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When designing evidence-based policies and programs,
decision-makers must distill key information from a vast and
rapidly growing literature base. Identifying relevant litera-
ture from raw search results is time and resource intensive,
and is often done by manual screening. In this study, we
develop an AI agent based on a bidirectional encoder rep-
resentations from transformers (BERT) model and incorpo-
rate it into a human team designing an evidence synthesis
product for global development. We explore the effectiveness
of the human-AI hybrid team in accelerating the evidence
synthesis process. To further improve team efficiency, we
enhance the human-AI hybrid team through active learning
(AL). Specifically, we explore different sampling strategies,
including random sampling, least confidence (LC) sampling,
and highest priority (HP) sampling, to study their influence
on the collaborative screening process. Results show that in-
corporating the BERT-based AI agent into the human team
can reduce the human screening effort by 68.5% compared
to the case of no AI assistance and by 16.8% compared to the
industry standard case of using a frequency-based language
model and support vector machine-based classifier for iden-
tifying 80% of all relevant documents. When we apply the
HP sampling strategy, the human screening effort can be re-
duced even more: by 78.3% for identifying 80% of all rele-
vant documents compared to no AI assistance. We apply the
AL-enhanced human-AI hybrid teaming workflow in the de-
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sign process of three evidence gap maps for USAID and find
it to be highly effective. These findings demonstrate how AI
can accelerate the development of evidence synthesis prod-
ucts and promote timely evidence-based decision making in
global development.

1 Introduction
In 2011 the U.S. Agency for International Development

(USAID) released Evaluation Policy, and in doing so made
an ambitious commitment to rigorously evaluating evidence
in order to make evidence-based policy [1]. Evidence-based
policy refers to public policy that is based on, or informed
by, evaluated and objective evidence. To emphasize the im-
portance of evidence-based policy within USAID and the
U.S. government, the Foundations for Evidence-based Pol-
icymaking Act of 2018 required all agencies under the Act
to “affirm the agency’s commitment to conducting rigorous,
relevant, evaluations and to using evidence from evaluations
to inform policy and practice” [2]. It is imperative in part
because these policies dictate the expenditure of billions of
dollars. For example, in 2017, USAID spent $1.01 billion on
foreign agricultural assistance alone [3].

However, evaluating all available evidence has been
made burdensome by the current information explosion. In
2018 alone, global research output in science and engineer-
ing was 2.6 million articles, which grew at a rate of 4% an-
nually from 2008-2018 [4]. A person’s capacity to under-



stand all available research is limited. Policy-makers have
thus turned to evidence synthesis to understand the growing
corpus of research available and make informed decisions.
Evidence synthesis refers to the process of compiling infor-
mation and knowledge from many sources and disciplines
to inform decisions [5, 6]. However, creating evidence syn-
thesis products like evidence gap maps (EGMs) requires ex-
tensive time and effort from human experts. EGMs, as de-
scribed in the Related Work section, visualize interventions
and their associated outcomes [7], and have been shown to
provide incredible value to decision-makers in fields ranging
from agriculture to public health [5]. For example, Figure 1
represents a portion of an EGM1 available from the Interna-
tional Initiative for Impact Evaluation (3ie), which is one of
the global leaders in generating EGMs for decision-making.
We can see there is a research gap between the interventions
of “water access & management” and “improved seeds” and
the outcomes regarding “profit”. Policymakers can plan fu-
ture investments and research accordingly.

Our goal is to accelerate the design of EGMs in the
global development space and alleviate the burden of infor-
mation filtering. 3ie’s current evidence synthesis process in-
cludes significant expert screening of documents and mod-
erate use of machine intelligence, often taking nearly six
months to complete [6]. Natural language processing (NLP),
a form of artificial intelligence (AI), has long been used for
text comprehension. Recently, the rule-based NLP models
have attracted some attention and been explored to promote
evidence-based decision making in the medical, legal, and
global development fields [8, 9, 10]. The work that has suc-
cessfully done so may be improved upon by incorporating
the latest transformer- and transfer learning-based NLP mod-
els.

1.1 Contributions
Title and abstract (TA) screening is one of the most

time-consuming steps in the EGM design process, typically
involving comprehending the titles and abstracts of tens or
hundreds of thousands of papers for screening. Through col-
laborating with 3ie, we make the following contributions:

1. We develop an AI agent using bidirectional encoder rep-
resentations from transformers (BERT) to accelerate the
TA screening portion of the EGM design process, and
incorporate it into a human team to explore the effi-
ciency gains made through human-AI teaming. With the
best combination, our AI agent reduces human effort by
78.3% when identifying 80% of all eligible documents,
as compared to no AI assistance.

2. We compare our BERT-based AI agent against the in-
dustry standard model, and find that the BERT-based
model outperforms the industry standard in both model
performance (12% average increase in accuracy for the
three EGMs) and saved effort (17% reduction in re-
quired effort in the simulated case, and a 46% average
reduction in effort for the three deployed EGMs).

1https://developmentevidence.3ieimpact.org/egm/food-systems-and-
nutrition-evidence-gap-map

3. We identify the optimal training size (5,000 documents)
for both model performance and saved effort.

4. We compare active learning (AL) strategies and find that
by using high priority (HP) or least confidence (LC) we
can decrease human effort by an additional 30% (com-
pared to BERT with no AL) for identifying 80% of all
included documents.

5. We support the development of three EGMs: Agricul-
ture [11], Nutrition [12], and Resilience [13] for use by
the U.S. Agency for International Development.

2 Related Work
In the following sections we describe related work in the

fields of EGMs, natural language processing, and AL, and
explore their intersections in the context of human-AI teams.

2.1 Evidence Gap Maps
EGMs are one form of evidence synthesis - the process

of compiling information and knowledge from many sources
and disciplines to inform decisions [5, 6]. Evidence synthe-
sis provides more reliable information about a topic than a
single study by systematically collecting, categorizing, and
analyzing a broad range of studies [14]. Evidence synthesis
for decision making was largely popularized by the biomedi-
cal field, but it provides clear benefits for decision-makers in
any field [15, 16, 9]. Thus, evidence synthesis is an incredi-
bly valuable tool for decision-makers in global development
seeking to design policies and fund research [5].

