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Abstract

Generative models have demonstrated impressive results in vision, language, and
speech. However, even with massive datasets, they struggle with precision, gener-
ating physically invalid or factually incorrect data. This is particularly problematic
when the generated data must satisfy constraints, for example, to meet product
specifications in engineering design or to adhere to the laws of physics in a natural
scene. To improve precision while preserving diversity and fidelity, we propose a
novel training mechanism that leverages datasets of constraint-violating data points,
which we consider invalid. Our approach minimizes the divergence between the
generative distribution and the valid prior while maximizing the divergence with
the invalid distribution. We demonstrate how generative models like Generative
Adversarial Networks and Denoising Diffusion Probabilistic Models that we aug-
ment to train with invalid data vastly outperform their standard counterparts which
solely train on valid data points. For example, our training procedure generates up
to 98% fewer invalid samples on 2D densities, improves connectivity and stability
four-fold on a stacking block problem, and improves constraint satisfaction by 15%
on a structural topology optimization benchmark in engineering design. We also
analyze how the quality of the invalid data affects the learning procedure and the
generalization properties of models. Finally, we demonstrate significant improve-
ments in sample efficiency, showing that a tenfold increase in valid samples leads to
a negligible difference in constraint satisfaction, while <10% invalid samples lead
to a tenfold improvement. Our proposed mechanism offers a promising solution for
improving precision in generative models while preserving diversity and fidelity,
particularly in domains where constraint satisfaction is critical and data is limited,
such as engineering design, robotics, and medicine.

1 Introduction

Generative models have shown remarkable qualitative and quantitative results in vision, language,
and speech. However, these models often struggle with precision and notoriously generate an abun-
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dance of physically or factually inaccurate image and text content. While this lack of precision
is a nuisance in image or text synthesis, it becomes a paramount concern in domains like engi-
neering design with high-stakes (including safety-critical) constraints. Constraints in the design
of products such as cars and airplanes are ubiquitous and varied, but common examples include
geometric constraints (such as disconnected or colliding components), functional requirements
(such as maximum weight or drag coefficient), industry standards, and manufacturing constraints.

Figure 1: Many real-world data distributions have gaps in their sup-
port caused by constraints. Generative Models classically estimate
these distributions using constraint-satisfying (valid) samples. We
propose a new training method for generative models that leverages
constraint-violating (invalid) data to more accurately estimate the
density of in-distribution (valid) data. For example, by examining
structural topologies that violate geometric continuity constraints, a
model can better learn to generate geometrically valid topologies.
For more visualizations, see Figure 9 in the Appendix.

Classic deep generative models are
trained only on valid samples, i.e.,
samples that fulfill the constraints
prescribed by the training distribu-
tion. In the case of engineering prod-
uct design, these would be existing
functional products. Models strug-
gle to accurately learn the boundary
of the valid space using only valid
data. Since this task is equivalent
to learning a classification problem
with only one class present in the data,
this is no surprise. To address this
issue, we propose a simple mecha-
nism to leverage datasets of constraint-
violating data points (invalid samples)
while training deep generative mod-
els. This invalid data helps generative
models accurately estimate the density
of valid samples, as indicated in Fig-
ure 1. Across several test problems,
we determine that models trained us-
ing invalid data can achieve orders of
magnitude better constraint satisfaction. Drawing parallels with classification problems, where
underrepresented class samples can provide more meaningful information, invalid data can prove to
be significantly more informative than valid data in generative tasks. Through our research, we have
substantiated this concept, demonstrating that including invalid data, even when just a fraction of the
dataset, can dramatically enhance constraint satisfaction - often improving it by multiple orders of
magnitude. This finding implies that models trained using invalid data often showcase better sample
efficiency than conventional models. This revelation is particularly significant, given that in most
engineering contexts, collecting invalid data is generally less costly than acquiring valid design data.

Contributions.

(i) We present Constraint-Satisfying Generative Models, a method to leverage invalid samples
to inject constraint information into generative models. Our method is grounded in Density
Ratio Estimation, providing a principled way to deal with situations where precision in
generative models is important.

(ii) We showcase our method on intuitive examples, including complex synthetic 2d continuous
densities and a stacking block problem. We demonstrate that incorporating invalid data can
achieve overwhelmingly superior constraint satisfaction and distribution matching while
improving the sample efficiency of generative models by orders of magnitude.

(iii) We provide preliminary experimental results on a challenging engineering design prob-
lem, structural topology optimization, showing how invalid designs effectively improve
performance and constraint satisfaction.

2 Background

Below, we discuss types of constraints commonly used in engineering literature, common ways of
constraint handling using generative models, and their limitations. We also provide preliminaries on
some deep generative models.
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Types of Constraint Information. Constraint handling has a rich history in engineering design,
spanning some of the literature in deep generative models and extending to adjacent fields like topol-
ogy optimization and multi-objective engineering optimization. Generally, we distinguish four types
of constraint handling in design problems [66]. (i) No Constraint Information: no information about
constraints is given or can be collected, and learning constraints is typically unfeasible or extremely
challenging in a finite data regime. (ii) Dataset of Invalid Designs: a collection of constraint-violating
invalid designs may be available or can be generated. Our method leverages such invalid data to
learn a constraint-satisfying generative model. The value of negative samples is largely governed by
their relative difficulty. Hard invalids fall near the valid data manifold, while easy invalids lie deep
within constrain-violating regions. (iii) Constraint Check: we have access to a check that determines
whether a design satisfies constraints. This may be as intractable as a black-box ‘oracle’ or simulator,
such as a 3D parametric model that only builds when a design is geometrically valid. This check may
also be computationally expensive, limiting its use. (iv) Closed-form Constraints: a constraint check
may also be completely closed-form. In such scenarios, direct optimization is often favored over
generative models in design problems. In other cases, constraint-enforcing rules can be built into the
model structure, an approach used in some generative models for molecular design [20, 34]. We note
that each level of constraint information is strictly more informative than the previous. In this paper,
we focus on the scenario in which a small dataset of invalid samples is available or can be generated,
which is common in applications such as structural design, mobility design (e.g., cars, bikes, ships,
airplanes), and material synthesis.

Active Constraint Handling in Generative Models. Constraint satisfaction is an explicit goal in
many design generation problems [5, 13, 19, 20, 52, 56, 75]. Despite this, the overwhelming majority
of generative models in design do not actively consider constraints [65, 66], even though opportunities
for active constraint satisfaction are often available. Several engineering design datasets [28, 45, 67]
feature constraint-violating designs, and many others have documented checks for validity [89, 90],
allowing datasets of invalid designs to be generated. One common approach for active constraint
satisfaction involves pretraining a supervised model to predict constraint satisfaction and querying
this model during model training with an associated loss over the prediction. Often this model
directly predicts constraint satisfaction likelihood [28, 45, 63], though it can also predict physical
properties which are combined in a more complex constraint check [87]. Structured formulations
can be employed in scenarios where explicit constraint information is available. One approach to
incorporating explicit constraints is through conditioning, which is popular in many design generation
problems [3, 32, 44, 45, 52]. In one variant, conditional modeling, the generative model conditions
on the constraints denoted as c and learn a conditional distribution, p(x|c), where x represents the
generated output. Another variant is conditional constraint generation, which involves a two-step
process. Firstly, a generative model generates unconstrained designs or primitives, denoted as p(p).
Then, a separate constraint model, p(c|p), is trained to learn suitable constraints for a given primitive.
Finally, a solver, denoted as S(p, c), obtains the final design x by incorporating both the generated
primitives and their corresponding constraints. This approach is commonly used in Computer-Aided
Design (CAD) generation, where simple 2D primitives and geometric constraints are jointly modeled
in a generative model [59, 72].

