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Abstract

Generative models have had a profound impact on vision and language, paving
the way for a new era of multimodal generative applications. While these suc-
cesses have inspired researchers to explore using generative models in science and
engineering to accelerate the design process and reduce the reliance on iterative
optimization, challenges remain. Specifically, engineering optimization methods
based on physics still outperform generative models when dealing with constrained
environments where data is scarce and precision is paramount. To address these
challenges, we introduce Diffusion Optimization Models (DOM) and Trajectory
Alignment (TA), a learning framework that demonstrates the efficacy of aligning
the sampling trajectory of diffusion models with the optimization trajectory derived
from traditional physics-based methods. This alignment ensures that the sampling
process remains firmly grounded in the underlying physical principles. Our method
allows for generating feasible and high-performance designs in as few as two steps
without the need for expensive preprocessing, external surrogate models, or addi-
tional labeled data. DOM also integrates an efficient conditioning approximation
to speed up inference and a few steps of direct optimization to guide the process
explicitly toward regions with superior manufacturability and performance. We
apply our framework to structural topology optimization, a fundamental problem
in mechanical design, evaluating its performance on in- and out-of-distribution
configurations. Our results demonstrate that Trajectory Alignment outperforms
state-of-the-art deep generative models on in-distribution configurations and halves
the inference computational cost. When coupled with a few steps of optimization,
it also improves manufacturability for out-of-distribution conditions. DOM shows
the effectiveness of combining learning and optimization trajectories. By signifi-
cantly improving engineering performance and inference efficiency, it enables us
to generate high-quality designs in just a few steps and guide them toward regions
of high performance and manufacturability, paving the way for the widespread
application of generative models in large-scale data-driven design.

1 Introduction

The advancements in large vision [27, 20, 43, 85] and language [30, 21, 78] models have dramatically
increased our capacity to process unstructured data, catalyzing a new era of multimodal and semantic
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Figure 1: Trajectory Alignment. Intermediate sampling steps in a Diffusion Optimization Model are matched
with intermediate optimization steps. In doing so, the sampling path is biased toward the optimization path,
guiding the data-driven path toward physical trajectories. This leads to significantly more precise samples.

generation [79, 67, 18, 80]. Inspired by this success, Deep Generative Models (DGMs) have been
leveraged in the scientific [51, 61] and engineering field [84, 101], particularly for constraint-bound
problems such as structural Topology Optimization (TO [95]), to expedite the design process.

Engineering designs predominantly rely on iterative optimization algorithms that discretize physical
and chemical phenomena and iteratively improve design performance while meeting a set of constraint
requirements. For instance, topology optimization aims to determine the optimal material distribution
within a given design space, under specified loads and boundary conditions, to achieve the best
performance according to a set of defined criteria, such as minimum weight or maximum stiffness.
While iterative topology optimization methods, such as SIMP [15], hold great benefits, they face
significant challenges in practical applications, especially for large-scale problems, owing to their
computational complexity.

Recent advancements have sought to address these challenges by venturing into learning-based
approaches for topology optimization, specifically deep generative models. These models are often
trained on a dataset of optimal solutions under different constraints, to expedite or replace the
optimization process and foster greater diversity in structural topologies by leveraging extensive
datasets of pre-existing designs. This capacity to generate diverse solutions, coupled with the ability
to consider multiple design variables, constraints, and objectives, makes learning-based methods
particularly appealing in engineering design scenarios.

However, purely data-driven approaches to generative design tend to underperform compared to
optimization-based methods. These methods typically focus on metrics like reconstruction quality,
which often insufficiently capture the degree to which the engineering specifications are satisfied.
The lack of physical information in data-driven methods and the absence of mechanisms to include
iterative optimization details during the inference stage limit their effectiveness. This deficiency can
limit the quality of the solutions generated, especially for problems with complex constraints and
performance requirements. Therefore, there is a need for methods that combine data-driven and
physics-based approaches to better address engineering challenges. To this end, structured generative
models have shown great promise in generative topology optimization by leveraging techniques such
as TopologyGANs [69] and TopoDiff [62].

Limitations. Despite these recent advances, structured generative models for engineering designs
have several outstanding limitations that need to be addressed. For instance, these models often require
additional supervised training data to learn guidance mechanisms that can improve performance and
manufacturability [84]. In the case of Diffusion Models [43], we also have to run the forward models
tens or hundreds of times to obtain a suitable topology [62]. Additionally, to condition the models on
physical information, expensive FEA (Finite Element Analysis) preprocessing is required at both
training and inference time to compute stress and energy fields [62, 69]. As a result, the sampling
process is slow, and the inference process is computationally expensive, making it challenging to
generalize and scale these methods effectively. This partially invalidates the advantages of data-driven
approaches in terms of fast sampling and cheap design candidate generation.
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Proposed Solution. We propose a conditional diffusion model that integrates data-driven and
optimization-based methods to learn constrained problems and generate candidates in the engineering
design domains (see Fig. 3). Instead of relying on computationally heavy physics-based exact
solutions using FEM, our method employs cost-effective physics-informed approximations to manage
sparsity in conditioning constraints. We introduce a Trajectory Alignment (TA) mechanism in
the training phase that allows the model to leverage the information in the physical trajectory
that was used by the optimization-based solution in the training data, drastically cutting down the
sampling steps required for a topology. Our framework allows for further enhancing performance
and manufacturability in complex situations by integrating a few stages of direct optimization. Our
approach significantly reduces computational costs without sacrificing accuracy or effectiveness and
can be easily adapted to novel design problems. By bridging the gap between generative modeling
and engineering design, our proposed framework provides an efficient and effective solution for
solving complex engineering problems. Intuitively, we show that diffusion models benefit greatly
in precision metrics by learning from the trajectory taken by optimization methods represented by
intermediate solutions and not just their final outcome.

Contribution. Our contributions are the following:

(i) We introduce the Diffusion Optimization Models (DOM), a versatile and efficient approach
to incorporate performance awareness in generative models of engineering design problems
while respecting constraints. The primary objective of DOM is to generate high-quality
candidates rapidly and inexpensively, with a focus on topology optimization (TO) problems.
DOM consists of

– Trajectory Alignment (TA) leverages iterative optimization and hierarchical sampling
to match paths, distilling the optimizer knowledge in the sampling process. Doing so,
DOM achieves high performance without the need for FEM solvers or guidance and
can sample high-quality configurations in as few as two steps.

– Dense Kernel Relaxation, an efficient mechanism to relieve inference from expensive
FEM pre-processing and

– Few-Steps Direct Optimization that improves manufacturability using a few optimiza-
tion steps.

(ii) We perform extensive quantitative and qualitative evaluation in- and out-of-distribution,
showing how kernel relaxation and trajectory alignment are both necessary for good perfor-
mance and fast, cheap sampling. We also release a large, multi-fidelity dataset of sub-optimal
and optimal topologies obtained by solving minimum compliance optimization problems.
This dataset contains low-resolution (64x64), high-resolution (256x256), optimal (120k),
and suboptimal (600K) topologies. To our knowledge, this is the first large-scale dataset of
optimized designs providing intermediate suboptimal iterations.

2 Background

Here we briefly introduce the Topology Optimization problem [14], diffusion models [105, 44, 98], a
class of deep generative models, conditioning and guidance mechanisms for diffusion models, and
deep generative models for topology optimization [69, 62].

Constrained
Optimization

Figure 2: In topology optimization, the objective is to
find the design with minimum compliance under given
loads, boundary conditions, and volume fractions.