3ie has pioneered the use of EGMs, which present a
visual overview of completed and ongoing impact evalua-
tions and systematic reviews in a specific sector [17]. 3ie
creates these EGMs via the “thematic [collection] of infor-
mation about impact evaluation and systematic reviews that
measure the effects of international development policies and
programmes” [7]. The final product is a matrix, organized by
“intervention” categories on the vertical axis and “outcome”
categories on the horizontal axis. Interventions are the ac-
tion taken in the study, and outcomes are the result of the ac-
tion. Each cell of the matrix contains studies that rigorously
evaluate the impact of a specific intervention on a specific
outcome. An example of this matrix is shown in Figure 1.

3ie sets the global standard for EGMs, and the map-
ping method has been adapted by organizations including
the Campbell Collaboration, the World Bank Independent
Evaluation Group, and USAID [17]. Like other forms of
evidence synthesis, EGMs begin with an expansive and sys-
tematic search of scholarly databases and “grey literature”
sources (such as repositories of government documents or
websites of think-tanks) to identify potentially relevant stud-
ies. EGM teams then screen these search results to identify
studies that meet the EGM’s criteria for interventions evalu-
ated, outcomes measured, implementation setting, and study
design. Once eligible studies are identified, the EGM team
extracts information on interventions, outcomes, and other
key characteristics of each study to determine its placement
in the EGM matrix and to allow for analysis of trends in the



Fig. 1. A representation of a portion of a 3ie EGM showing two in-
terventions and four outcomes. Research gaps exist between the
two interventions and the outcome “Profit”. Dots of different colors
represent different evidence types. Dot sizes indicate how many doc-
uments exist in each group.

literature.
3ie uses software called EPPI-Reviewer which aids in

the creation of EGMs. While EPPI-Reviewer has some ma-
chine learning functions that can accelerate screening [18],
most EGM tasks are still performed manually. Thus, each
EGM requires significant human effort and expertise, with
many EGMs requiring nearly six months to complete [6].
Given that one of the main barriers to evidence use among
policymakers is the lack of timely research outputs [19],
there is a critical need to reduce the time and effort needed
to complete the EGM design and development process.

The high-level steps of designing an EGM are shown in
Figure 2. Our work focuses on step three, in which reviewers
screen documents for inclusion in an EGM based on their ti-
tle and abstract. Selected documents will move on to full-text
review. We create three transformer-based NLP models that
automatically classify documents for inclusion at this step.

2.2 Natural Language Processing in Evidence Synthesis
NLP is a field of machine learning in which computa-

tional machines are trained to understand text and spoken
language. The earliest language models include frequency-
based models like the n-gram model, which were introduced
in the 1940s-1950s [20, 21]. During this period, statistical
techniques were used for language modeling. These models
estimated the probability of a word based on the frequency
of its occurrence in a given context.

Researchers have since invented and explored new tech-
niques that utilize more semantic understanding. Semantic
understanding aims to bridge the gap between the symbolic
representation of language and its actual meaning. It involves
extracting and interpreting information at different levels, in-

cluding word-level semantics, sentence-level semantics, and
discourse-level semantics.

Major strides in language modeling include the rule-
based approaches which focus on hand-crafted linguistic
rules and grammars to process and understand natural lan-
guage [22, 21]. These systems rely heavily on expert
knowledge and manual rule construction. Additionally, in
the 1990s machine learning techniques gained popularity in
NLP. Hidden Markov Models (HMMs) and Maximum En-
tropy models were used for tasks like part-of-speech tagging
and named entity recognition [23].

Modern NLP models have been largely shaped by the
introduction of the transformer in 2017, which allowed text
inputs to be fed in parallel and achieved state-of-the-art re-
sults over frequency-based language models in many NLP
tasks [24, 25, 26, 27]. BERT is among the most well-known
transformer-based models and has been extensively explored
in NLP tasks such as language translation and question an-
swering [28, 29]. Other such models include GPT and mod-
els based off of it [30].

In the medical field, the development of an NLP-based
model for automating evidence synthesis, called BioMedI-
CUS, improved the scalability and performance of text anal-
ysis and processing of biomedical and clinical reports [8].
The success of NLP in the medical field has led to its use in
other fields, with models like LexNLP, which automatically
extracts information from legal text [9].

There are several industry-standard NLP tools used to
aid human experts when designing evidence synthesis prod-
ucts like EGMs. The most common tools include EPPI-
Reviewer, Rayyan, and RobotReviewer [15, 16], and all of
these utilize frequency-based language modeling and support
vector machine (SVM)-based classifiers as their primary ML
model [31, 32, 33].

Furthermore, rule-based NLP models have been ex-
plored to promote evidence-based decision making in mul-
tiple fields [10]. However, the rule-based models are often
case-specific. It requires significant effort to adapt a rule-
based model from one EGM to another. Moreover, it is chal-
lenging to capture all the subjective criteria used by humans
and embed them into the defined rules comprehensively.

We propose that utilizing state of the art transformer
based language models will accelerate the creation of EGMs
compared to the industry standard frequency-based language
model tools. We hypothesize that the increased semantic un-
derstanding found in pretrained large language models will
lead to better classification performance and lowered human
effort when screening documents.

Our work explores BERT-based NLP models as a tool
for human-AI teams designing EGMs for global develop-
ment, which involves more unstructured studies and broader
domains than other fields. Recent research that is perhaps
most similar to our work is srBERT [34], which explores
fine-tuning a BERT model with topic-specific articles in or-
der to accelerate the screening process for a systematic re-
view about “moxibustion for improving cognitive impair-
ment” [34]. Our work, on the other hand, works with much
larger and broader datasets in order to create EGMs. Addi-



Fig. 2. A high-level view of the current EGM creation process.

tionally, we exhibit the effectiveness of our NLP tool in a real
human-AI team and ultimately create three deployed EGMs
in Agriculture [11], Nutrition [12], and Resilience [13]. We
utilize the experience of creating deployed EGMs to explore
the nuances of human-AI teaming in this design process.