Limitations. While these approaches can be effective in scenarios where constraints are well-defined,
as we show later, they may not be easily applicable in general cases where constraints are not readily
available or easily specified. Therefore, alternative implicit approaches, where constraints are learned
from demonstrations, such as leveraging invalid data or utilizing unsupervised learning methods, can
provide valuable solutions in scenarios where explicit constraint information is not accessible.

Generative Adversarial Networks. Generative Adversarial Networks (GANs [1, 29, 47, 55, 81])
have emerged as a powerful framework for generating realistic and diverse data samples. GANs
have two main components: a generator pθ and a discriminator fϕ. The generator learns to generate
synthetic data samples by transforming random noise into meaningful outputs, while the discriminator
aims to distinguish between real and generated samples. The standard GAN loss can be written as:

L(θ, ϕ) = Epx(x)[log fϕ(x)] + Epθ(x)[1− log(fϕ(xθ))], (1)

where fϕ is the output of a binary classifier. This loss can be seen as a special version of a general
f -divergence formulation [55]. Training a GAN consists in iterating over minθ maxϕ L(θ, ϕ). In
practice, for a given set θ̄, we optimize minϕ −L(θ̄, ϕ), and for a set ϕ̄, we optimize minθ L(θ, ϕ̄).
GANs can also be interpreted in terms of estimating the density ratio [30, 81] between the data and
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the generated distribution, r(x) = px(x)/pθ(x). Such ratio can be estimated by a discriminative
model as rϕ = fϕ(x)/(1− fϕ(x)) and rϕ = 1 gives us pθ = px.

Classifier Guidance in Diffusion Models. Diffusion Models are powerful generative models that
learn the data distribution denoising a multiscale noisy process defined by an approximate posterior q
using a model pθ. Let x0 denote the observed data x0 ∈ RD. Let x1, ...,xT denote T latent variables
in RD. In particular, the generative model for a latent step t can be written as:

pθ(xt−1|xt, c,g) = N (xt−1;µθ(xt, c) +

P∑
p=1

gp, σ), (2)

where c is a conditioning term and g is a guidance term, containing information to guide the
sampling process toward regions with low invalid configurations. We can then adapt the loss as
Lt−1,ϵ(x, c) = Eq(ϵ)

[
wt∥ϵθ(xt(x0, ϵ), c)− ϵ∥22

]
, where conditioning c is applied during training,

the guidance mechanism g is applied only at inference time, merging the noisy gradients of the
classifier with the unconditional score of a diffusion model to learn a conditional score. Interestingly,
Diffusion Models have a built-in technique that can be leveraged for constraint satisfaction. We
can leverage classifier guidance [25] to discriminate between valid and invalid samples, helping a
generative model to learn the data distribution and move toward regions with high validity and far
from low-validity regions. Notice that for low levels of noise, the discriminator is approximately
estimating the ratio between px and the invalid distribution; where for high levels of noise, we
estimate the ratio between pθ and the invalid distribution.

3 Method

We present a method that assimilates knowledge from invalid samples into a probabilistic generative
framework, utilizing divergence minimization and density ratio estimation techniques. By invalid
samples, we refer to data instances that fail to satisfy the specified constraints. Our approach
purposefully integrates these constraint-violating instances into the learning process, alongside the
valid samples, aiming to augment the model’s capabilities to adhere to the constraints more accurately.
The underlying hypothesis is that by exposing the model to a blend of valid and invalid samples, it
gains a nuanced understanding of the patterns correlating with constraint satisfaction. In this section,
we initially discuss why the conventional divergence minimization-based approach to deep generative
modeling falls short in addressing constraint satisfaction. Following that, we explain how the current
method can be adjusted to exploit invalid samples to improve constraint satisfaction. Lastly, we
propose a practical learning algorithm that utilizes density ratio estimators to train highly precise
deep generative models.

Divergence Minimization with Valid Samples. Let px be data distribution and pθ the generative
model. Given N samples from px, D = {xi}Ni=1, the objective of generative modeling is to find a
setting θ∗ of θ, such that, for an appropriate choice of discrepancy measure, p∗θ = px. A common
choice for such discrepancy measure is the Kullback–Leibler or KL divergence, which allows us to
find θ∗ as the solution to the following optimization problem,

θ∗ = argmin
θ

KL[pθ∥px] = argmin
θ

∫
pθ(x)

[
log

pθ(x)

px(x)

]
dx. (3)

KL-divergence belongs to the f -divergence family of discrepancy measures over probability dis-
tributions and requires that pθ is absolutely continuous with respect to px, denoted by pθ << px.
While our proposal can be easily extended to Integral Probability Measures (IPM) [50] and other
divergences, for the remainder of this discourse, we will primarily focus on delineating our technique
in the context of KL-divergence. In practice, direct optimization of (3) is often intractable. As such,
it is common in deep generative modeling, to learn θ by using either a tractable lower-bound to a
slightly different variant of (3) [8, 33, 37] or by using plug-in or direct estimators of the divergence
measure [10, 29, 30, 60, 80, 81, 82]. In both of these cases, under certain conditions, as N → ∞,
theoretically, it holds that, θ → θ∗. However, in practice, N is typically not very large, especially
in high-dimensional problems where N needs to scale exponentially in the number of dimensions.
This implies that there remains a finite discrepancy between the model and data distributions. This
mismatch often manifests in pθ allocating high probability mass in regions where px may not have
significant empirical support i.e. allocates very small probability mass. In domains such as engi-
neering design, where the invalid designs tend to be very close to the valid designs, this leads to the
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generation of invalid designs with high probability. This lack of precision underpins the relatively
limited success of deep generative models in the engineering design domain [66].

Divergence Minimization with Valid and Invalid Samples. Let nx denote the invalid distribution
i.e., the distribution of invalid designs. Assuming mutual absolute continuity 2 of px, pθ and nx, we
can now re-write (3) as,

argmin
θ

∫
pθ(x)

[
log pθ(x)− log px(x) +

(
log

nx

nx

)]
dx

= argmin
θ

∫
pθ(x)

[
log

pθ(x)

nx(x)
− log

px(x)

nx(x)

]
d x. (4)

While the solution for (4) is the same as the solution for (3) i.e. pθ∗ = px, the model is now directly
incentivized to allocate the same amount of probability mass to the samples from nx as does the
data distribution px. This ensures that when trained using finite N , the model does not allocate high
probability mass to invalid samples. In other words, training under (4) encourages the model to
minimize its discrepancy with respect to px such that its own discrepancy with respect to nx matches
exactly that of px and nx. Another important benefit of the reformulation in (4) is that in cases where
sampling from nx is inexpensive (such as in the engineering design domain), the sample efficiency of
the model with respect to samples from px improves as shown in the next section.

Density Ratio Estimation and Generator Training. Let p and q be two densities, such that p and q
are absolutely continuous with respect to each other. Then, their ratio is defined as r(x) = p(x)/q(x)
over their support. We can estimate this density ratio r(x) by training a binary classifier (using the
binary cross-entropy loss) to distinguish between samples from p and q [30, 80, 82]. We employ a
pair of such density ratio estimators (DRE) (fpθ/nx

ϕ , fpx/nx
γ ), each parameterized by a deep neural

network with shared weights in the representation layers, to estimate pθ(x)/nx(x) and px(x)/nx(x)
in (4) respectively. An interesting consequence of our formulation (4) is that it avoids the saddlepoint
optimization formulation of GANs, thereby not pitching the generator to fool the critic in order to
match pθ to px. However, in practice3, we found that a slight variant of (4),

argmin
θ

∫
pθ(x)

(
1

2

[
log

pθ(x)

nx(x)
− log

px(x)

nx(x)

]
+

1

2

[
log

pθ(x)

px(x)

])
d x, (5)

which does involve GAN-like adversarial training between the generator and the critic works well,
especially in high-dimensional problems. Intuitively, in Eq. 6 the generative model is directly matched
to the training data, minimizing the discrepancy in a KL sense, providing a strong signal for model
learning over θ. At the same time, Eq. 4 gives us a principled way to inform the model about regions
we do not want to explore. We also explore the use of kernel-based diversity mechanisms to improve
mode coverage (see Appendix B).