The Topology Optimization Problem. Topol-
ogy optimization is a computational design ap-
proach that aims to determine the optimal ar-
rangement of a structure, taking into account a
set of constraints. Its objective is to identify the
most efficient utilization of material while en-
suring the structure meets specific performance
requirements. One widely used method in topol-
ogy optimization is the Solid Isotropic Mate-
rial with Penalization (SIMP) method [13]. The
SIMP method employs a density field to model
the material properties, where the density in-
dicates the proportion of material present in a
particular region. The optimization process involves iteratively adjusting the density field, considering
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constraints such as stress or deformation. In the context of a mechanical system, a common objective
is to solve a generic minimum compliance problem. This problem aims to find the distribution
of material density, represented as x ∈ Rn, that minimizes the deformation of the structure under
prescribed boundary conditions and loads [59]. Given a set of design variables x = {xi}ni=0, where
n is the domain dimensionality, the minimum compliance problems can be written as:

min
x

c(x) = FTU(x)

s.t. v(x) = vTx < v̄

0 ≤ x ≤ 1

(1)

The goal is to find the design variables that minimize compliance c(x) given the constraints. F is
the tensor of applied loads and U(x) is the node displacement, solution of the equilibrium equation
K(x)U(x) = F where K(x) is the stiffness matrix and is a function of the considered material.
v(x) is the required volume fraction. The problem is a relaxation of the topology optimization task,
where the design variables are continuous between 0 and 1. One significant advantage of topology
optimization is its ability to create optimized structures that meet specific performance requirements.
However, a major drawback of topology optimization is that it can be computationally intensive
and may require significant computational resources. Additionally, some approaches to topology
optimization may be limited in their ability to generate highly complex geometries and get stuck in
local minima.

Diffusion Models. Let x0 denote the observed data x0 ∈ RD. Let x1, ...,xT denote T latent
variables in RD. We now introduce, the forward or diffusion process q, the reverse or generative
process pθ, and the objective L. The forward or diffusion process q is defined as [44]: q(x1:T |x0) =

q(x1|x0)
∏T

t=2 q(xt|xt−1). The beta schedule β1, β2, ..., βT is chosen such that the final latent image
xT is nearly Gaussian noise. The generative or inverse process pθ is defined as: pθ(x0,x1:T ) =

pθ(x0|x1)p(xT )
∏T

t=2 pθ(xt−1|xt). The neural network µθ(xt, t) is shared among all time steps
and is conditioned on t. The model is trained with a re-weighted version of the ELBO that relates to
denoising score matching [105]. The negative ELBO L can be written as:

Eq

[
− log

pθ(x0,x1:T )

q(x1:T |x0)

]
= L0 +

T∑
t=2

Lt−1 + LT , (2)

where L0 = Eq(x1|x0) [− log p(x0|x1)] is the likelihood term (parameterized by a discretized Gaus-
sian distribution) and, if β1, ...βT are fixed, LT = KL[q(xT |x0), p(xT )] is a constant. The terms
Lt−1 for t = 2, ..., T can be written as: Lt−1 = Eq(xt|x0)

[
KL[q(xt−1|xt,x0) | p(xt−1|xt)]

]
. The

terms L1:T−1 can be rewritten as a prediction of the noise ϵ added to x in q(xt|x0). Parameterizing
µθ using the noise prediction ϵθ, we can write

Lt−1,ϵ(x) = Eq(ϵ)

[
wt∥ϵθ(xt(x0, ϵ))− ϵ∥22

]
, (3)

where wt =
β2
t

2σ2
tαt(1−ᾱt)

, which corresponds to the ELBO objective [50, 56].

Conditioning and Guidance. Conditional diffusion models have been adapted for constrained
engineering problems with performance requirements. TopoDiff [62] proposes to condition on loads,
volume fraction, and physical fields similarly to [69] to learn a constrained generative model. In
particular, the generative model can be written as:

pθ(xt−1|xt, c,g) = N (xt−1;µθ(xt, c) +

P∑
p=1

gp, γ), (4)

where c is a conditioning term and is a function of the loads l, volume fraction v, and fields f , i.e
c = h(l, v, f). The fields considered are the Von Mises stress σvm =

√
σ2
11 − σ11σ22 + σ2

22 + 3σ2
12

and the strain energy density field W = (σ11ϵ11 + σ22ϵ22 + 2σ12ϵ12)/2. Here σij and ϵij are the
stress and energy components over the domain. g is a guidance term, containing information to
guide the sampling process toward regions with low floating material (using a classifier and gfm) and
regions with low compliance error, where the generated topologies are close to optimized one (using
a regression model and gc). Where conditioning c is always present and applied during training, the
guidance mechanism g is optional and applied only at inference time.
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TopoDiff Limitations. TopoDiff is effective at generating topologies that fulfill the constraints and
have low compliance errors. However, the generative model is expensive in terms of sampling time,
because we need to sample tens or hundreds of layers for each sample. Additionally, given the model
conditions on the Von Mises stress and the strain energy density, for each configuration of loads and
boundary conditions, we have to preprocess the given configurations running a FEM solver. This,
other than being computationally expensive and time-consuming, relies on fine-grained knowledge of
the problem at hand in terms of material property, domain, and input to the solver and performance
metrics, limiting the applicability of such modeling techniques for different constrained problems
in engineering or even more challenging topology problems. The guidance requires the training
of two additional models (a classification and a regression model) and is particularly useful with
out-of-distribution configurations. However such guidance requires additional topologies, optimal and
suboptimal, to train the regression model, assuming that we have access to the desired performance
metric on the train set. Similarly for the classifier, where additional labeled data has to be gathered.

Direct Optimization

Optimization
(Few Steps)

Input

Diffusion Optimization Model

Conditioning Trajectory Alignment

Figure 3: The DOM pipeline with conditioning and kernel relaxation (top left) and trajectory alignment
(top right). The Diffusion Optimization Model generates design candidates, which are further refined using
optimization tools. After the generation step (left side), we can improve the generated topology using a few steps
of SIMP (5/10) to remove floating material and improve performance (right side).
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Figure 4: Distance between intermediate sampling
steps in DOM and optimization steps with and
without Trajectory Alignment. Given a random
sampling step t and the corresponding optimization
step s(t) = mod (t, n) where n ∈ [2, 10]. We
compute the matching in clean space, using the
approximate posterior q to obtain an estimate for
xθ given xt and the noise prediction ϵθ . Then we
compute the distance ||x̃θ(xt, ϵθ)− xopt

s(t)||2.

To tackle such limitations, we propose Diffusion Op-
timization Models (DOM), a conditional diffusion
model with the goal of improving constrained design
generation. One of our main goals is to improve infer-
ence time without loss in performance and constraint
satisfaction. DOM is based on three main compo-
nents: (i) Trajectory Alignment (Fig. 1 and Fig. 4) to
ground sampling trajectory in the underlying phys-
ical process; (ii) Dense Kernel Relaxation (Fig. 5)
to make preprocessing efficient; and (iii) Few-Steps
Direct Optimization to improve out-of-distribution
performance (Fig. 3 for an overview). See appendix A
for algorithms with and without trajectory alignment.

Trajectory Alignment (TA). Our goal is to align
the sampling trajectory with the optimization trajec-
tory, incorporating optimization in data-driven gener-
ative models by leveraging the hierarchical sampling
structure of diffusion models. This aligns trajecto-
ries with physics-based information, as illustrated in

5



Fig. 1a. Unlike previous approaches, which use optimization as pre-processing or post-processing
steps, trajectory alignment is performed during training and relies upon the marginalization prop-
erty of diffusion models, i.e., q(xt|x0) =

∫
q(x1:t|x0)dx1:t−1, where xt =

√
ᾱtx0 + (1 − ᾱt) ϵ,

with ϵ ∼ N(0, I). The trajectory alignment process can match in clean space (matching step 0),
noisy space (matching step t), and performance space and leverage multi-fidelity mechanisms. At
a high-level, TA is a regularization mechanism that injects an optimization-informed prior at each
sampling step, forcing it to be close to the corresponding optimization step in terms of distance. This
process provides a consistency mechanism [108, 104, 97] over trajectories and significantly reduces
the computational cost of generating candidates without sacrificing accuracy.