2.3 AL and Human-AI Teams
In many AI tasks, obtaining labeled training data is ex-

pensive and time-consuming [35]. We are motivated to ex-
plore avenues to decrease the size of training data needed
by using AL. AL is the concept that an ML algorithm can
perform better with less training data if it is allowed to
choose the data from which it learns. AL has been applied to
deep learning problems such as image classification [36, 37],
speech recognition [38], data exfiltration detection [39], and
many NLP tasks [40]. There are three main problem se-
tups, or scenarios, in which a learner may be able to ask
queries: membership query synthesis [41], stream-based se-
lective sampling [42], and pool-based sampling[43]. The
most commonly used pool-based sampling strategies eval-
uate and rank the entire unlabeled pool in terms of infor-
mativeness and then select the best queries [44]. There are
also different query strategies for choosing which unlabeled
instances to query. The most commonly used query strat-
egy is uncertainty sampling [43]. In this strategy, the learner
queries the instances for which the learner is least certain
how to label [44]. Within the uncertainty sampling category,
there are three primary measures that evaluate how uncer-
tain the learner is about each instance: least confidence [45],
margin sampling [46], and entropy [20].

During the training, AL tries to optimize the information
flow from humans to AI to improve AI performance with
less training data. In this study, AI is working collabora-
tively with humans instead of alone. Accordingly, both the
information flow from humans to AI and that from AI to hu-
mans are important to the performance of human-AI hybrid
teams. Therefore, AL in such a context should consider the
bi-directional information flows.

In fact, common barriers stopping human screeners
from incorporating AI into their EGM design process in-
clude a mismatch in existing workflows, and a steep learning
curve [16]. Research shows that human-AI teams using AL

for a real life task can lose the human agent’s trust if the AI
agent makes irrelevant suggestions or predictions during the
training process [39]. Therefore, we explore and discuss the
effective integration of AI tools into the existing EGM design
process. We also use AL-based approaches to maximize the
accuracy of the AI classifier, while minimizing the workload
put on the human screeners.

3 Methodology
In this work, we utilize a BERT-based NLP model to

accelerate the design process of EGMs. We utilize the NLP
tool in the workflow of a real human-AI team with members
of 3ie. We support the development of three deployed EGMs
in the topics of Agriculture, Nutrition, and Resilience.

We analyze how different ML methods and data train-
ing sizes affect the human-AI team performance, focusing
on the trade-offs between model accuracy and human effort.
We compare our fine-tuned BERT model against the indus-
try standard NLP tools. Further, we explore the effect of AL
with various query strategies on model accuracy and human
effort.

Our work is comprised of two case studies:

1. Simulated EGM design: Using a pre-existing, fully la-
beled dataset we run experiments to determine the most
effective classification algorithms (industry standard vs.
BERT-based) and AL strategies for EGM creation.

2. Deployed EGM design: Utilizing results from the sim-
ulated EGM design, our human-AI team creates three
EGMs for use by USAID: Agriculture [11], Nutri-
tion [12], and Resilience [13].

These two case studies present different challenges and
priorities. In the simulated EGM design, we have the benefit
of a fully labeled dataset, which we can practice multiple
techniques on. In the deployed EGM design, we are in the
real-world situation of creating an EGM from scratch using
a human-AI team. Therefore, we only have labels for the
documents that we specifically choose to screen.

Further, in the deployed EGM design, we are motivated
to design the most comprehensive and informative EGM
while efficiently utilizing human resources. Consequently,
we want to minimize time that human experts spend screen-



Fig. 3. Proposed utilization of NLP tools in a human-AI team to screen, understand, and classify documents (represented by circles) in order
to inform evidence-based policy decisions. Our goal is to accelerate the design process for EGM products in the global development field.

ing irrelevant documents, and screen only the relevant docu-
ments. This contrasts the strategy in classical AL to query or
screen the documents we are most uncertain of.

3.1 Dataset Description
For the simulated EGM design, our data is provided by

3ie and is derived from manually labeled documents from
3ie’s Development Evidence Portal (DEP) 2 [47], an expan-
sive repository of impact evaluations and systematic reviews
in global development across a wide range of sectors. We
utilize a dataset of 68,539 documents screened for inclusion
in 3ie’s DEP to develop and evaluate our classification mod-
els. Table 1 shows the key attributes of the dataset, such as
title, abstract, and inclusion decisions.

Attribute Description

Title Title of the paper.

Abstract Abstract of the paper.

Keywords Keywords of the paper.

Year Publication year.

Publication type Journal, conference proceeding,
report, etc.

Source The source of the paper, e.g., jour-
nals or conferences.

Inclusion decision Whether the paper is included as a
relevant study. If not, what is the
exclusion criterion.

Table 1. The key attributes in the Development Evidence Portal
dataset.

In this study, the title of each paper is integrated into the
abstract as a sentence at the beginning. The BERT classi-

2https://developmentevidence.3ieimpact.org/

fication model takes the integrated texts as the input. The
label of “included” or “excluded” is derived from the inclu-
sion decision. To train the binary classification model, the
“0” class corresponds to the “excluded” papers, and the “1”
class comprises the “included” papers. This dataset is highly
imbalanced, containing 5,281 included papers and 63,258
excluded papers. The criteria for excluding the papers are
also extracted for training the criterion-specific classification
models.

For our deployed EGM design, we are actively design-
ing three EGMs. As indicated in Figure 2, and per 3ie’s
EGM workflow, we gather our initial datasets via a litera-
ture search through scholarly databases and grey literature
sources. For the three EGMs, their initial dataset sizes are
as follows: Agriculture 221k, Nutrition 117k, and Resilience
60k.

3.2 Data Pre-processing

The raw documents are pre-processed to remove noise.
Two types of noise are removed in this step. The first is non-
English texts. A portion of the papers provide titles and ab-
stracts in multiple languages. Since our models only take
texts in English as input, the sentences in languages other
than English are noise to the models and should be removed.
The second type comprises English text content that is irrele-
vant to the scope of the document, such as a copyright state-
ment. The pre-processing consists of five steps. (1) Each
document is parsed into sentences. (2) A language detection
model is used to identify sentences written in non-English
languages. (3) We manually label the sentences from 500
documents with the “relevant” and “irrelevant” labels. (4) A
BERT classification model is trained on the labeled data to
predict the labels of the other sentences. The accuracy of the
model is higher than 0.99. (5) Once the irrelevant sentences
are removed, the remaining relevant sentences are integrated
back into the original documents.