Hard-vs-Easy Invalid Configurations. Hard invalid configurations are samples that do not fulfill
the prescribed constraint by a relatively small margin, making them close to the distribution of valid
samples. While Easy invalid configurations are easier to collect, the performance of our method
significantly improves with hard invalid configurations. This is because when two densities are
well-separated i.e. easy to distinguish, in the finite sample setting, there exist a number of perfect
classification boundaries. In such cases, the classifier tends to significantly underestimate the density
ratio when it fails to learn the Bayes-optimal classifier boundary. This problem has been recently
characterized as the density-chasm issue [68, 80]. Our experiments demonstrate that even a small
number of hard invalid samples is sufficient to significantly enhance constraint satisfaction. In the
following, we will call models trained to leverage invalid samples CS-GM, for Constraint-Satisfying
Generative Model, where the specific implementation details of our method will be adapted for
different modeling choices.

2Unlike [77], in the domain of engineering designs, where the constraints are often non-binary, we cannot
assume the supports of px and nx to be disjoint.

3We found that for a carefully tuned value of λ, argminθ
∫
pθ(x) (−λ [log pθ(x)/nx(x)] + [log pθ(x)/px(x)]) dx

also works equally well empirically.
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(a) Valid (b) Invalid (c) GAN (d) CS-GAN (e) CSD-GAN

Figure 2: Generated Distributions from several generative models on two 2D toy problems (Problem 1 on top,
Problem 2 on the bottom). Valid data points and samples are shown in blue and invalid ones in black. The
GAN models trained with invalid data (CS-GAN) generate significantly fewer invalid samples, matching the
original distributions much more closely than vanilla models. When further augmenting the GAN with diversity
(CSD-GAN), we see that it improves coverage, slightly improving similarity to the original densities.

4 Experiments

4.1 Complex 2D Densities with Constraints

We first showcase our approach on two easy-to-visualize 2D toy problems. Problem 1 is an adaptation
of a classic multi-modal test problem made significantly more challenging with the addition of small
invalid regions in the centers of each mode. Problem 2 is a simple uniform distribution with many
discontinuous circular regions of invalidity in a grid pattern. 10k valid and invalid datapoints are
randomly sampled, constituting the valid and invalid datasets. Architecture and training details are
included in the appendix.

Evaluation Metrics. To measure performance, we calculate several scores obtained from precision-
recall curves [71], including F1, and the area under the curve (abv. AUC-PR). We calculate the mean
distance to the nearest dataset point for each generated sample as a simple estimate for accuracy (abv.
NDP). Similarly, we calculate the mean distance to the nearest generated sample for each point in
the dataset (abv. NGS). Finally, we calculate Maximum mean Discrepancy and proportion of invalid
generated samples (abv. Validity)4.

Results. Table 1 and Figure 2 present a performance comparison of a vanilla GAN and our proposed
CS-GAN that leverages invalid data. We also demonstrate that CS-GAN can be further augmented
with a Determinantal Point Process (DPP) diversity loss5 (CSD-GAN) to improve distribution-
matching performance. The results show that CS-GAN achieves near-perfect constraint satisfaction
compared to the vanilla model with the CSD-GAN closely trailing. Not only do our proposed
models achieve vastly superior constraint satisfaction, but they also attain stronger overall distribution-
matching performance as indicated by MMD, F1, and AUC-PR. This dominance spans both precision
(NDP) and recall (NGS). In general, the diversity-augmented CSD-GAN achieves slightly higher
distribution-matching performance compared to the CS-GAN.

How Much Invalid Data is Enough? In the realm of generative models, it is theoretically possible
to recover the underlying data distribution, represented by px, when provided with an infinite amount
of valid data, model capacity, and computational resources. However, in practical scenarios where
data throughput and computing are not only finite but limited, like engineering design and scientific
research, simply increasing the volume of valid data is not a viable strategy to improve constraint
satisfaction. In Table 2, we present empirical evidence to support our arguments. By solely increasing

4Percent difference for metrics that are minimized at zero are calculated as ours−vanilla
vanilla . Percent difference for

metrics that are maximized at one is calculated as ours−vanilla
1−vanilla .

5More details on DPP diversity are included in the appendix.
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Table 1: Metrics for the 2d density problems depicted in Figure 2. Percentage improvements over the vanilla
model are indicated in green. Training with negative samples results in 97% fewer invalid samples and consistent
improvements across distribution-matching metrics. Incorporating diversity during training further improves
distribution-matching while still retaining large validity improvements. Results indicate that our models not
only learn the density of valid samples better but almost perfectly learn to avoid invalid regions of the space.
Extended results with other models and standard deviations are included in Table 7.

Problem 1 Problem 2

GAN CS-GAN (ours) CSD-GAN (ours) GAN CS-GAN (ours) CSD-GAN (ours)

↓ Validity 0.1433 0.0042 (-97.1 %) 0.0073 (-94.9 %) 0.0236 0.0005 (-97.9 %) 0.0007 (-97.0 %)
↓ MMD 0.0042 0.0017 0.0003 0.0009 0.0005 0.0003
↓ NDP 0.0126 0.0110 0.0125 0.0166 0.0155 0.0155
↓ NGS 0.0341 0.0163 0.0158 0.0271 0.0218 0.0198
↑ F1 0.7093 0.9274 0.9479 0.9531 0.9656 0.9734
↑ AUC-PR 0.7995 0.9835 0.9898 0.9932 0.9959 0.9977

Table 2: Comparison of validity metric for GAN models trained with different amounts of valid and invalid
data. CS-GANs can generate many times fewer invalid samples, even when trained on orders of magnitude less
data. Scores are averaged over four instantiations. Column-wise percent improvements are shown (fixing the
amount of valid data and increasing the invalid data) Lower is better.

(a) Models

Invalid
Samples

GAN 0

CS-GAN 1K
CS-GAN 4K
CS-GAN 16K

(b) Problem 1

Valid Samples
1K 4K 16K

10.3% 10.0% 12.3%

0.6% (-94 %) 0.3% (-97 %) 0.3% (-97 %)
0.2 % (-98 %) 0.3% (-97 %) 0.4% (-96 %)
0.2 % (-98 %) 0.1% (-99 %) 0.3% (-97 %)

(c) Problem 2

Valid Samples
1K 4K 16K

2.4% 2.3% 5.9%

0.8% (-66%) 0.6% (-73 %) 0.6% (-89 %)
0.2% (-91 %) 0.3% (-86 %) 0.5% (-91 %)
0.2% (-91 %) 0.2% (-91 %) 0.1% (-98 %)

the number of valid samples without incorporating invalid samples (first row - vanilla GAN), we
observed no reduction in validity metric, despite a tenfold increase in valid samples. Conversely,
when we introduce a modest proportion of invalid samples (5-10 %, second row, last column), we
can achieve a significant reduction in the rate of generating invalid samples, decreasing it by one
order of magnitude. Furthermore, as we continue to add more invalid samples, we generally observe
improvements up to a certain threshold (per column results). These experiments serve as empirical
justification for showing that even a small amount of invalid samples in generative models enhances
constraint satisfaction.

4.2 The Stacked Blocks Problem

A

B

C

A

B

C

A

C

B

Connected & Stable Unstable Disconnected

𝜖!"