Alignment Challenges. The alignment of sampling and optimization trajectories is challenging
due to their differing lengths and structures. For example, the optimization trajectory starts with an
image of all zeros, while the sampling path starts with random noise. Furthermore, Diffusion Models
define a Stochastic Differential Equation (SDE, [106]) in the continuous limit, which represents a
collection of trajectories, and the optimization trajectory cannot be directly represented within this
set. To address these issues, trajectory alignment comprises two phases (see Figure 1b): a search
phase and a matching phase. In the search phase, we aim to find the closest trajectory, among
those that can be represented by the reverse process, to the optimization trajectory. This involves
identifying a suitable representation over a trajectory that aligns with the optimization process.

Figure 5: Comparison of iterative (left), sparse (center),
and dense single-step (right) conditioning fields for a
Constrained Diffusion Model. Unlike the expensive
iterative FEA method, the physics-inspired fields offer a
cost-effective, single-step approximation that’s domain-
agnostic and scalable.

In the matching phase, we minimize the distance
between points on the sampling and optimiza-
tion trajectories to ensure proximity between
points and enable alignment between trajecto-
ries.

Trajectory Search. We leverage the approxi-
mate posterior and marginalization properties of
diffusion models to perform a trajectory search,
using the generative model as a parametric guide
to search for a suitable representation for align-
ment. Given an initial point x0, we obtain
an approximate point xt by sampling from the
posterior distribution q(xt|x0). We then pre-
dict ϵθ(xt) with the model and use it to obtain
x̃θ(xt, ϵθ(xt)). In a DDPM, x̃θ is an approximation of x0 and is used as an intermediate step to sam-
ple xθ

t−1 using the posterior functional form q(xθ
t−1|xt, x̃

θ). In DOM, we additionally leverage x̃θ to
transport the sampling step towards a suitable representation for matching an intermediate optimiza-
tion step xopt

step(t) corresponding to t using some mapping. Trajectory alignment involves matching
the optimization trajectory, which is an iterative exact solution for physics-based problems, with
the sampling trajectory, which is the hierarchical sampling mechanism leveraged in Diffusion Mod-
els [43] and Hierarchical VAEs [100]. In practice, in DOM we sample xt =

√
ᾱtx0+(1− ᾱt)ϵ from

q(xt|x0) and run a forward step with the inverse process ϵθ(xt, c) conditioning on the constraints c
to obtain the matching representation x̃θ for step t:

x̃θ ∼ q(x̃θ|µ̃θ(xt, ϵθ), γ)

µ̃θ(xt, ϵθ) = (xt −
√
1− ᾱt ϵθ(xt, c))/

√
ᾱt.

(5)

Trajectory Matching. Then we match the distribution of matching representation q(x̃θ|xt, ϵθ)

for sampling step t with the distribution of optimized representations q(xopt
s(t−1)|opt) at iteration s

(corresponding to step t− 1) conditioning on the optimizer S. In general, given that the sampling
steps will be different than the optimization steps, we use s(t− 1) = mod ((t− 1), ns) where ns

is the number of optimized iterations stored. 1 We then can train the model as a weighted sum of the
conditional DDPM objective and the trajectory alignment regularization:

LDOM = Eq(xt|x0)

[
KL[q(xt−1|xt,x0) | pθ(xθ

t−1|xt, c)] +KL[q(x̃θ|xt, ϵθ) | q(xs(t−1)|opt)]
]
. (6)

This mechanism effectively pushes the sampling trajectory at each step to match the optimization
trajectory, distilling the optimizer during the reverse process training. In practice, following practice

1for example, if we store an optimized topology every 20 iterations for S = 100 steps, ns = 5, and we
sample a diffusion model for T = 1000, s = 1 for (T : T − 200), and s = 5 for steps (200 : 1).
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in DDPM literature, the distribution variances are not learned from data. For the trajectory alignment
distributions, we set the dispersion to the same values used in the model. By doing so we can rewrite
the per-step negated lower-bound as a weighted sum of squared errors:

LDOM = Eq(ϵ)

[
wt∥ϵθ(xt(x0, ϵ), c)− ϵ∥22

]︸ ︷︷ ︸
Lt−1,ϵ(x,c)

+αc||x̃θ(xt, ϵθ)− xopt
s(t−1)||

2
2︸ ︷︷ ︸

LTA
clean

(7)

where LTAclean is the trajectory alignment loss for step t, and Lt−1,ϵ(x, c) is a conditional DDPM
loss for step t. This is the formulation employed for our model, where we optimize this loss for the
mean values, freeze the mean representations, and optimize the variances in a separate step [68].
Alignment can also be performed in alternative ways. We can perform matching in noisy spaces,
using the marginal posterior to obtain a noisy optimized representation for step t− 1, q(xopt

t−1|x
opt
s(0))

and then optimize LTAnoisy = αn||xθ
t−1 − xopt

t−1||22. Finally, we can match in performance space: this
approach leverages an auxiliary model fϕ similar to (consistency models) and performs trajectory
alignment in functional space, LTAperf = αp||fϕ(xθ

t−1)−Ps(t−1)||2 , where we match the performance
for the generated intermediate design with the ground truth intermediate performance Ps(t−1) for the
optimized xopt

s(t−1). We compare these and other variants in Table 6.

Dense Conditioning over Sparse Constraints. All models are subject to conditioning based on
loads, boundary conditions, and volume fractions. In addition, TopoDiff and TopoDiff-GUIDED
undergo conditioning based on force field and energy strain, while TopoDiff-FF and DOM are
conditioned based on a dense kernel relaxation, inspired by Green’s method [36, 34], which defines
integral functions that are solutions to the time-invariant Poisson’s Equation [33, 41]. More details
are in Appendix B. The idea is to use the kernels as approximations to represent the effects of
the boundary conditions and loads as smooth functions across the domain (Fig. 5). This approach
avoids the need for computationally expensive and time-consuming Finite Element Analysis (FEA) to
provide conditioning information. For a load or source l, a sink or boundary b and r = ||x− xl||2 =√
(xi − xl

i)
2 + (xj − xl

j)
2, we have:

Kl(x,xl;α) =
∑L

l=1(1− e−α/||x−xl||22) p̄(xl)

Kb(x,xb;α) =
∑B

b=1 e
−α/||x−xb||22/maxx

(∑B
b=1 e

−α/||x−xb||22
)
.

(8)

where p̄ is the module of a generic force in 2D. Notice how, for r → 0, Kl(x,xl)→ p, and r →∞,
Kl(x,xl) → 0. We notice how closer to the boundary the kernel is null, and farther from the
boundary the kernel tends to 1. Note that the choice of α parameters in the kernels affects the
smoothness and range of the kernel functions. Furthermore, these kernels are isotropic, meaning that
they do not depend on the direction in which they are applied. Overall, the kernel relaxation method
offers a computationally inexpensive way to condition generative models on boundary conditions and
loads, making them more applicable in practical engineering and design contexts.