3.3 Priority Score
In this study, the AI agent is operationalized by a BERT

binary classification model, which employs a 12-layer pre-
trained uncased BERT embedding module with a hidden size
of 768. The BERT embedding module is followed by a
dropout layer with a drop rate = 0.1 and a linear layer that
outputs a 2-dimensional (2D) vector as the final classifica-
tion prediction. As described above, the AI agent needs to
sample or prioritize the unlabeled papers according to the
probabilities of being relevant, as predicted by the classifi-
cation model. This probability is named the “priority score”
(PS) in definition 1.

Definition 1. Priority score is the probability that a pa-
per is a relevant paper predicted by the AI agent, which is cal-
culated by PS(p) = so f tmax(Pred(p))[1], where Pred(p) is
the prediction output from the classification model for a pa-
per p, which is a 2D vector. The “1” in the equation indicates
that PS(p) is the probability of the paper being classified to
the “1” class. Following this definition, higher screening pri-
ority scores are assigned to the papers with higher predicted
probabilities of being relevant.

3.4 Sampling Strategies
According to the predicted PSs, we apply three different

query strategies to sample papers from the unscreened sub-
set, which will be labeled and added to the training set in the
next iteration.

1. Least confidence: The least confidence (LC) query
strategy is one of the commonly used strategies for AL,
which samples papers that the model is least certain how
to classify [44], as shown by

x∗LC = argmax
x∈X

U(x) (1)

The classification uncertainty U(p) of the paper p is
derived from the classification model output Pred(p)
through

U(p) = 1−max(so f tmax((Pred(p))) (2)

2. Highest priority: The highest priority (HP) query strat-
egy samples papers with the highest PSs, given by

x∗HP = argmax
x∈X

PS(x) (3)

This query strategy is adapted from the uncertainty sam-
pling strategies [43]. For evidence synthesis, all relevant
papers need to be verified by a human agent, so the pa-
pers most likely to be relevant are first sampled.

3. Random: The random query strategy randomly samples
papers from the unlabeled list without using any infor-
mativeness measure. In this case, no AL is applied.

3.5 Human-AI Hybrid Team Workflow
We assume the human-AI hybrid team is tasked with

screening a set of papers to identify papers satisfying a given
scope. The human agents start the TA screening process by
specifying the screening criteria. Then, the AI agent ran-
domly samples a subset of papers, which are screened by the
human agents as the initial training set. On this basis, our
model is trained to learn the screening criteria from the train-
ing. With the learned knowledge, the AI agent predicts the
PSs of the unscreened papers. According to the predicted
PSs, the AI agent needs to check whether the screen-train-
predict-sample loop should stop. If not, it employs a certain
strategy to sample a set of papers to be screened for the next
iteration.

Fig. 4. The workflow of the human-AI hybrid team. H represents
human agents.

Once the AI agent decides to stop training the model
after a few iterations, it prioritizes all the unscreened pa-
pers according to their predicted PSs. Then, the human
agents screen the prioritized papers in batches and decide at
which batch the screening process should be ended. Since
the dataset is imbalanced, a random over-sampling method
is applied to the training set to make the numbers of samples
from both classes equal. In this study, the AI agent sam-
ples a batch of 1,000 papers each time. The batch number
is selected because it balances the gain from and the cost of
updating the model.

3.6 Evaluation Metrics
In the ML domain, accuracy and F1 score are commonly

used to evaluate the performance of classification models.
However, these metrics alone are not informative enough to
assess the performance and efficiency of the human-AI hy-
brid teams. In this study, we evaluate the performance of the
human-AI hybrid teams in terms of human effort in defini-
tion 2 needed for achieving an inclusion rate in definition 3.



The computational cost reflects team efficiency from another
perspective, which is not discussed in this study.

Definition 2. Human effort is defined as the ratio (HE)
between the number of papers that need to be screened man-
ually (nscreened) for identifying a given amount of relevant
papers and the total number of papers (n = 68,539 in the
simulated EGM design case study) in the dataset, which is
calculated by: HE = nscreened/n.

Definition 3. Inclusion rate is the ratio (IR) between
the number of included papers being identified (nidenti f ied)
and the total number of included paper (nincluded = 5,281 in
the simulated EGM design case study) in the dataset, calcu-
lated by: IR = nidenti f ied/nincluded . With limited resources, a
higher inclusion rate is preferred.

Given a set of scientific papers and the screening criteria,
an efficient human-AI hybrid team should minimize the hu-
man effort and computational cost for achieving a satisfying
inclusion rate or maximize the inclusion rate with available
human effort and computational resources. Additionally, the
F1 score of the corresponding classification model in each
case is also reported for assessing the performance of the AI
agent.

4 Experimental Setup
In this section, we discuss the experimental setups for

the two case studies: simulated EGM design and deployed
EGM design. The aspects specific to each case study are
described in 4.1 and 4.2, while their shared components like
baseline techniques and implementation details are described
in sections 4.3 and 4.4.

4.1 Simulated EGM Design Experiments
In this case study, we assume the human-AI hybrid team

is tasked with screening a set of 68,539 documents to iden-
tify documents satisfying a given scope. This dataset is fully
labeled, and we can therefore test the efficacy of different
training sizes and AL sampling strategies.

4.1.1 Training Size Experiments
For ML model training, a larger training set often bene-

fits model performance but needs more human effort to label
the data. In the human-AI hybrid team, the trade-off between
the model performance and the required human effort for
labeling should be balanced carefully to achieve high team
efficiency. We conduct experiments to investigate how the
training size affects hybrid team efficiency - both in terms of
the model performance (F1 score) and human effort required.
Specifically, we start with an initial training set of 1,000 pa-
pers; to expand the training set, we randomly sample 1,000
papers, label them, and add them to the training set in each
iteration from 1,000 to 6,000. During training, we use 85%
of the papers in the training set to train our model and 15%
as a validation set. All the other papers compose the testing
set.