𝜖#$

Figure 3: Stacked Blocks. Our goal is to generate valid stacks of blocks (on the left) that are (I) connected and
(II) stable. To achieve such a goal we leverage sets of invalid samples, stacks that are either unstable (center),
disconnected (right), or both. For the disconnected constraint, we consider the constraint unfulfilled in both
cases of intersecting or floating blocks.

Block-stacking problems have long been studied as a case study in ‘intuitive physics’ [2, 69], on
which many predictive and generative computational approaches have been tested [31, 79]. In this
study, we address a simple block-stacking problem through the lens of constraint satisfaction.
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Dataset. In generating the dataset, we define two constraints to ensure that: I) blocks are arranged in
a physically plausible way and that there are no floating or unsupported blocks, and II) the center
of gravity is supported. We call these constraints connectivity and stability. We designate
four categories of datapoints: stable & connected (S-C), unstable & connected (U-C), stable &
disconnected (S-D), and unstable & disconnected (U-D).

Table 3: Base model vs Constraint-satisfying model trained with invalid data. We test on 20 splits (1000 samples
each) and evaluate metrics that quantify precision and constraint satisfaction. We consider boxes floating or
intersecting if the distance between the points is larger than 0.9 units (the minimum distance between constraints
in the invalid data is 1 unit). b: base block; m: middle block; t: top block. For floating yb < ym and for
intersecting yb > ym. For NDA-GAN, we select λ = 0.75 as the best-performing hyperparameter.

Metrics GAN (w/o Invalid) NDA-GAN (w/ Invalid) CS-GAN (w/ Invalid)

↓ median(|y1
b − y0

m|) 2.78 ± 0.26 u 5.12 ± 0.37 u 0.54 ± 0.03 u
↓ median(|y1

m − y0
t |) 2.12 ± 0.22 u 1.91 ± 0.22 u 0.83 ± 0.05 u

↓ no-overlap(xb,xm) 0.41 ± 0.64 % 12.85 ± 3.41 % 1.82 ± 0.79 %
↓ no-overlap(xm,xt) 0.31 ± 0.66 % 17.89 ± 3.70 % 3.90 ± 2.01 %
↓ floating(yb,ym) 20.44 ± 3.73 % 14.47 ± 2.83 % 13.78 ± 4.07 %
↓ floating(ym,yt) 38.04 ± 4.49 % 20.73 ± 4.11 % 13.94 ± 2.17 %
↓ intersect(yb,ym) 64.59 ± 4.10 % 77.20 ± 3.97 % 0.00 ± 0.00 %
↓ intersect(ym,yt) 43.80 ± 4.47 % 54.82 ± 5.01 % 30.79 ± 4.05 %

↑ connected(yb,ym) 14.96 ± 3.04 % 8.32 ± 2.11 % 86.21 ± 4.07 %
↑ connected(ym,yt) 18.15 ± 3.06 % 24.44 ± 3.22 % 55.26 ± 4.05 %

Fulfilling a Single Set of Constraints. For our initial experiment, we relax the stability constraint,
allowing models to focus solely on connectivity. The connected data subsets (S-C and U-C) are
designated as valid data, while disconnected subsets (S-D and U-D) are designated as invalid data.

Figure 4: Distance from Constraint w/ and
w/o leveraging Invalid Data for the block
stack problem. The two vertical grey lines in-
dicate the acceptable range or tolerance such
that the constraints are considered satisfied.
Our CS-GAN greatly reduces the distance
that generated designs lie from the constraint
target compared to a GAN, demonstrating its
aptitude for constraint satisfaction.

We train a vanilla model using only the valid data, and
two models which utilize both the valid and invalid data: a
NDA-GAN [77] and our proposed CS-GAN, which lever-
ages Eq. 6. We score a variety of constraint satisfaction
scores, as described in Table 3. CS-GAN outperforms the
base model and the NDA-GAN by a large margin in most
constraint-satisfaction scores, and in particular on global
connectivity between boxes, indicating that the CS-GAN
approach is effective in improving constraint satisfaction
in situations where precision is important.

However, the benefits of invalid data only extend to con-
straints that were included in the negative data. As shown
in the upper half of Table 4, models trained on the re-
laxed case, including CS-GAN (fourth row) struggle to
satisfy constraints not represented in the invalid dataset
since they do not see representative examples of unstable
configurations in invalid data.

Fulfilling multiple Sets of Constraints. Next, we con-
sider the more challenging problem where stacks must
simultaneously satisfy connectivity and stablility
constraints. S-C is used as valid data while the S-D, U-C,
and U-D are pooled to constitute the invalid data. Results
are summarized in the lower half of Tables 4 and 8. We see
that models trained using only valid data perform poorly
in constraint satisfaction scores across the board. Autore-
gressive models (AR-GAN, [27, 46]) tend to work better
than standard GAN (second row) but still fall behind compared to CS-GAN. CS-GAN connects
and stabilizes an order of magnitude more configurations than the GAN (fifth row) training on only
valid (connected and balanced) configurations. Interestingly, AR-GAN (sixth row) and NDA-GAN
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(seventh row) can achieve high scores on connectivity, with NDA-GAN performing better than
CS-GAN. However, when the model is challenged to fulfill both constraints, AR-GAN generates
almost exclusively invalid configurations, and NDA-GAN satisfies all constraints less than 1/4 as
frequently as the CS-GAN, even if presented with the same amount of valid and invalid data. We
include more visualizations for the block stacking example in Appendix D.

Table 4: Overview of block stacking results. The upper half of the table shows results when the stability
constraint is ignored during training (and unstable configurations are not designated as invalid data to NDA-GAN
and CS-GAN). When stability is not considered during training, no generative models are able to reliably fulfill
the stability constraint. The lower half shows results where both disconnected stacks and unstable stacks are
considered invalid (and are provided to NDA-GAN and CS-GAN). CS-GAN improves constraint satisfaction by
an order of magnitude over most baselines.

Valid Data Invalid Data Metrics
Connected Stable Disconnected Unstable Stability ↑ Connectivity ↑ Both ↑

GAN ✓ ✗ ✗ ✗ 2.44 % 2.80 % 0.19 %
AR-GAN ✓ ✗ ✗ ✗ 0.085 % 13.23 % 0.00 %
NDA-GAN ✓ ✗ ✓ ✗ 0.39 % 6.39 % 0.00 %
CS-GAN (ours) ✓ ✗ ✓ ✗ 3.75 % 45.30 % 1.03 %

GAN ✓ ✓ ✗ ✗ 83.20 % 4.83 % 3.28 %
AR-GAN ✓ ✓ ✗ ✗ 32.16 % 8.12 % 0.07 %
NDA-GAN ✓ ✓ ✓ ✓ 84.65 % 12.63 % 8.85 %
CS-GAN (ours) ✓ ✓ ✓ ✓ 70.35 % 41.10 % 36.02 %

4.3 Guiding Generative Models with Invalid Topology Optimization Designs

With the previous experiments, we have demonstrated that CS-GAN is an effective
method to improve constraint satisfaction on 2d densities and a stacked block problem.

Table 5: Performance for generated topologies with and
without leveraging invalid data. Performance is mea-
sured in terms of compliance error with respect to the
optimal topology obtained with an iterative solver (like
SIMP [4]). In TO, performance is directly related to
how well the generated topologies fulfill the prescribed
constraints (loads, boundary conditions). We see that
classifier guidance using invalid data improves perfor-
mance for the generated topologies, guiding the genera-
tion far from the region of invalidity, and corroborating
the usefulness of density ratio estimation between valid
and invalid data.