Few-Steps Direct Optimization. Finally, we leverage direct optimization to improve the data-driven
candidate generated by DOM. In particular, by running a few steps of optimization (5/10) we can
inject physics information into the generated design directly, greatly increasing not only performance
but greatly increasing manufacturability. Given a sample from the model x̃0 ∼ pθ(x0|x1)pθ(x1:T ),
we can post-process it and obtain x0 = opt(x̃θ

0, n) an improved design leveraging n steps of
optimization, where n ∈ [5, 10]. In Fig. 3 we show a full pipeline for DOM.

4 Experiments

Our three main objectives are: (1) Improving inference efficiency, and reducing the sampling
time for diffusion-based topology generation while still satisfying the design requirements with a
minimum decrease in performance. (2) Minimizing reliance on force and strain fields as conditioning
information, reducing the computation burden at inference time and the need for ad-hoc conditioning
mechanisms for each problem. (3) Merging together learning-based and optimization-based methods,
refining the topology generated using a conditional diffusion model, and improving the final solution
in terms of manufacturability and performance.

Setup. We train all the models for 200k steps on 30k optimized topologies on a 64x64 domain. For
each optimized topology, we have access to a small subset (5 steps) of intermediate optimization
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Figure 6: Few-Step sampling for Topology generation. Top row: Diffusion Optimization Model (DOM) with
Trajectory Alignment. Middle row: TopoDiff-GUIDED. Bottom row: The optimization result. DOM produces
high-quality designs in as few as two steps, greatly enhancing inference efficiency compared to previous models
requiring 10-100 steps. Trajectory Alignment helps DOM generate near-optimal geometries swiftly, improving
few-step sampling in conditional diffusion models for topology optimization. See appendix Fig. 11 for more
examples.

steps. We set the hyperparameters, conditioning structure, and training routine as proposed in [62].
Appendix E for more details. For all the models (Table 9) we condition on volume fraction and
loads. For TopoDiff, we condition additional stress and energy fields. For TopoDiff-FF [37], a variant
of TopoDiff conditioning on a kernel relaxation, we condition on boundary conditions and kernels.
TopoDiff-GUIDED leverages a compliance regressor and floating material classifier guidance. We
use a reduced number of sampling steps for all the experiments.

Dataset. We use a dataset of optimized topologies gathered using SIMP as proposed in [66, 62].
Together with the topologies, the dataset contains information about optimal performance. For each
topology, we have information about the loading condition, boundary condition, volume fraction, and
optimal compliance. Additionally, for each constraint configuration, a pre-processing step computes
the force and strain energy fields (see Fig. 5) when needed. Appendix D for more details on the
dataset and visualizations.

Evaluation.

Table 1: Comparative study of generative
models in topology optimization consider-
ing factors like conditional input (COND),
finite element method (FEM), and guidance
(GUID). Unlike others, the DOM model op-
erates without FEM preprocessing or GUID-
ANCE. More visualizations and optimization
trajectories are in the Appendix.

w/ COND w/o FEM w/o GUID

TopologyGAN [69] ✓ ✗ ✗
TopoDiff [62] ✓ ✗ ✓

TopoDiff-G [62] ✓ ✗ ✗

DOM (ours) ✓ ✓ ✓

We evaluate the model using engineering and generative
metrics. In particular, we consider metrics that evaluate
how well our model fulfills: physical constraints using
error wrt prescribed Volume Fraction (VFE); engineering
constraints, as manufacturability as measured by Floating
Material (FM); performance constraints, as measured by
compliance error (CE) wrt the optimized SIMP solution;
sampling time constraints (inference constraints) as mea-
sure by sampling time (inference and pre-processing). We
consider two scenarios of increasing complexity: (i) In-
distribution Constraints. The constraints in this test set
are the same as those of the training set. When measuring
performance on this set, we filter generated configurations
with high compliance. (ii) Out-of-distribution Constraints.
The constraints in this test set are different from those of
the training set. When measuring performance on this set, we filter generated configurations with high
compliance. The purpose of these tasks is to evaluate the generalization capability of the machine
learning models in- and out-of-distribution. By testing the models on different test sets with varying
levels of difficulty, we can assess how well the models can perform on new, unseen data. More
importantly, we want to understand how important the role of the force field and energy strain is with
unknown constraints.

In-Distribution Constraints. Table 3 reports the evaluation results in terms of constraints satisfac-
tion and performance for the task of topology generation. In Table 2 we report metrics commonly
employed to evaluate the quality of generative models in terms of fidelity (IS, sFID, P) and diversity
(R). We see how such metrics are all close and it is challenging to gain any understanding just by rely-
ing on classic generative metrics when evaluating constrained design generation. These results justify
the need for an evaluation that considers the performance and feasibility of the generated design.
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Table 2: Generative metrics on in-
distribution metrics. Precision denotes the
fraction of generated topologies that are real-
istic, and recall measures the fraction of the
training data manifold covered by the model.

IS ↑ sFID ↓ P ↑ R ↑
cDDPM 3.41 40.30 0.73 0.85
TopoDiff 3.57 36.20 0.80 0.86
TopoDiff-G 3.63 35.96 0.79 0.86

DOM w/o TA 3.48 37.54 0.76 0.86
DOM w/ TA 3.68 36.73 0.77 0.85

In Table 3 DOM achieves high performance and is at least
50 % less computationally expensive at inference time,
not requiring FEM preprocessing or additional guidance
through surrogate models like TopologyGAN and TopoD-
iff. We also compare with Consistency Models [104], a
Diffusion Model that tries to predict its input at each step.
DOM can be seen as a generalization of such a method
when a trajectory is available as a ground truth. Overall,
DOM with Trajectory Alignment is competitive or better
than the previous proposal in terms of performance on
in-distribution constraints, providing strong evidence that
TA is an effective mechanism to guide the sampling path
toward regions of high performance.

Table 3: Evaluation of different model variants on in-distribution constraints. CE: Compliance Error. VFE:
Volume Fraction Error. FM: Floating Material. We use 100 sampling steps for all diffusion models. We can
see that DOM w/ TA is competitive with the SOTA on topology generation, being computationally 50 % less
expensive at inference time compared to TopoDiff. Trajectory Alignment greatly improves performance without
any additional inference cost. See the appendix Fig. 9 for confidence intervals.

STEPS CONSTRAINTS AVG % CE ↓ MDN % CE ↓ % VFE ↓ % FM ↓ INFERENCE (s) ↓
TopologyGAN [69] 1 FIELD 48.51 2.06 11.87 46.78 3.37
Conditional DDPM [68] 100 RAW 60.79 3.15 1.72 8.72 2.23
Consistency Model [104] 100/1 KERNEL 10.30 2.20 1.64 8.72 2.35
TopoDiff-FF [37] 100 KERNEL 24.90 1.92 2.05 8.15 2.35
TopoDiff [62] 100 FIELD 5.46 0.80 1.47 5.79 5.54
TopoDiff-GUIDED [62] 100 FIELD 5.93 0.83 1.49 5.82 5.77

DOM w/o TA (ours) 100 KERNEL 13.61 1.79 1.86 7.44 2.35
DOM w/ TA (ours) 100 KERNEL 4.44 0.74 1.52 6.72 2.35

Table 4: Evaluating sampling topologies with few steps (2-10) for TopoDiff and DOM. G: Guided using
regression and classifier guidance. AVG CE: average compliance error. MDN CE: median compliance error.
VFE: volume fraction error. FM: floating material. INF: inference time. UNS: unsolvable configurations. LD:
load disrespect. DOM largely outperforms TopoDiff in the few sampling step regimes, showing Trajectory
Alignment’s effectiveness as a grounding mechanism. DOM can generate reasonable topologies in just two
sampling steps, where TopoDiff and DOM w/ TA fail completely, even presenting cases of load disrespect.