4.1.2 AL Experiments
When the AI agent samples new papers to be screened,

the query strategy used affects the informativeness of the
sampled papers, which further influences the ML model per-
formance and hybrid team efficiency. We compare two dif-
ferent sampling strategies, LC and HP, with random sam-
pling through experiments. For each sampling strategy, we
start with the same initial training set of 1,000 papers with
the random sampling case. After that, we sample 1,000 new
papers using the LC or HP strategy to expand the training set
in each iteration. We experiment with training sizes ranging
from 1,000 to 7,000 for the two sampling strategies.

4.2 Deployed EGM Design Experiments
The human-AI team is tasked with developing three

EGMs for deployment: an Agriculture, Nutrition, and Re-
silience EGM. For each one, the human-AI interaction and,
therefore, our experiments are targeted at the title and ab-
stract screening process.

The three EGMs are created independently and follow-
ing the same process. They start with the following size of
datasets: Agriculture 221k, Nutrition 117k, and Resilience
60k. The human-AI workflow used for the title and abstract
screening of each EGM is shown in Figure 4 and described
above in section 3.5. Once the process is complete for each
EGM, the human-AI team has labeled a small subset of each
dataset. We utilize these labeled datasets for the following
experiments.

4.2.1 Model Performance Experiments
We explore the effectiveness of the industry standard

model and our proposed BERT-based model for classify-
ing documents as relevant or irrelevant for each of the three
EGMs. Due to the real-world nature of this case study, we
only have labels for those documents which we choose to
screen. For each of these labeled datasets, we perform an
85% - 15% train-test split and determine the classification
accuracy.

4.2.2 Human Effort Experiments
We also compared the trained BERT and industry stan-

dard models in terms of human effort to assess hybrid team
efficiency. Specifically, we suppose the documents in the
test set would be screened in descending order of priority
scores predicted by the BERT and industry standard models
respectively. Human effort is defined as the percentage of
documents that humans need to screen for getting a specific
inclusion rate. The hybrid team is more efficient if fewer
documents must be screened to obtain the same number of
included documents. That is, less human effort is needed.

4.3 Baseline
To answer RQ1 - how much human effort can be saved

when the AI agent is trained on an optimal data size?, we
compare the best case from the experiments with different
training sizes with the baseline cases. In the first case, the



human team works alone on the same task without any AI
assistance. That is, the human agents randomly screen pa-
pers from the dataset. The second case employs an indus-
try standard method: a frequency-based language model us-
ing SVM-based classifier, which is developed for retriev-
ing randomized controlled trials and available in the EPPI-
Reviewer software [33]. For the second baseline, we also
experiment with four different training sizes ranging from
1,000 to 7,000, from which the best model is used as the
baseline.

To answer RQ2 - how much human effort can be further
saved by enhancing the hybrid team through AL?, the best
model from the experiments with different training sizes is
used as the baseline, where all the sampled papers are ran-
domly selected. We compare the best models from the exper-
iments with the LC sampling strategy and the HP sampling
strategy to the baseline model, respectively.

4.4 Implementation Details
In this study, our models are trained with a learning rate

of 1× 10−5. There is a warm-up phase at the beginning of
the training process, which lasts for one epoch. The experi-
ments were performed on Intel(R) Xeon(R) W-2295 CPU @
3.00GHz 3.00 GHz, with 18 cores and 256 GB of RAM.
Model training and predicting were conducted on Nvidia
RTX A5000 GPUs (single GPU per run). Each experiment
is repeated five times. When the predicted uncertainties and
PSs are needed to sample new papers with the LC and HP
strategies, we use the mean values of the predictions from
the five runs to improve the repeatability of the results.

5 Results
In the following sections we present the results of our

experiments in both case studies: the simulated EGM de-
sign, and the deployed EGM design. We compare different
ML models, training sizes, and AL sampling strategies and
report their effects on model performance and human effort.
Further, we go on to discuss the limitations of our work and
the future use of human-AI teams in EGM design.

5.1 Simulated EGM Design Results
In this section we display the results comparing the

BERT-based model and the industry standard model in the
simulated EGM design. We first look at how the two models
compare in terms of saving human effort. Then, we incor-
porate AL strategies and compare both the models and the
different AL strategies for both human effort saved and clas-
sification performance.

5.1.1 Saved Effort
The performance of the human-AI hybrid team is as-

sessed through inclusion rate (IR) and human effort (HE).
Figure 5 shows the variation of IR with HE when our model
is trained with different training sizes. The grey “Without
ML” line in the figure corresponds to the condition where

Fig. 5. How inclusion rate varies with human effort when our BERT-
based model is trained with different training sizes. A training size of
5,000 performs best, as indicated by reaching an inclusion rate of 0.8
with the lowest human effort.

the human agents work alone without any AI agent. Since
the human agents randomly screen papers form the dataset,
IR is equal to HE in this case. The orange “Ideal” line close
to the y-axis denotes the ideal case, in which each screened
document is an included document, and no excluded docu-
ments are screened. The slope of this line is 5,281 (the total
number of included papers) / 68,539 (the total number of pa-
pers in the dataset). The other curves in the figure describe
how the IR changes as the human agents invest more screen-
ing efforts when the BERT-based AI agent is trained on the
datasets with different sizes.

Each curve consists of two parts. The first straight line
part indicates the process that the human agents label pa-
pers from the dataset to prepare the training set. Since the
screened papers are randomly selected, the IR is equal to
HE. Once the training set is ready, our model is trained on
it to predict the PSs of the unlabeled papers. The curved
part following the straight line corresponds to the process
during which the human agents screen the unlabeled papers
sequentially according to the predicted PSs. Since the un-
labeled papers are prioritized for screening, the curves are
much steeper in this second portion than in the first, which
has the same slope as the “Without ML” line. In the curved
portion, the initial slopes are close to the slope of the ideal
line, then gradually decrease later on. This trend suggests
that the papers with higher PSs are more likely to be identi-
fied as included papers than the papers with lower PSs, im-
plying the effectiveness of the AI agent in prioritizing the
unlabeled papers for screening.