In-distribution ↓ Out-of-distribution ↓
w/o Invalid w/ Invalid w/o Invalid w/ Invalid

cDDPM [51] 17.33 15.63 64.40 43.64
CDM [28] 13.60 7.65 46.47 40.03
TopoDiff-G [45] 5.40 5.92 31.45 18.34

We now want to understand how well our
method works on a complex engineering de-
sign problem. Additionally, we want to explore
the connection between our method and alter-
native approaches to guide generative models
like guidance in DDPMs. To do so, we con-
sider the problem of optimal structural topology
generation [76] (Fig. 8). A known solution for
this problem is a powerful computational design
tool called Topology optimization (TO), which
determines locally-optimal configurations of a
given structure, given a set of constraints. With
generative models, we seek to improve topol-
ogy quality and inference time compared to TO.
To tackle this challenging problem, we train a
TopoGAN [52] on a dataset of valid topologies
obtained with a solver. Then we train the same
architecture with invalid topologies, i.e. topol-
ogy optimized with the wrong amount of mate-
rial (Volume Fraction Error) or with low or null manufacturability (presence of Floating Material).
Our goal is to learn a model, using Eq. 6, that fulfills the volume and/or manufacturability constraints
better than the base model. Table 6 presents the results of this experiment, and we can see that
CS-TopoGAN consistently decreases Volume Fraction Error with a negligible increase in Floating
Material. Satisfying two constraints is hard, and the TO problem itself is still an open problem for
modern generative models. However, this result corroborates our methodology as a powerful method
to push the generative process away from invalid samples, showing promising results on an extremely
challenging real-world problem. Finally, we also consider conditional DDPM variants with and
without guidance wrt invalid samples (Table 5). Given that DDPM-based models can achieve very
high constraint satisfaction as shown in [28, 45], we consider performance as the main metric. We
perform evaluation of three different models, a conditional DDPM (cDDPM), with dense conditioning
as proposed in [28] (CDM), and with physical fields conditioning [45] (TopoDiff), in terms of their
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performance in both in-distribution and out-of-distribution constraints, with and without invalid
samples. Interestingly, using classifier guidance with invalid data improves performance in most
cases, corroborating the hypothesis that invalid data sampling can be leveraged to improve constraint
satisfaction in generative design.

Table 6: Constraint Satisfaction for a GAN trained with valid topologies, and a CS-GAN trained with valid and
invalid topologies. In this case, we consider invalid topologies as one that does not respect the prescribed volume
fraction and those with floating material, i.e., that cannot be manufactured. We test our model on 9000 unseen
configurations with in-distribution constraints. Topology Optimization is a particularly hard problem because
different classes of semantic constraints are entangled. We can see that CS-GAN balances across constraints,
improving by more than 15 % of the Volume Fraction error and maintaining a comparable Floating Material
error rate. Training with CS-GAN greatly decreases the volume fraction error, making the model aware of a
non-trivial invalid region. Such results align with recent literature on generative topology optimization [45].

% Floating Material ↓ % Volume Fraction Error ↓
TopologyGAN [52] 50.28 ± 0.49 10.36 ± 0.08
CS-TopologyGAN (ours) 50.77 ± 0.52 (+ 0.97 %) 8.76 ± 0.07 (-15.44 %)

5 Related Work

Density Ratio Estimation. Density Ratio Estimation (DRE [83]) is a critical technique in machine
learning, particularly when evaluating distributions is not feasible or is computationally expensive [47].
DRE techniques are heavily employed for generative modeling, representation learning, mutual
information estimation, and score matching[21, 29, 30, 80]. In the context of Generative Adversarial
Networks (GANs [1, 29, 55]), the DRE methodology forms the underlying basis for their operation.
A well-known technique for DRE is probabilistic classification [83], where a binary classifier is used.
Each "dataset" from a particular distribution is assigned a pseudo label, enabling the comparison
of distributions. However, accurate DRE from finite samples can be challenging, especially in high
dimensions. This is because a naive construction of an estimator for the likelihood ratio may require a
sample size that is exponential in the Kullback-Leibler divergence of the two densities to be accurate.
To overcome this challenge, prior works have employed a divide-and-conquer approach. An example
of this is the Telescoping Density Ratio Estimation (TRE) method [30, 68], which divides the problem
into a sequence of easier DRE subproblems, thus simplifying the task. Despite its success, there
are limitations to this approach, especially when the number of intermediate bridge distributions is
increased. Noice contrastive estimator (NCE [30]) and hybrid generative models [68, 80, 81] are also
based on the density ratio as underlying methodology, providing a flexible paradigm for large scale
generative modeling.

Generative Models for Engineering Design. Generative models have recently seen extensive use
in design generation tasks [65]. Generative Adversarial Nets, for example, have seen extensive use in
many applications. In Topology Optimization, GANs [39, 52, 56, 57, 62, 74, 86, 94] are often used
to create optimal topologies, bypassing the need for iterative solvers like SIMP. In computational
materials design GANs [38, 42, 48, 84, 92, 95], VAEs [9, 12, 41, 43, 85, 88, 91], and other models
are used to generate synthetic data to better learn process-structure-property relations [6]. A variety
of generative models have been applied to 2D shape synthesis problems [17, 18, 19, 22, 40, 54, 93],
such as airfoil design, and 3D shape synthesis problems [7, 54, 75, 96] such as mechanical component
synthesis in engineering design. Finally, generative models have been proposed as a method to tackle
various miscellaneous product and machine design tasks [23, 24, 64, 73].

Constraint Satisfaction in Machine Learning. Relative little research has been developed regard-
ing generative models for constrained design. From a general point of view, Constraint Satisfaction
Problems (CSPs) have been long studied in computer science and optimization in relation to optimal
allocation, graph search, games, and path planning [70]. However, such constraints are mostly related
to algorithmic complexity and memory allocation. In generative design [65, 76], constraint satisfac-
tion has a different goal because we want to obtain a design with high performance but at the same
time achieve diversity (distribution coverage) leveraging a probabilistic model. The constraints we
want to fulfill are typically physical constraints imposed from the design requirement in the form of
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boundary conditions, loads, and the amount of material. Recently, Neural Constraint Satisfaction [11]
has been proposed to deal with objects in a scene to solve intuitive physics problems [31, 78]. In
the CAD domain, structured models to handle constraints have been proposed[59, 72]. Conditional
generative models have been proposed for structural topology optimization [52], leveraging physical
fields [45, 52] and dense approximations [28] for high-quality candidate generation. These approaches
rely on explicit constraint satisfaction. Instead, we focus on implicit constraint satisfaction, leveraging
a dataset of invalid configurations to enhance the model capacity to generate valid designs.

Learning from Invalid Data. Invalid samples or invalid designs can be interpreted as special cases
of negative data, where the invalid data is in-distribution from a distribution matching perspective but
unfeasible from an engineering perspective because of violating constraints or poor manufacturability.
Negative data has been studied in the context of retrieval, using triplet losses [35] and contrastive
estimators [30] for representation learning [14, 58]. NDA [77] leverages negative out-of-distribution
samples to improve fidelity and robustness in the vision domain. Another way to leverage negative
data is as guidance using a classifier [45], to tell the model explicitly in which regions we do not want
to generate.

6 Limitations and Conclusion

We presented Constraint-satisfying Generative Models, a framework to perform constraint satisfaction
in generative models that leverages invalid samples without imposing inductive biases. During
training, our framework pushes the generated samples far from regions of invalidity using an auxiliary
discriminator jointly trained or used as guidance. Our approach is limited by the availability of a
small but high-quality set of hard invalid samples, and such designs can be challenging to collect
in some applications. In many domains like engineering design and scientific discovery, however,
where invalid data is cheap and easily available and valid data is scarce, our approach takes a step
towards expressive generative models that achieve precise adherence to constraints.
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A Formulation

Density Ratio Estimation. Consider our formulation:

argmin
θ

∫
pθ(x)

(
1

2

[
log

pθ(x)

nx(x)
− log

px(x)

nx(x)

]
+

1

2

[
log

pθ(x)

px(x)

])
d x. (6)

Our goal is to minimize the Kullback-Leibler (KL) divergence between our model pθ(x) and the actual
distribution px(x), while simultaneously distancing our model pθ(x) from any invalid designs represented by
nx(x). Given that we lack access to the explicit functional form of this distribution, we employ density ratio
estimation [80, 83] as a means of model learning.