STEPS SIZE AVG % CE ↓ MDN % CE ↓ % VFE ↓ % FM ↓ INF (s) ↓ % UNS ↓ % LD ↓
in-distro

TopoDiff-G 2 239M 681.53 436.83 80.98 98.72 3.36 2.00 15.92
DOM (ours) 2 121M 22.66 1.46 3.34 33.25 0.17 (- 94.94 %) 2.11 0.00
TopoDiff-G 5 239M 43.27 15.48 2.76 77.65 3.43 1.44 0.00
DOM (ours) 5 121M 11.99 0.72 2.27 20.08 0.24 (- 93.00 %) 2.77 0.00
TopoDiff-G 10 239M 6.43 1.61 1.95 20.55 3.56 0.00 0.00
DOM (ours) 10 121M 4.44 0.57 1.67 11.94 0.35 (- 90.17 %) 0.00 0.00

out-distro

TopoDiff-G 2 239M 751.17 548.26 81.46 100.00 3.36 1.90 16.48
DOM (ours) 2 121M 79.66 10.37 3.69 44.20 0.17 (- 94.94 %) 2.80 0.00
TopoDiff-G 5 239M 43.50 19.24 2.58 79.57 3.43 2.20 0.00
DOM (ours) 5 121M 38.97 5.49 2.56 26.70 0.24 (- 93.00 %) 1.40 0.00
TopoDiff-G 10 239M 10.78 2.55 1.87 21.36 3.56 2.10 0.00
DOM (ours) 10 121M 32.19 3.69 1.78 14.20 0.35 (- 90.17 %) 0.40 0.00

Generation with Few-Steps of Sampling. Table 4 compares two different algorithms, TopoDiff-
GUIDED and DOM, in terms of their performance when using only a few steps for sampling. The
table shows the results of the in and out-of-distribution comparison, with TopoDiff-G and DOM
both having STEPS values of 2, 5, and 10, and SIZE of 239M and 121M. We can see that DOM
outperforms by a large margin TopoDiff-G when tasked with generating a new topology given a
few steps, corroborating our hypothesis that aligning the sampling and optimization trajectory is an
effective mechanism to obtain efficient generative models that satisfy constraints. DOM outperforms
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TopoDiff-GUIDED even being 50 % smaller, without leveraging an expensive FEM solver for
conditioning but relying on cheap dense relaxations, making it 20/10 times faster at sampling, and
greatly enhancing the quality of the generated designs, providing evidence that Trajectory Alignment
is an effective mechanism to distill information from the optimization path. In Fig. 6, we provide
qualitative results to show how DOM (top row) is able to generate reasonable topologies, resembling
the fully optimized structure running SIMP for 100 steps (bottom row), with just two steps at inference
time, where the same model without TA or a TopoDiff are not able to perform such task. Overall
these results corroborate our thesis regarding the usefulness of trajectory alignment for high-quality
constrained generation.

Table 5: Out-of-Distribution Scenario Comparison:
TopoDiff-G outperforms DOM due to its adaptive con-
ditioning mechanism, which leverages expensive FEM-
computed fields. However, DOM coupled with a few
steps of direct optimization (5/10) greatly surpasses
TopoDiff in performance and manufacturability. This un-
derscores the effectiveness of integrating data-driven and
optimization methods in constrained design creation.

STEPS MDN % CE ↓ % VFE ↓ % FM ↓
TopoDiff-FF 100 16.06 1.97 8.38
TopoDiff-G 100 1.82 1.80 6.21

DOM 100 3.47 1.59 8.02
DOM + SIMP 100+5 1.89 1.77 10.19
DOM + SIMP 100+10 1.15 1.10 2.61

Merging Generative Models and Optimiza-
tion for Out-of-Distribution Constraints.
Table 5 shows the results of experiments on
out-of-distribution constraints. In this scenario,
employing FEM and guidance significantly en-
hances the performance of TopoDiff. Condi-
tioning on the FEM output during inference can
be seen as a form of test-time conditioning that
can be adapted to the sample at hand. However,
merging DOM and a few iterations of optimiza-
tion is extremely effective in solving this prob-
lem, in particular in terms of improving volume
fraction and floating material. Using the combi-
nation of DOM and SIMP is a way to impose the
performance constraints in the model without
the need for surrogate models or guidance.

Table 6: Ablation study with and without kernel and
trajectory alignment. We explore different ways to match
the sampling and optimization trajectory and we measure
the Median Compliance Error. TA: trajectory alignment.
CM: Consistency Models [104].

KERNEL TA MODE IN-DISTRO OUT-DISTRO

DOM ✗ ✗ - 3.29 8.05
DOM ✗ ✓ CLEAN 1.11 9.01
CM ✓ ✗ - 2.20 5.25
DOM ✓ ✗ - 1.80 5.62
DOM ✓ ✓ MULTI 34.95 54.73
DOM ✓ ✓ NOISY 2.08 6.23
DOM ✓ ✓ PERF 2.41 6.82
DOM ✓ ✓ CLEAN 0.74 3.47

Trajectory Alignment Ablation. The core
contribution of DOM is trajectory alignment,
a method to match sampling and optimization
trajectories of arbitrary length and structure map-
ping intermediate steps to appropriate CLEAN
(noise free or with reduced noise using the
model and the marginalization properties of
DDPM) representations. However, alignment
can be performed in multiple ways, leveraging
NOISY representation, matching performance
(PERF), and using data at a higher resolution to
impose consistency (MULTI). In Table 6 we per-
form an ablation study, considering DOM with
and without kernel relaxation, and leveraging
different kinds of trajectory matching. From the
table, we see that using dense conditioning is extremely important for out-of-distribution performance,
and that matching using CLEAN is the most effective method in and out-of-distribution. In Fig. 4 we
report a visualization of the distance between sampling and optimization trajectory during training.
From this plot, we can see how the kernel together with TA helps the model to find trajectories that
are closer to the optimal one, again corroborating the need for dense conditioning and consistency
regularization.

Inference Time. With the previous experiments, we proved that a data-driven approach, biased
towards the physical process, can distill the optimization process and sample a novel topology in
a few steps. We then provide experiments for in and out-of-distribution and ablate our choice of
kernel relaxation and trajectory alignment mechanism. However, the final goal of data-driven design
is to learn a general tool for fast candidate generation. Here we compare inference time for different
models and, more importantly, for low- (64) and high-resolution (256). Given the computational
burden of training such models at high resolution, we train all the models for only 10k steps (around
5% of the full training), and then we use them for sampling. With this experiment, we want to
emphasize how fast DOM can perform inference compared to a SOTA model. We choose to run all
the generative models and optimized for 100 steps: this setting is not suited for DOM, because as we
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Table 7: Inference time for different models at low and high resolution. For all the diffusion models we sample
100 steps and for SIMP we iterate for 100 steps. *We report optimization time for a full comparison, but it
is important to emphasize that SIMP runs on CPU and the DDPM-based models on GPU. ∆Tinference =
(Tmodel − Ttopodiff )/Ttopodiff .

RES SIZE PREPROCESS POSTPROCESS SAMPLING INFERENCE ∆Tinference

TopoDiff 64 121M 3.31 0.00 2.23 5.54 + 0.00 %
TopoDiff-GUIDED 64 239M 3.31 0.00 2.46 5.77 + 4.15 %
DOM (ours) 64 121M 0.12 0.00 2.23 2.35 - 57.58 %
SIMP 64 - 0.00 18.12 0.00 18.12 + 227.07 %∗

TopoDiff 256 553M 31.84 0.00 7.78 38.62 + 0.00 %
TopoDiff-GUIDED 256 1092M 31.84 0.00 8.46 40.30 + 4.35 %
DOM (ours) 256 553M 0.31 0.00 7.78 8.09 - 79.05 %
SIMP 256 - 0.00 316.02 0.00 316.02 + 718.28 %∗

have seen the model excels in the few-step sampling task. Table 7 presents a comparison of various
models based on different factors such as resolution (RES), size, preprocess time, postprocess time,
sampling, and inference time.