Since a high-performing human-AI hybrid team can
achieve a higher IR with a lower HE, its initial slope should
appear closer to the “Ideal” line in 5. As the training size
increases, the curve gets steeper, indicating improved model
performance. This is in line with the increasing F1 scores
shown in Figure 7. However, because a larger training size
needs more human labeling effort (i.e., a longer straight line
in the first part along the diagonal line), it may also impair
the efficiency of the human-AI hybrid team. Given a target
IR of 80%, the curves show that the hybrid team gets the



Fig. 6. How inclusion rate varies with human effort for the different
ML models: our model (BERT), the industry standard, and “Ideal”
and “Without ML” baselines.

highest efficiency when the training size is 5,000. Under this
condition, the human agents only need to screen 25.2% of
the papers to get an IR of 80%, while they need to screen
80% of the papers to get the same IR in the case without the
AI guidance. Therefore, when the BERT-based AI agent is
incorporated into the human team, it can save 54.8% human
screening effort for getting the IR of 80%.

We also compare the BERT-based model with the model
used in the EPPI-Reviewer software in terms of their effec-
tiveness as the AI agent. Similarly, we train EPPI-Reviewer’s
industry standard model with different training sizes (1,000,
3,000, 5,000, 7,000), among which the training size of 5,000
needs the least human effort for getting the IR of 80%. Fig-
ure 6 compares the best BERT-based model (5,000) and the
best industry standard model (5,000), suggesting that the
BERT-based model enables the human agents to save more
screening efforts compared to the industry standard model
for getting any IR. Specifically, the human agents can save
5.1% more screening efforts when working with the BERT-
based AI agent than working with the industry standard AI
agent for getting the IR of 80%. Therefore, our BERT-based
model is more effective in acting as the AI agent.

5.1.2 The Effect of AL
In the following section, we discuss how the strategies

for sampling new data to expand the training size affect the
performance of the AI agent and the efficiency of the human-
AI hybrid team for the TA screening task.

AL, Training Size, and Model Performance
Here we report the results of the experiments with differ-

ent training sizes and different sampling strategies to demon-
strate the effect of incorporating the AI agent into the human
team, answering RQ1. Following the protocol of the classifi-
cation problems with the imbalanced dataset, we use the F1
score computed at the default threshold of 0.5 as the classifi-
cation metric. In these experiments, the sampled papers are
randomly selected. The black curve in Figure 7 shows the
variation of the F1 score with the training size. As the train-

ing size increases, the F1 score improves with diminishing
marginal effect, especially when the training size is larger
than 5,000.

Fig. 7. How model performance, as shown by the F1 score, varies
with training size and AL sampling strategy. The bars indicate one
standard error. We find that the LC strategy performs the best.

Fig. 8. How different AL sampling strategies affect the human ef-
fort and inclusion rate relationship. The dotted line portion of each
curve represents the screening-updating-predicting-sampling itera-
tions, while the solid line part corresponds to the process when the
human agents screen the prioritized papers.

Similar to the random sampling case, the training size
affects the performance of our classification model. As
shown in Figure 7, a larger training size improves the F1
score when the LC strategy is applied. If we employ the HP
strategy, a moderate training size (e.g., 2,000) benefits the
F1 score most, and a larger training set impairs the F1 score
when its size surpasses a certain value (e.g., 2,000). Overall,
sampling new papers using the LC strategy leads to better
classification models than randomly sampling new papers, as



Fig. 9. The human effort required to reach an 80% inclusion rate
for various models. Lower human effort is preferred. With no ML, it
takes 80% human effort to reach an 80% inclusion rate.

indicated by the higher F1 score; however, the HP sampling
strategy results in worse classification models than random
sampling, indicated by the lower F1 scores.

AL, Training Size, and Human Effort
The selected AL sampling strategy and the training size

also affect the human-AI team efficiency. Under the random
sampling condition, a moderate training size can well bal-
ance the trade-off between higher model performance and
more labeling effort for creating the training data, leading
to the highest team efficiency. We observe similar trends for
AL. To get an IR of 80%, the human-AI hybrid team achieves
the highest team efficiency with a training size of 7,000 when
the LC and HP sampling strategies are applied, respectively.

Figure 8 compares the team efficiency among different
sampling conditions, including random sampling, LC sam-
pling, and HP sampling. We can see that the efficiency of
the human-AI hybrid team is improved substantially with
AL. When the LC and HP strategies are applied, the human
agents can respectively save 7.4% and 7.8% screening ef-
fort for getting the IR of 80%. Specifically, the dotted line
portion of each curve represents the screen-update-predict-
sample iterations (i.e., the “AI: Stop training?” loop in Fig-
ure 4), while the solid line part corresponds to the process
when the human agents screen the prioritized papers accord-
ing to the predictions from the finalized AI model.

We can see that the dotted line portions of the LC and
the HP curves are much steeper than the dotted line por-
tion of the random sampling curve. The trends suggest that
with both the LC and HP sampling strategies, a larger por-
tion of the sampled papers are included papers compared
to the random sampling strategy. That is, the LC and the
HP sampling strategies, especially HP, improve team screen-
ing efficiency substantially during the screening-updating-
predicting-sampling iterations. This can be explained by the
sampling strategies themselves. The LC strategy samples the
papers with the highest classification uncertainties. Given
the highly imbalanced dataset, our model is less confident in
classifying the papers from the minor class, i.e., the included
papers from the “1” class, leading to more papers being sam-

pled from the minor class. The HP strategy samples the pa-
pers with the highest predicted PSs, which are more likely to
be included papers by the definition of PS.

Moreover, by sampling the papers with the highest clas-
sification uncertainties, the LC sampling strategy also en-
ables our model to learn more efficiently from human la-
beling compared to the other sampling strategies. This is
evidenced by the observation that the solid curve part of the
blue curve is steeper at the early phase than the solid curve
parts of the red and black curves in Figure 8 and the highest
F1 scores for LC in Figure 7.

5.2 Deployed EGM Design Results

Fig. 10. The classification performance of BERT and industry stan-
dard models for the three EGMs created: Agriculture, Nutrition, and
Resilience. The metric used is defined in section 4.2.1.

In this section we compare inclusion classification done
by our BERT-based model and the industry standard model.
We compare model performance across two different met-
rics: classification performance, and saved effort. The
BERT model is our proposed approach, whereas the indus-
try standard model is what tools like EPPI Reviewer [33],
Rayyan [31], and RobotReviewer [32] utilize to classify doc-
uments, and therefore represents the industry standard.