In particular, we use fϕ to estimate r(px, pθ) =
px(x)

pθ(x)
, fψ to estimate r(pθ, nx) =

pθ(x)

nx(x)
, and fξ to estimate

r(px, nx) =
px(x)

nx(x)
.

Leveraging the connection between density ratio and probabilistic classification [83], we can write (assuming
balanced classes):

r(x) =
px(x)

nx(x)
=

px(y|x)
nx(y|x)

=
px(y|x)

1− px(y|x)
, (7)

where given a sample x, px(y|x) represents the probability of it being a valid design, whereas nx(y|x) signifies
the probability of it constituting an invalid design within the framework of a binary classifier. Notice that
nx(y|x) = 1− px(y|x). We can apply the same reasoning to the other two ratios.

In situations where px(x) and nx(x) cannot be quickly evaluated but we can easily collect samples from them,
we can resort to directly estimating the ratios rϕ, rψ , rξ using discriminative models to estimate the class
probability. This approach is facilitated by employing the following identity:

px(y|x) = σ(log r(x)). (8)

We see that there is a direct correspondence between the density ratio of the two distributions and the valid class
probability. The following is a natural parameterization for the density ratio estimators:

fϕ(x; px, pθ) = σ(log rϕ(x))

fψ(x; pθ, nx) = σ(log rψ(x))

fξ(x; px, nx) = σ(log rξ(x)),

(9)

to estimate the class probability or equivalenty fϕ(x) = log rϕ(x) to estimate the logits. Learning the density
ratio estimators can be performed by binary cross-entropy:

Fϕ(x; θ) = Epx(x) log [fϕ(x)] + Epθ(x) log [1− fϕ(x)]

= Epx(x) log [σ(log rϕ(x))] + Epθ(x) log [1− σ(log rϕ(x))] .
(10)

The density ratio can be estimated by sampling from px(x) and pθ(x), and subsequently learning a discriminator
fϕ using these samples. In practice, pθ is learned leveraging adversarial training [29] and an auxiliary set of
classifiers to push away samples from nx. Additionally, we use parameter sharing between fψ and fξ to help the
discriminator learn the difference between valid and invalid samples early during training.

max
ϕ

Fϕ(x; θ)

max
ψ,ξ

Fψ(x; θ) + Fξ(x; θ)

min
θ

Fϕ(x; θ)−Fψ,ξ(x; θ).

(11)

By employing this formulation during training, we strive to push rϕ towards 1, thereby maximizing entropy,
while encouraging rψ and rξ to be large and equal, consequently minimizing entropy. It’s crucial to note that in
the absence of parameter sharing, it’s not strictly necessary to jointly train Fξ. If we manage to learn a robust
model using ϕ and θ, then pθ approximates px, and we can confidently rely on Fψ for constraint satisfaction.

Nonetheless, based on empirical evidence, we observed improved performance and training stability, particularly
during the early training stage, when we share weights and supply the auxiliary discriminator with valid and
generated samples. This procedure assists the discriminator ϕ in differentiating invalid from generated samples
while simultaneously situating the generated samples within the validity region.

By implementing this method, we learn a generative model that produces samples closely aligned with the
training distribution of valid samples and distant from the invalid distribution. This yields a generative model
that respects constraints.
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λ Variant. We also consider a simpler variant of this approach:

argmin
θ

∫
pθ(x)

(
−λ

[
log

pθ(x)

nx(x)

]
+

[
log

pθ(x)

px(x)

])
dx. (12)

Given suitable values of λ, we can effectively learn a generative model and aptly differentiate the generated
samples from invalid data. Upon testing this formulation with 2D densities, we observed promising results in
terms of both coverage and constraint satisfaction, which resulted in a significant reduction in the number of
invalid samples—approximately by an order of magnitude. See Algorithm 1 for training details.

Multiclass Discriminator. The problem can also be written as an elegant multiclass classification task [80].
For example, by defining a single multiclass classifier Dϕ and assigning pseudo-labels 2 to invalid, 1 to valid,
and 0 to generated samples, we can write:

FMC
ϕ (x; θ) = Epx(x) log [Dϕ(x)] + Enx(x) log [Dϕ(x)] + Epθ(x) log [Dϕ(x)] . (13)

Under the assumption of one-hot encoding for the classes and the utilization of cross-entropy loss as a scoring
mechanism, we can optimize this loss with respect to ϕ, thereby learning effective discriminators between valid,
invalid, and generated samples—and minimize it with respect to θ. Refer to Algorithm 2 for detailed training
procedures. Given our use of a singular classifier, the discriminator is implicitly estimating all relevant ratios [80].
Consequently, pushing generated samples closer to valid ones also distances them from invalid samples.

We conducted experiments with this formulation on 2D densities and achieved promising results. Nonetheless,
in situations involving more intricate distributions and a diverse array of constraints, it is sensible to allocate
varying levels of capacity for model learning and constraint satisfaction by employing different discriminators.
Moreover, when we seek to extend our methodologies to generative models other than GANs, such as DDPM, it
is preferable to instantiate a separate classifier specifically focused on meeting the constraints.

Negative Data Augmentation. Recently, a method to handle negative data leveraging adversarial sampling
has been proposed. The idea is to introduce out-of-distribution samples through a negative distribution nx(x).
Negative Data Augmentation (NDA [77]) proposes to learn the following objective:

FNDA
ϕ (x; θ, λ) = Epx(x) log [fϕ(x)] + Eλpθ(x)+(1−λ)nx(x) log [1− fϕ(x)] , (14)

and then train a min-max game like in a standard GAN. Following such formulation, we can build a ratio:

rNDA(x) =
px(x)

λpθ(x) + (1− λ)nx(x)
.

Dividing by nx(x) leads to a mixture of two ratios: the ratio of valid to invalid samples, and the ratio of generated
to invalid samples. While our formulation shares superficial similarities with the NDA approach, our goals, and
underlying assumptions diverge in crucial ways.

NDA aims to incorporate out-of-distribution samples to improve the fit to the training distribution, primarily
evaluated through the Fréchet Inception Distance (FID). On the other hand, our method introduces invalid samples
that typically meet the in-distribution criterion (meaning they closely align in the sense of the Kullback-Leibler
divergence) but fail to comply with a set of constraints we consider significant.

From a distributional perspective, the invalid samples integrated into CS-GAN are fully compatible with the
training distribution. They would exhibit a low discrepancy under the training distribution, as any deviations
are limited to the boundaries or small regions, like intersections between edges and minor volume fraction
violations. Conversely, the negative samples incorporated in NDA are entirely out-of-distribution and, as such,
would present a high discrepancy under the training distribution.

NDA is primarily crafted for image-based tasks and places a high priority on fidelity. In contrast, our method
is conceived with constrained design in mind, focusing on the satisfaction of engineering requirements while
ensuring sufficient mode coverage. In conclusion, NDA operates under the assumption of disjoint spaces between
px and nx. However, in engineering design, this assumption cannot be made, as most of the invalid samples will
still fall within the in-distribution from a distributional viewpoint.
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B Precision vs Diversity in Generative Models

Encouraging generative models to improve their precision can have unintended consequences for recall. One
approach to improve recall is to explicitly encourage diversity of generated samples. Diversity is often a
desired goal in generative modeling for engineering design applications [15, 16, 63, 66]. As [16] and [15]
note, incorporating diversity can also help models generalize and avoid mode collapse. Diversity was first
explicitly incorporated into deep generative models for design in [16] using a Determinantal Point Process
(DPP). Determinantal Point Process (DPP) based diversity measures have been used in a variety of generative
applications in design [16, 53] and elsewhere [26, 49].