5 Related Work

Topology Optimization. Engineering design is the process of creating solutions to technical
problems under engineering requirements [22, 91, 23]. Often, the goal is to create highly performative
designs given the required constraints. Topology Optimization (TO [14]) is a branch of engineering
design and is a critical component of the design process in many industries, including aerospace,
automotive, manufacturing, and software development. From the inception of the homogenization
method for TO, a number of different approaches have been proposed, including density-based [13,
86, 64], level-set [3, 111], derivative-based [99], evolutionary [115], and others [19]. The density-
based methods are widely used and use a nodal-based representation where the level-set leverages
shape derivative to obtain the optimal topology. To improve the final design, filtering mechanisms
have been proposed [117, 39, 94]. Hybrid methods are also widely used. Topology Optimization
has evolved as a more and more intensive computational discipline, with the availability of efficient
open-source implementations [92, 93, 46, 59, 4]. See [59] for more on this topic. See [95, 96] for a
comprehensive review of the Topology Optimization field.

Generative Models for Topology Optimization. Following the success of Deep Learning (DL)
in vision, a surging interest arose recently for transferring these methods to the engineering field.
In particular, DL methods have been employed for direct-design [1, 5, 11, 60, 110], accelating the
optimization process [7, 49, 52, 107, 118], improving the shape optimization post-processing [42,
119], super-resolusion [32, 65, 120], sensitivity analysis [6, 75, 10, 89], 3d topologies [54, 87, 11], and
more [26, 24, 25, 29]. Among these methods, Generative Models are especially appealing to improve
design diversity in engineering design [2, 72, 70, 71]. In TO, the work of [47, 82, 83, 55, 109] focus
on increasing diversity leveraging data-driven approaches. Additionally, Generative Models have been
used for Topology Optimization problems conditioning on constraints (loads, boundary conditions,
volume fraction for the structural case), directly generating topologies [81, 90, 40] training dataset
of optimized topologies, leveraging superresolution methods to improve fidelity [121, 58], using
filtering and iterative design approaches [74, 73, 17, 35] to improve quality and diversity. Methods
for 3D topologies have also been proposed [12, 55]. Recently, GAN [69] and DDPM-based [62]
approaches, conditioning on constraints and physical information, have had success in modeling the
TO problem. For a comprehensive review and critique of the field, see [113].

Conditional Diffusion Models. Methods to condition DDPM have been proposed, conditioning
at sampling time [28], learning a class-conditional score [106], explicitly conditioning on class
information [68], features [38, 9], and physical properties [116, 45]. Recently, TopoDiff [62] has
shown that conditional diffusion models with guidance [31] are effective for generating topologies
that fulfill the constraints and have high manufacturability and high performance. TopoDiff relies
on physics information and surrogate models to guide the sampling of novel topologies with good
performance. Alternatives to speed up sampling in TopoDiff have been recently proposed [37], trading
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performance for fast candidate generation. Improving efficiency and sampling speed for diffusion
models is an active research topic, both reducing the number of sampling steps [68, 103, 102, 8],
improving the ODE solver [48, 112, 57], leveraging distillation [88, 63], and exploiting autoencoders
for dimensionality reduction [85, 77, 76]. Reducing the number of sampling steps can also be
achieved by improving the property of the hierarchical latent space, exploiting a form of consistency
regularization [108, 97, 122] during training. Consistency Models [104] proposes reconstructing
its input from any step in the diffusion chain, effectively forcing the model to reduce the sampling
steps needed for high-quality sampling. We similarly want to improve the latent space properties
but leverage trajectory alignment with a physical process. Recently, energy-constrained diffusion
models [114] have been proposed to regularize graph learning a learn expressive representations for
structured data.

6 Conclusion

We presented Diffusion Optimization Models, a generative framework to align the sampling trajectory
with the underlying physical process, and learn an efficient and expressive generative model for
constrained engineering design. Our work opens new avenues for improving generative design
in engineering and related fields. However, our method is limited by the capacity to store and
retrieve intermediate optimization steps, and, without a few steps of optimization, it underperforms
out-of-distribution compared to FEM-conditional and guided methods.
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A Algorithms

Algorithm 1 DOM with Trajectory Alignment
Require: Optimized Topologies X0

Require: Constraints C = (BC,L, V F )
Require: Intermediate Optimization Steps Xopt

while Training do
Sample batch (x0, c,x

opt)
Compute Dense Relaxation k = K(bc, l)
Compute Conditioning c = (k, c)

Sample t, ϵ, xopt
s(t)

Compute xt ∼ q(xt|x0)
Forward Model ϵθ(xt, c)
Compute Loss Lt−1(x, c) = ||ϵθ(xt, c)− ϵ||22
Trajectory Search x̃θ(xt, ϵθ) = (xt −

√
1− ᾱt ϵθ(xt, c))/

√
ᾱt

Trajectory Matching LTA = ||x̃θ(xt, ϵθ)− xopt
s(t)||

2
2

Compute Loss LDOM(θ) = Lt−1(x, c) + LTA
Backpropagate θ ← ∇θLDOM(θ)

end while

Algorithm 2 DOM without Trajectory Alignment
Require: Optimized Topologies X0

Require: Constraints C = (BC,L, V F )
while Training do

Sample batch (x0, c)
Compute Dense Relaxation k = K(bc, l)
Compute Conditioning c = (k, c)
Sample t, ϵ
Compute xt ∼ q(xt|x0)
Forward Model ϵθ(xt, c)
Compute Loss Lt−1(x, c) = ||ϵθ(xt, c)− ϵ||22
Compute Loss LDOM(θ) = Lt−1(x, c)
Backpropagate θ ← ∇θLDOM(θ)

end while
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1 import numpy as np
2 import torch as th
3

4 def compute_kernel_load(batch_load_sample , axis):
5

6 size = batch_load_sample.size(-1)
7 if axis == "x":
8 ix = 0
9 xx = th.argwhere(batch_load_sample [0] != 0)

10 coord = xx
11 elif axis == "y":
12 ix = 1
13 yy = th.argwhere(batch_load_sample [1] != 0)
14 coord = yy
15

16 if len(coord) == 0:
17 return batch_load_sample[ix], []
18

19 x_grid = th.tensor ([i for i in range(size)])
20 y_grid = th.tensor ([j for j in range(size)])
21

22 kernel_load = 0
23 for l in range(len(coord)):
24 x_grid = th.tensor ([i for i in range(size)])
25 y_grid = th.tensor ([j for j in range(size)])
26 # distance
27 x_grid = x_grid - coord[l][0]
28 y_grid = y_grid - coord[l][1]
29

30 grid = th.meshgrid(x_grid , y_grid)
31

32 r_load = th.sqrt(grid [0]**2 + grid [1]**2)
33

34 if axis == "x":
35 p = batch_load_sample [0][ coord[l][0], coord[l][1]]
36 elif axis == "y":
37 p = batch_load_sample [1][ coord[l][0], coord[l][1]]
38

39 kernel = 1 - th.exp(- 1/ r_load **2)
40 kernel_load += kernel * p
41

42 return kernel_load , coord

Listing 1: Dense Kernel Relaxation for Sparse Loads.
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B Physics-based Conditioning on Constraints

Green’s functions. To improve the efficiency of diffusion-based topology generation and minimize reliance
on force and strain fields, we aim to relax boundary conditions and loads by leveraging kernels as approximations
for the way such constraints act on the domain. One possible choice of kernel structure is inspired by Green’s
method [36, 34, 16, 41], which defines integral functions that are solutions to the time-invariant Poisson’s
Equation [33, 41], a generalization of Laplace’s Equation for point sources excitations. Poisson’s Equation can
be written as ∇2

xf(x) = h, where h is a forcing term and f is a generic function defined over the domain X .
This equation governs many phenomena in nature, and a special case is a forcing part h = 0, which yields the
Laplace’s Equation formulation commonly employed in heat transfer problems.