5.2.1 Model Performance
Figure 10 shows the model performance (as defined in

section 4.2.1) of the BERT-based and the industry standard
models for each of the three EGMs we created. The results
show that for all three EGMs, the BERT model resulted in
higher accuracy than the industry standard model. Our re-
sults suggest that utilizing BERT for classification has bene-
fits over the industry standard EGM-creation tools.

5.2.2 Saved Effort
Figure 11 shows how inclusion rate varies with human

effort. The orange “Ideal” line indicates a perfect inclu-
sion rate, where only relevant documents are screened and



Fig. 11. How inclusion rate varies with human effort for the three deployed EGMs. A higher inclusion rate at a lower human effort is preferred.
BERT outperforms the industry standard in all three EGMs.

EGM Industry Std. BERT
Percent Effort

Saved by BERT

Resilience 68% 17% 75%

Agriculture 53% 28% 47%

Nutrition 29% 24% 17%

Table 2. Human effort required to reach an 80% inclusion rate for
each of the three EGMs and the two ML models, the industry stan-
dard model and our BERT-based model. The percent effort saved by
BERT is calculated as the percent difference between human effort
for the BERT-based model and the industry standard model.

therefore all documents seen are included. The grey “With-
out ML” line indicates a case in which human experts must
screen all documents at random in order to find all of the in-
cluded documents. We compare two ML strategies, BERT
and industry standard, and find that BERT outperforms in-
dustry standard for all three EGMs.

We carried out a set of experiments with the screened
papers of the three EGMs for the comparison. Aiming at
an inclusion rate of 80% for the screened papers, we found
that the human raters needed 75% less human effort for Re-
silience, 47% less human effort for Agriculture, and 17% less
human effort for Nutrition when working with the BERT-
based models rather than with the baseline industry standard
model from EPPI-Reviewer. The raw values of human ef-
fort for the BERT model and industry standard model for the
three EGMs are shown in Table 2. We discuss the variation
among the three EGMs in section 6.1.

The effort-saving capabilities of the BERT models are
further amplified in the real screening process, in which the
models are updated multiple times as new labeled documents
come in as training data. In this case, the model improves it-
eratively over time. As its classification accuracy increases,
the model can suggest only the most relevant documents to
the human raters. This type of AL is explored in the simu-
lated dataset and described in section 5.1.2.

6 Discussion
Figure 9 provides a comprehensive view of the various

ML methods we compared, and their effect on human ef-
fort. The figure shows the human effort required to reach an
80% inclusion rate in the simulated EGM design case. We
compare results for no ML assistance, the industry standard
model, a BERT-based model, and a BERT-based model with
the LC or HP AL sampling strategies. We observe that the
BERT-based model outperforms the industry standard, with
a 16.8% relative reduction in human effort. The results show
that the AL strategies reduce human effort even further, by
about 30% compared to BERT without AL. Since our moti-
vation is to accelerate the EGM design process and decrease
the resource and time intensity of the process, this result is
of great significance.

Within the hybrid team, effective interactions and mu-
tual learning between the human agents and the AI agent can
improve team performance significantly. When the LC sam-
pling strategy is applied, both the information flow from the
human agents to the AI agent (i.e., human knowledge con-
veyed in the labeled papers) and the information flow from
the AI agent to the human agents (i.e., the AI predictions
conveyed in the sampled or prioritized papers) play a role
in improving the efficiency of the human-AI hybrid teams.
In contrast, when the HP sampling strategy is applied, the
information flow from the AI agent to the human agents
plays a major role in benefiting hybrid team efficiency, es-
pecially during the screen-update-predict-sample iterations.
However, in HP, the information flow from the human agents
to the AI agent is not as beneficial for improving model per-
formance.

In a practical screening process, we only know the labels
of a part of the papers in a dataset, which means the actual
IR, as well as its overall changing trend, is unknown. In such
a scenario, it is difficult to determine when to stop expanding
the training set and updating the AI agent and when to stop
screening the prioritized papers. The changing scale of the
predicted rankings of the unlabeled papers and the growth
rate of IR can inform us about the stopping. Small changes
in the paper rankings and a low growth rate of IR may sug-
gest we stop updating the AI agent and stop screening the



prioritized papers, respectively.
From the records of twelve human screeners working

on an agriculture development EGM, we learn that a human
screener can screen 38.6 (SE = 1.00 ) papers per hour on
average. On this basis, the AL-enhanced AI agent can save
human screeners (80%− 17.4%)× 68,539/38.6 = 1,111.5
hours for TA screening compared to the case without the
AI agent. Compared to the case using EPPT-Reviewer
frequency-based language model and SVM-based classifier
as the AI agent, (30.3%− 17.4%)× 68,539/38.6 = 229.1
hours can be saved by our model.

6.1 When Does the BERT-based Model Most Improve
Results?

We notice an interesting difference in the percent ef-
fort saved by our BERT model among the three EGMs, as
shown in Table 2. We see, for example, that the BERT model
significantly outperforms the industry standard for the Re-
silience EGM, but has a less pronounced effect on the Nutri-
tion EGM. Interestingly, the BERT model’s performance is
quite consistent, so this variation is mostly a result of how
well the industry standard frequency-based model can per-
form for different EGMs. We note that, for example, the
industry standard model performs quite poorly for the re-
silience EGM, but quite well for the Nutrition EGM.

This suggests that based on the characteristics of an
EGMs specific literature domain (such as resilience or nu-
trition), the industry standard model may or may not be
equipped to properly classify documents. We propose
that this is because the industry standard model utilizes a
frequency-based language model.

Frequency-based language models, such as n-gram
models, have limitations when it comes to semantic under-
standing due to their simplistic nature and reliance on local
statistics. The limitations stem from a number of character-
istics. For example, frequency-based models only consider
local context (n-grams) to predict the probability of the next
word. They do not take into account the broader context or
global dependencies between words in a sentence or docu-
ment. As a result, they may not capture the full meaning
and intent of the text. Additionally, words often have multi-
ple meanings (polysemy) or different words may sound the
same (homonymy). Frequency-based models treat words in
isolation and cannot disambiguate between different senses
of a word based solely on local statistics. This leads to ambi-
guity in semantic understanding. Lastly, these models have
limited generalization. Frequency-based models learn rep-
resentations based on the exact sequences of words they en-
counter in the training data. They may struggle to generalize
to unseen or slightly different contexts, leading to poor per-
formance on tasks that require semantic understanding be-
yond the training data.