The DPP loss is calculated using a positive semi-definite DPP kernel S. Entries of this matrix are calculated
using some modality- and problem-dependent similarity kernel, such as the Euclidean distance kernel. The
(i, j)th element of S can be expressed in terms of the similarity kernel k and samples xi and xj as:

Si,j = k(xi, xj),

and the loss as:

Ldiv = − 1

B
logdet(S) = − 1

B

B∑
i=1

log λi,

where λi is the i-th eigenvalue of L and B is the number of samples in the batch. Adding this loss helps the
generative model achieve better coverage, an observation supported by our experiments too.
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C Experimental Details and Additional Experiments

C.1 2d densities

Setup and Training. 10k positive samples and 10k negative samples are randomly generated for each test
problem. All tested networks (encoder, decoder, generator, auxiliary discriminator) are deep networks with two
hidden layers of 400 neurons each, ReLU activations. A batch size of 256 is used throughout. Models are trained
using the Adam optimizer [36] with a learning rate 3e−4 and 5e−4 for GANs and VAEs respectively. Models
are trained for 100k steps. Diversity weight γ is set at 0.7 for GANs and 0.05 for VAEs. The noise dimension
for the GAN is set at 2, while the latent dimension for the VAE is set at 16. The VAE’s KL divergence loss term
is weighted at 0.05. The VAE’s auxiliary classifier is pretrained and validity weight parameter λ is set at 0.2.
The GAN’s validity weight parameter λ is set at 0.4.

In the main paper, we train a GAN on 2D densities using the variant in Equation 12, which we label the CS-GAN
(or CSD-GAN with diversity). Psuedocode for this training procedure is shown below.

Algorithm 1 CSD-GAN Training Procedure (used in paper results)
while step ≤ nsteps do

Sample Vbatch ∼ Vdataset and Ibatch ∼ Idataset
Sample ϵ ∼ N(0, 1)
Gbatch = Generator(ϵ)
DV

preds = Discriminator(Vbatch)
DG

preds = Discriminator(Gbatch)
AI

preds = Aux_Discriminator(Ibatch)
AG

preds = Aux_Discriminator(Gbatch)
loss_fn = Binary Cross Entropy()
D_loss = loss_fn(DG

preds, 0) + loss_fn(DV
preds, 1)

A_loss = loss_fn(AG
preds, 0) + loss_fn(AI

preds, 1)
Diversity_loss =DPP Diversity(Gbatch)
G_loss = loss_fn(DG

preds, 1) - λ · loss_fn(AG
preds, 1) + γ · Diversity_loss

Optimize(Discriminator, D_loss)
Optimize(Aux_Discriminator, A_loss)
Optimize(Generator, G_loss)
step = step+ 1

end while

Following Equation 6, we can also train the GAN using a multiclass discriminator, which we call MC-CS-GAN
or MC-CSD-GAN. In practice, we find that the previous formulation yields slightly superier results on 2D
densities. However, we include pseudocode for this formulation and results on 2D densities later.

Algorithm 2 Multiclass CSD-GAN Training Procedure
while step ≤ nsteps do

Sample Vbatch ∼ Vdataset and Ibatch ∼ Idataset
Sample ϵ ∼ N(0, 1)
Gbatch = Generator(ϵ)
DV

preds = Discriminator(Vbatch)
DI

preds = Discriminator(Ibatch)
DG

preds = Discriminator(Gbatch)
loss_fn = Categorical Cross Entropy()
D_loss = loss_fn(DG

preds, 0) + loss_fn(DV
preds, 1) loss_fn(DI

preds, 2)
Diversity_loss =DPP Diversity(Gbatch)
G_loss = loss_fn(DG

preds, 1) + γ · Diversity_loss
Optimize(Discriminator, D_loss)
Optimize(Generator, G_loss)
step = step+ 1

end while
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We include an set of results on 2D density experiments expanding on our results from the main paper. We
compare our models trained using Algorithm 1 (CS-GAN, CSD-GAN – shown in the original paper), Algorithm 2
(MC-CS-GAN, MC-CSD-GAN), as well as VAE variants (VAE, CS-VAE, and CSD-VAE). Mean scores and
standard deviations are reported over 3-5 instantiations in Table 6.

Table 7: Extended results for 2D density experiments. Mean scores and standard deviations over three to five
instantiations are shown. Best models are determined using a two-sample t-test with 98% confidence.

GAN CS-GAN CSD-GAN MC-CS-GAN MC-CSD-GAN VAE CS-VAE CSD-VAE
Problem 1

↓ NDP 0.014±0.002 0.012±0.001 0.013±0.000 0.012±0.001 0.013±0.001 0.024±0.001 0.020±0.001 0.025±0.001
↓ NGS 0.034±0.004 0.018±0.001 0.015±0.001 0.020±0.002 0.018±0.001 0.013±0.000 0.051±0.004 0.043±0.005
↓ MMD 0.006±0.004 0.002±0.002 0.001±0.000 0.002±0.002 0.001±0.001 0.003±0.000 0.005±0.000 0.005±0.001

↑ F1 0.702±0.045 0.926±0.009 0.944±0.009 0.909±0.009 0.931±0.007 0.840±0.011 0.814±0.017 0.799±0.012
↑ F10 0.956±0.018 0.994±0.002 0.995±0.001 0.989±0.007 0.994±0.001 0.956±0.002 0.945±0.008 0.936±0.004
↑ F0.1 0.904±0.024 0.994±0.004 0.995±0.001 0.995±0.000 0.995±0.001 0.989±0.001 0.971±0.026 0.983±0.008
↑ AUC-PR 0.765±0.048 0.982±0.005 0.990±0.003 0.976±0.006 0.985±0.001 0.915±0.008 0.872±0.025 0.858±0.018
↑ Validity 0.889±0.035 0.993±0.004 0.995±0.004 0.998±0.000 0.996±0.002 0.881±0.007 0.999±0.000 0.999±0.000
↑ NIS 0.146±0.021 0.152±0.010 0.161±0.002 0.152±0.009 0.169±0.004 0.191±0.004 0.193±0.008 0.237±0.009

Problem 2

↓ NDP 0.017±0.001 0.016±0.000 0.016±0.000 0.016±0.000 0.016±0.000 0.022±0.000 0.016±0.000 0.016±0.000
↓ NGS 0.032±0.008 0.025±0.002 0.019±0.000 0.031±0.003 0.024±0.001 0.019±0.000 0.072±0.015 0.059±0.007
↓ MMD 0.001±0.001 0.001±0.000 0.001±0.000 0.001±0.000 0.001±0.000 0.001±0.000 0.004±0.003 0.003±0.002
↑ F1 0.948±0.015 0.963±0.004 0.966±0.005 0.956±0.000 0.963±0.007 0.960±0.004 0.870±0.033 0.866±0.024
↑ F10 0.996±0.001 0.998±0.000 0.998±0.000 0.997±0.001 0.998±0.001 0.998±0.000 0.994±0.002 0.993±0.002
↑ F0.1 0.996±0.003 0.998±0.000 0.998±0.001 0.997±0.000 0.997±0.000 0.998±0.000 0.967±0.024 0.960±0.023
↑ AUC-PR 0.991±0.005 0.996±0.001 0.996±0.001 0.994±0.000 0.995±0.001 0.995±0.001 0.939±0.034 0.933±0.027
↑ Validity 0.969±0.009 0.999±0.001 0.998±0.001 0.998±0.001 0.998±0.001 0.897±0.003 0.995±0.002 0.994±0.004
↑ NIS 0.168±0.007 0.176±0.005 0.168±0.001 0.176±0.002 0.174±0.006 0.172±0.002 0.212±0.010 0.197±0.007
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(a) Valid (b) Invalid