Green’s method (or the Green’s method family) is a mathematical construction to solve partial differential
equations without prior knowledge of the domain. The solutions obtained with this method are known as
Green’s functions [53]. While solutions obtained with this method can be generally complex, for a large class of
physical problems involving constraints and forces that can be approximated with points, a simple functional
form can be derived by leveraging the idea of source and sink. Consider a laminar domain (e.g., a beam or a
plate) constrained in a feasible way. If a point source is applied to this domain (e.g., a downward force on the
edge of a beam or on the center of a plate) in xf , such force can be described using the Dirac delta function,
δ(x − xf ). The delta function is highly discontinuous but has powerful integration properties, in particular∫
f(x)δ(x− xf )dx = f(xf ) over the domain X . The solution of the time-invariant Poisson’s Equation with

point concentrated forces can be written as a Green’s function solution, where the solution depends only on the
distance from the force application point. In particular:

G(x, x′) = − 1

4π

1

|x− x′| , (9)

where r = |x− x′| =
√

|xi − x
′
i|2 + |xj − x

′
j |2. We propose to approximate the forces and loads applied to

our topologies using a kernel relaxation built using Green’s functions. While this formulation may not provide a
correct solution for generic loads and boundary conditions, it allows us to provide computationally inexpensive
conditioning information that respects the original physical and engineering constraints. By leveraging these
ideas, we aim to increase the amount of information provided to condition the model, ultimately improving
generative models with constraints.
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Table 8: Design and Modelling requirements for a constrained generative model for topology optimization. Our
goal is to improve the requirements that are challenging to fulfill. In this work, we focus on improving Floating
Material, reducing Compliance Error, and reducing Sampling Time.

CLASS METRICS GOAL
Hard-constraint Loads Disrespect Feasibility
Hard-constraint Floating Material Manufacturability
Soft-constraint Volume Fraction Min Cost
Functional Performance Compliance Error Max Performance
Modeling Requirements Sampling Time Fast Inference
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Table 9: Conditioning or guiding variables for different optimization methods and model configurations.

Load BC Kernel Load Kernel BC Force Field Energy Field VF Performance

SIMP [14] ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓
TopologyGAN [69] ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗
TopoDiff [62] ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓
TopoDiff-FF [37] ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗

DOM (ours) ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗
DOM + Trajectory Alignment (ours) ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓
DOM + Optimizer (ours) ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓

21



0 5 10 15 20 25 30
Compliance

0.00

0.02

0.04

0.06

0.08

0.10

De
ns

ity

generated topologies optimized topologies

Figure 8: Histogram empirical distribution compliance for generated and optimized topologies.

top
od

iff

top
od

iff-
g

do
m

do
m-ta

top
od

iff

top
od

iff-
g

do
m

do
m-ta

top
od

iff

top
od

iff-
g

do
m

do
m-ta

top
od

iff

top
od

iff-
g

do
m

do
m-ta

top
od

iff

top
od

iff-
g

do
m

do
m-ta

0

2

4

6

8

10

De
sig

n 
Re

qu
ire

m
en

ts

5.46 5.93

13.61

4.44

0.8 0.83
1.79

0.74
1.47 1.49 1.86 1.52

5.79 5.82
7.44

6.72
5.54 5.77

2.35 2.35

avg % CE
mdn % CE
% VFE
% FM
Inference (s)

Figure 9: Confidence interval for design requirements on in-distribution constraint configurations.

