceeded the target did so more drastically and designs that
missed the target did so by a smaller margin.

10.5. Analysis

The metrics strongly demonstrate that the DTAI-GAN achieves its stated
goal of generating a diverse and novel set of designs that achievement perfor-
mance targets and satisfy constraints. The enhanced functional performance
and constraint satisfaction of generated designs detracted from the DTAI-
GAN'’s ability to match the training dataset. However, this behavior was
largely expected and encouraged in order to discover higher-performing re-
gions of the design space than were previously represented in the dataset.
We now move on to our second case study, exploring optimal topology gen-
eration.

11. Application Study: Optimal Topology Generation using Con-
ditional Deep Generative Models

In this section, we demonstrate the appropriate selection of metrics for
structural topology generation problems. Recent work [72] [84] 6], [85] in the
field has focused on training DGMs to circumvent the reliable but slower
Topology Optimization (TO) solvers, such as Solid Isotropic Material with
Penalization (SIMP) [86, [87]. These DGMs train on a dataset of topologies
generated by SIMP, typically taking volume fraction and loading informa-
tion as conditioning. Then, for various loading cases and volume fractions,

45

they generate topologies that they predict SIMP would generate. Typically,
the single functional performance objective is to minimize compliance of the
generated topologies.

11.1. Metric Selection

We first discuss existing metrics commonly used for evaluating DGMs in
optimal topology generation, then propose several additional metrics that
may be valuable.

Ezisting Metrics. Mazé & Ahmed [6] propose a set of four evaluation metrics
for DGMs in optimal topology generation which have been adopted in later
works [85]: Compliance error, volume fraction error, load violation, and float-
ing material. We break down what these metrics mean, and which metrics
from this paper they correspond to:

1. Compliance Error: Compliance error describes the percent difference
between a generated topology’s compliance and the compliance of a
SIMP-generated topology under the same loading condition. This met-
ric is a variant of the signed distance to target metric (Sec. . Com-
pliance is treated as a functional performance objective in TO. For each
conditional input, a target compliance value is selected to be the com-
pliance of the topology generated by SIMP. The compliance error is
then simply given as the normalized signed distance to this target.
Specifically, outperforming SIMP is rewarded with a negative compli-
ance error, while exceeding the target compliance is assigned a positive
compliance error.

2. Volume Fraction Error: Volume fraction error quantifies the percent
error between a generated topology’s volume fraction and the target
volume fraction given to the generator. This