(c) GAN (d) MC-CS-GAN (e) MC-CSD-GAN

Figure 5: Generated Distributions from the multiclass variants of CS-GAN and CSD-GAN (MC-CS-GAN and
MC-CSD-GAN). Though the multiclass variants have similar constraint satisfaction, they do not achieve quite
as strong distributional similarity.
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(a) Valid (b) Invalid

(c) VAE (d) CS-VAE (e) CSD-VAE

Figure 6: Distributions generated by VAE variants. Though the auxiliary classifier encourages significantly
higher constraint satisfaction, the VAE struggles with coverage. Though diversity improves coverage, distrubu-
tional similarity scores are still poorer than the vanilla VAE’s.
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C.2 Blocks Experiments
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Figure 7: Constraint Satisfaction w/ and w/o leveraging Invalid Data during training for the block problem.
The plot shows the % of generated samples that fulfill one (Connected) or both (Stable) global constraints
increasing the constraint tolerance (reducing precision). We can see that leveraging Invalid Data improve
constraint satisfaction by many folds, corroborating the hypothesis that divergence-based training using invalid
data pushes the generated samples away from such regions.

Table 8: Handling Multiple Sets of Constraints. Valid data is Connected (constraint set I) and Stable (constraint
set II). Invalid data is composed of two Invalid sets: Connected Unstable and Disconnected Stable. With pseudo
we mean a structure that would be Stable if the other constraints were satisfied.

GAN (w/o Invalid) CS-GAN (w/ Invalid)

↑ Connected(yb, ym) (Ia) 21.13 ± 3.04 100 ± 0.00
↑ Connected(ym, yt) (Ib) 22.68 ± 3.06 41.10 ± 4.79
↑ Stable (II) 83.20 ± 4.09 70.35 ± 3.72

↑ Connected (I) 4.83 ± 1.72 (-88.24 %) 41.10 ± 4.80
↑ Connected and Stable (I and II) 3.28 ± 1.34 (- 90.89 %) 36.02 ± 3.88
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D Visualizations

VF=0.4
Topology Optimization

min Compliance

Figure 8: Constrained Optimization problem for engineering design. Given a set of constraints and a performance
objective, the goal is to find the optimal design variables wrt the objective that satisfy the constraints over the
given domain. In topology optimization, given a set of constraints in the form of loads, boundary conditions, and
volume fractions, the goal is to find the design with minimum compliance that satisfies all the given constraints.

Figure 9: Generative Models easily fulfill simple constraints like class and color. However, as we move to more
precise constraints, such as dimensionality, generative models struggle to fulfill the requirements.
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D.1 Training Set - Valid

Figure 10: Valid Data for Constraint I. Example of Valid configurations for constraints I (connection). Blocks
fulfilling only the connection constraints (I). Specifically, the blocks are stacked one on top of each other without
any floating or intersection but in general in unstable configurations. This means that the blocks in the data are
arranged in a way that satisfies certain rules or criteria, such as not being allowed to float (i.e., not being fully
supported by the blocks below) or intersecting (i.e., overlapping with other blocks).

Figure 11: Valid Data for Constraints I+II. Example of Valid configurations for constraints I (connection) and
II (stability). Blocks fulfilling both constraints connection constraints (I). Specifically, the blocks are stacked one
on top of each other without any floating or intersection in a stable configuration. This means that the blocks in
the data are arranged in a way that satisfies certain rules or criteria, such as not being allowed to float (i.e., not
being fully supported by the blocks below) or intersecting (i.e., overlapping with other blocks) and having an
internal center of mass.
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D.2 Training Set - Invalid

Figure 12: Invalid Data. Example of Invalid data for block stacking. The negative data consists of two
categories: hard-invalid (top) and easy-invalid (bottom). The top section of the figure contains examples of hard
invalid, which are generated by violating the constraints of the block stacking problem by a small degree (1 to 5
units). The constraints include the requirement that the blocks should not intersect or float above each other.
These hard-invalids are designed to be challenging for the model to learn from, as they are close to satisfying the
constraints but still violate them. The bottom section of the figure contains examples of easy-invalid, which are
generated by violating the constraints by a large degree (1 to 20 units). These examples are easier for the model
to learn from, as the violations are more pronounced and easier to detect.
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D.3 Samples

Figure 13: GAN Samples. Samples from a model trained only on valid data. The model generates reasonable
samples but in most cases, the constraints are not satisfied. Precision at the boundary is challenging to enforce.

Figure 14: CS-GAN Samples with Invalid Constraints I. Samples from a model trained on valid and invalid
data for constraint I (connection) using our divergence formulation. The model generates reasonable samples
and in most cases the connectivity constraints are satisfied. The model can generate blocks that do not intersect
and float (up to a small tolerance of 0.9 u). However, because we do not rely on invalid data for constraint
II (stability), the generated samples do not fulfill this second set of constraints, and the generated blocks are
connected but in general unstable. Precision at the boundary is enforced better than training only on valid data.

Figure 15: CS-GAN Samples with Invalid Constraints I+II. Samples from a model trained on valid and
invalid data for constraint I (connection) and constraint II (stability) using our divergence formulation. The
model generates reasonable samples and in most cases the connectivity constraints are satisfied and the blocks
are stacked in a stable configuration. The model can generate blocks that do not intersect and float (up to a
small tolerance of 0.9 u) and the center of mass is internal to the structure. Because we rely on invalid data for
constraint I and II (connectivity and stability), the generated samples do fulfill both sets of constraints, and the
generated blocks are connected and stable. Precision at the boundary is enforced better than training only on
valid data. This visualization corroborates the need for invalid designs when dealing with constraint satisfaction
in generative models.
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E Experimental Details for Stacked Blocks

Table 9: Overview. Using Invalid data improves constraint satisfaction by an order of magnitude.
Valid Invalid Metrics

Connected Balanced Disconnected Unbalanced Pseudo-Balanced ↑ Balanced ↑ Connected ↑
Valid Set ✓ ✗ ✗ ✗ 2.50 % - 100.00 %
Valid Set ✓ ✓ ✗ ✗ 0.00 % 100.00 % 100.00 %

Invalid Set ✗ ✗ ✓ ✗ 0.00 % 100.00 % 0.00 %
Invalid Set ✗ ✗ ✗ ✓ 2.50 % 0.00 % 100.00 %

Table 10: Relevant Hyperparameters for baselines and CS-GM. C: connectivity. S: stability. FM: floating
material. VFE: volume fraction error. CE: compliance error.

Blocks (GAN) Blocks (AR-GAN) TO (GAN) TO (DM)

Dimension 12 12 1x64x64 1x64x64
Valid Set 10K 10K 20K 30K
Invalid Set 10K 10K 20K 30K
Evaluation Set 1K 1K 9K 2.8K
Constraints C+S C+S FM + VFE CE

Generative Architecture MLP (16-32-12) LSTM (64-12) Unet [52] Unet [51]
Discriminative Architecture MLP (128-64-32-1) MLP (128-64-32-1) Conv [61] UnetEncoder [51]
Batch size 200 200 256 64
Iterations 30K 50K 100K 180K
Learning rate 1e−3 1e−3 1e−4 2e−4

Optimizer Adam Adam Adam Adam
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