22



C_opt: 5.28

C_
pr

ed
: 5

.2
9

% CE:0.25

C_opt: 2.78

C_
pr

ed
: 2

.7
9

% CE:0.14

C_opt: 3.31
C_

pr
ed

: 3
.3

2

% CE:0.26

C_opt: 6.43

C_
pr

ed
: 6

.4
6

% CE:0.34

C_opt: 14.55

C_
pr

ed
: 1

4.
94

% CE:2.69

C_opt: 3.99

C_
pr

ed
: 4

.0
7

% CE:1.98

C_opt: 6.06

C_
pr

ed
: 6

.0
7

% CE:0.03

C_opt: 5.28

C_
pr

ed
: 5

.4

% CE:2.21

C_opt: 2.22

C_
pr

ed
: 2

.2
2

% CE:0.0

C_opt: 10.92

C_
pr

ed
: 1

1.
02

% CE:0.89

C_opt: 5.9

C_
pr

ed
: 5

.9
8

% CE:1.36

C_opt: 6.74

C_
pr

ed
: 6

.7
8

% CE:0.52

C_opt: 5.83

C_
pr

ed
: 5

.8
9

% CE:0.94

C_opt: 5.98

C_
pr

ed
: 6

.0
1

% CE:0.56

C_opt: 3.93

C_
pr

ed
: 3

.9
3

% CE:0.06

C_opt: 3.14

C_
pr

ed
: 3

.1
8

% CE:1.08

C_opt: 8.07

C_
pr

ed
: 8

.2
5

% CE:2.26

C_opt: 2.92

C_
pr

ed
: 2

.9
3

% CE:0.12

C_opt: 7.25

C_
pr

ed
: 7

.2
5

% CE:0.05

C_opt: 6.52

C_
pr

ed
: 6

.6

% CE:1.19

C_opt: 9.17

C_
pr

ed
: 9

.1
7

% CE:-0.06

C_opt: 5.11

C_
pr

ed
: 5

.1
8

% CE:1.23

C_opt: 7.73

C_
pr

ed
: 7

.7
8

% CE:0.55

C_opt: 10.23

C_
pr

ed
: 1

0.
27

% CE:0.47

C_opt: 6.85

C_
pr

ed
: 1

0.
11

% CE:47.7

C_opt: 3.57

C_
pr

ed
: 3

.5
7

% CE:0.11

C_opt: 2.4

C_
pr

ed
: 2

.4

% CE:-0.02

C_opt: 5.69

C_
pr

ed
: 5

.8
3

% CE:2.34

C_opt: 4.55

C_
pr

ed
: 4

.6

% CE:1.11

C_opt: 26.61

C_
pr

ed
: 2

7.
18

% CE:2.11

C_opt: 4.99

C_
pr

ed
: 5

.0
5

% CE:1.2

C_opt: 3.46

C_
pr

ed
: 3

.4
4

% CE:-0.52

C_opt: 1.13

C_
pr

ed
: 1

.1
3

% CE:-0.02

C_opt: 9.79

C_
pr

ed
: 1

0.
37

% CE:5.93

C_opt: 8.04

C_
pr

ed
: 8

.1

% CE:0.66

C_opt: 4.72

C_
pr

ed
: 4

.6
6

% CE:-1.13

C_opt: 5.82

C_
pr

ed
: 5

.9
9

% CE:2.91

C_opt: 6.86

C_
pr

ed
: 6

.9
9

% CE:1.81

C_opt: 4.41

C_
pr

ed
: 4

.4
6

% CE:1.15

C_opt: 8.89

C_
pr

ed
: 1

0.
08

% CE:13.45

C_opt: 9.52

C_
pr

ed
: 9

.4
2

% CE:-1.04

C_opt: 9.43

C_
pr

ed
: 9

.5
6

% CE:1.4

C_opt: 3.11

C_
pr

ed
: 3

.1
5

% CE:1.37

C_opt: 6.56

C_
pr

ed
: 6

.5
9

% CE:0.56

C_opt: 9.92

C_
pr

ed
: 1

0.
46

% CE:5.46

C_opt: 15.97

C_
pr

ed
: 1

5.
97

% CE:-0.0

C_opt: 47.32

C_
pr

ed
: 4

7.
37

% CE:0.11

C_opt: 4.93
C_

pr
ed

: 5
.2

% CE:5.46

C_opt: 1.88

C_
pr

ed
: 1

.8
8

% CE:0.0

C_opt: 8.43

C_
pr

ed
: 8

.4
7

% CE:0.37

C_opt: 19.62

C_
pr

ed
: 2

0.
36

% CE:3.75

C_opt: 5.69

C_
pr

ed
: 5

.7
7

% CE:1.4

C_opt: 3.84

C_
pr

ed
: 3

.8
6

% CE:0.52

C_opt: 3.87

C_
pr

ed
: 3

.8
9

% CE:0.48

C_opt: 6.55

C_
pr

ed
: 6

.6
7

% CE:1.81

C_opt: 9.13

C_
pr

ed
: 9

.2
9

% CE:1.71

C_opt: 34.32

C_
pr

ed
: 3

5.
5

% CE:3.43

C_opt: 4.87

C_
pr

ed
: 4

.9
6

% CE:1.73

C_opt: 7.46

C_
pr

ed
: 7

.4
9

% CE:0.39

C_opt: 4.46

C_
pr

ed
: 4

.4
8

% CE:0.25

C_opt: 5.71

C_
pr

ed
: 5

.7
5

% CE:0.62

C_opt: 7.02

C_
pr

ed
: 7

.1

% CE:1.12

C_opt: 4.22

C_
pr

ed
: 4

.2
5

% CE:0.74

C_opt: 27.66

C_
pr

ed
: 2

8.
29

% CE:2.3

C_opt: 8.84

C_
pr

ed
: 8

.8
4

% CE:0.06

C_opt: 10.52

C_
pr

ed
: 1

0.
65

% CE:1.18

C_opt: 13.84

C_
pr

ed
: 1

5.
29

% CE:10.52

C_opt: 5.3

C_
pr

ed
: 5

.4
4

% CE:2.69

C_opt: 1.9

C_
pr

ed
: 1

.9

% CE:0.21

C_opt: 5.17

C_
pr

ed
: 5

.2
4

% CE:1.32

C_opt: 7.15

C_
pr

ed
: 7

.2
2

% CE:0.86

C_opt: 3.93

C_
pr

ed
: 3

.9

% CE:-0.76

C_opt: 1.41

C_
pr

ed
: 1

.4
2

% CE:0.74

C_opt: 7.51

C_
pr

ed
: 7

.6
8

% CE:2.32

C_opt: 2.38

C_
pr

ed
: 2

.3
9

% CE:0.41

C_opt: 9.75

C_
pr

ed
: 9

.6
9

% CE:-0.64

C_opt: 7.7

C_
pr

ed
: 8

.0

% CE:3.89

C_opt: 2.03

C_
pr

ed
: 2

.0
3

% CE:0.05

C_opt: 3.34

C_
pr

ed
: 3

.3
4

% CE:0.17

C_opt: 19.7

C_
pr

ed
: 2

0.
16

% CE:2.34

C_opt: 3.15

C_
pr

ed
: 3

.3
6

% CE:6.78

C_opt: 6.01

C_
pr

ed
: 6

.1
3

% CE:2.11

C_opt: 2.67

C_
pr

ed
: 2

.6
7

% CE:0.29

C_opt: 3.76

C_
pr

ed
: 3

.7
6

% CE:0.03

C_opt: 16.01

C_
pr

ed
: 1

6.
77

% CE:4.74

C_opt: 7.76

C_
pr

ed
: 1

3.
9

% CE:79.09

C_opt: 4.08

C_
pr

ed
: 4

.1

% CE:0.69

C_opt: 6.29

C_
pr

ed
: 5

.8
3

% CE:-7.27

C_opt: 5.72

C_
pr

ed
: 5

.8
9

% CE:2.92

C_opt: 3.7

C_
pr

ed
: 3

.7
2

% CE:0.37

C_opt: 10.68

C_
pr

ed
: 1

1.
33

% CE:6.1

C_opt: 15.38

C_
pr

ed
: 1

6.
62

% CE:8.06

C_opt: 5.76

C_
pr

ed
: 5

.7
5

% CE:-0.2

C_opt: 14.31

C_
pr

ed
: 1

4.
24

% CE:-0.49

C_opt: 7.68

C_
pr

ed
: 7

.9
7

% CE:3.78

C_opt: 5.11

C_
pr

ed
: 5

.2

% CE:1.88

C_opt: 5.83

C_
pr

ed
: 6

.8
7

% CE:17.96

C_opt: 2.01

C_
pr

ed
: 2

.0
1

% CE:0.19

C_opt: 5.79

C_
pr

ed
: 6

.3
2

% CE:9.16

C_opt: 4.58

C_
pr

ed
: 4

.5
8

% CE:0.04

Figure 10: Examples of generated topologies with good performance.
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Figure 11: Comparison DOM w/ TA and DOM w/o TA generation with 2 steps.
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Figure 12: Comparison DOM w/ TA and TopoDiff-GUIDED generation with 2 steps.
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Figure 13: Comparison DOM and TopoDiff-GUIDED generation with 100 steps.
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Figure 14: Left: xθ
t from 10 intermediate generation steps for DOM w/ TA (top block), DOM w/o TA (middle

block), SIMP iterations (bottom block). Right: Prediction of x̃θ from 10 intermediate generation steps for DOM
w/ TA (top block), DOM w/o TA (middle block), SIMP iterations (bottom block).
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D Dataset

We build a dataset of optimized topologies and intermediate optimization steps at low-resolution (64x64) and
high-resolution (256x256). In particular:

• 50K low-resolution optimized topologies w/ constraints.

• 60K high-resolution optimizer topologies w/ constraints.

• 250K low-resolution intermediate steps [10, 20, 30, 50, 70] w/ constraints.

• 300K high-resolution intermediate steps [10, 20, 30, 50, 70] w/ constraints.

In Figure 15, 16, 17, 18 we show examples of intermediate steps at 10, 20, 30, and optimized topologies at
high-resolution.

Figure 15: Intermediate optimization output after 10 iterations. Resolution: 256x256.
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Figure 16: Intermediate optimization output after 20 iterations. Resolution: 256x256.
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Figure 17: Intermediate optimization output after 30 iterations. Resolution: 256x256.

28



Figure 18: Optimized output. Resolution: 256x256.
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E Experimental Details

Table 10: Relevant Hyperparameters for baselines and DOM on 64x64 datasets.

TopoDiff TopoDiff-G DOM w/o TA DOM w/ TA

Dimension 1x64x64 1x64x64 1x64x64 1x64x64
Model Set 30k 30K 30K 30K
Guidance Set - 150K - -
Intermediate Set - - - 150K
Test Configurations 1800 1800 1800 1800

Batch size 64 64 64 64
Architecture Unet Unet Unet Unet
Iterations 200K 200K 200K 200K
Learning rate 2e−4 2e−4 2e−4 2e−4

Loss Lϵ Lϵ Lϵ Lϵ + LTA
Optimizer Adam Adam Adam Adam
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