Alternatively, the BERT-based model exhibits strong
semantic understanding owing to its bidirectional context,
transformer architecture, and pretraining on large text cor-
pora. By considering both left and right context in sentences,
BERT captures long-range dependencies and contextual in-

formation, essential for understanding word meanings. Its
self-attention mechanism allows each word to attend to oth-
ers, modeling complex semantic relationships. Pretrained on
extensive unlabeled data, BERT learns general linguistic pat-
terns, and its contextualized word embeddings resolve word
sense ambiguity. Through transfer learning and fine-tuning,
BERT adapts its semantic knowledge to various NLP tasks.
Its large model size further contributes to capturing intricate
semantic nuances, making BERT a highly effective language
representation model across diverse applications.

Because of this, for nebulous topics that take quite a bit
of semantic understanding, a BERT-based model will likely
outperform the industry standard model. This idea is sup-
ported in the case of the Resilience EGM. Even the human
experts had to spend a long time identifying what truly makes
a document relevant to the topic of “resilience.” The expert
screeners had to use much discernment and semantic un-
derstanding to determine if documents should be included.
Whereas for other topics, like nutrition, the inclusion deci-
sions were clearer and, often specific keywords were strong
indicators that a document should be included. We therefore
propose that the BERT-based model will provide more im-
provement over the industry standard the more nebulous a
topic is, or the more semantic understanding is required to
properly understand a topic.

6.2 Discussion on AI-assisted Design of EGMs
The nature of our work creating EGMs for deployment

and use by USAID meant that our team faced many real-
world challenges. In this section, we discuss the unique chal-
lenges and limitations that arise when designing EGMs with
AIassistance. We also discuss future directions for utilizing
natural language processing and human-AI teaming for cre-
ating EGMs, including the use of generative large language
models.

The Cost of Communication The cost of communi-
cating in a human-AI team can be significant but difficult
to quantify as it involves multiple factors. One such factor
is the time and effort required to exchange information via
email, which can lead to delays and potential miscommuni-
cation. Additionally, updating document labels and merg-
ing datasets can be a complex and time-consuming task that
requires oversight and project management to ensure accu-
racy. These activities can also be a source of errors that
can negatively impact the performance of AI models. Fi-
nally, time lags between humans labeling documents, the
AI agent receiving the documents and updating the model,
and then the AI agent sending back newly ranked documents
for human screening means that one team may be operat-
ing with incomplete data. Therefore, optimizing communi-
cation channels and implementing efficient communication
protocols can help reduce the costs associated with human-
AI team collaboration.

Trust in AI A major challenge that many AI recom-
mendation systems face is the “cold start” problem. The AI
agent must provide some prediction about the documents in
the first iteration, but at this point, the model knows noth-



ing about the new domain. In our case, we pretrained our
model on documents in the global development space, but
this cannot ensure that it would perform well in classify-
ing documents for, say, an Agriculture-specific EGM without
any additional training data. This challenge, while common,
can lead to distrust in AI from the human team, if they find
the initial rankings to be incorrect. Additionally, the train-
ing data for our models are labels from people, which can
be noisy. The AI model’s performance is constrained by the
quality of its training data, and therefore to have meaningful
and accurate model results, we must begin with consistent
high-quality training data.

“When to Stop”: A Business Decision Another chal-
lenge in the deployed EGM design case study was determin-
ing when to stop the screening process, the second question
shown in Figure 4. Our human-AI team faced a trade-off here
between screening more papers in order to improve model
performance, or stopping screening in order to move onto
the next step in the EGM process (Figure 2). This is ulti-
mately a business decision in which the team must weigh the
resource cost of improving the model, and identifying the
most “true positive” documents. We experimented with two
techniques for determining “when to stop.” The first of these
techniques was calculating the similarity of the rankings of
the documents when ordered based on the priority score be-
tween two consecutive iterations. If the similarity of the two
rankings was above a certain value after a screening itera-
tion, we could stop updating the BERT model. The second
technique was to terminate the human screening process at
a specific real-time inclusion rate, e.g., the number of rele-
vant documents identified from screening 1,000 documents
in the current iteration. If the number of relevant documents
is lower than a given threshold, the human screening team
could stop the screening process. Future work could specifi-
cally address the question of when to stop screening, as it is
a highly relevant decision for the human-AI team.

Automation of Full-text Screening The EGM design
process, as depicted in Figure 2, includes both title and ab-
stract screening, and full-text screening. A natural continua-
tion of our work would be to use NLP to assist in the full-text
screening step. This step, however, presents the logistical
challenge of obtaining the full-text documents. While many
institutions have subscription-based access to scholarly arti-
cle databases, copyright issues make downloading and using
full-text documents a challenge when working among and
between different institutions. This ultimately dictated that
our project scope remains in the title and abstract screening
process alone.

Additionally, to perform full-text screening, one would
need to train another BERT model to classify full-text doc-
uments for inclusion. This means human screeners would
need to generate a training dataset for this task, which would
require significant human effort. Large language models
(LLMs) may assist in this challenge. LLMs which are trained
on billions of documents [48] have a broad understanding
of language, and future work can explore whether they can
classify full-text documents without domain specific training
data.

Counterfactual Analysis Our team faced the challenge
of accurately comparing different document screening tech-
niques within the real-world setup- such as using all three
methods: a BERT-based model, the industry standard model,
and no ML model to make a single EGM. It was infeasible
for the human raters to create each EGM three separate times
in order to compare the entire process for each technique.
Therefore, we standardized our comparisons by performing
retrospective experiments after the human-AI team had la-
beled a subset of the data. We present the results using this
labeled subset. We further aimed to address this limitation
by including the second case study - the simulated EGM de-
sign. In this case study, we utilized a fully labeled dataset
of 68,539 documents in order to experiment with the vari-
ous ML models and AL sampling strategies. However, this
challenge means we do not have true counterfactual analyses
of how the EGM process would have proceeded without any
AI assistance. Future work could further address this limita-
tion by creating each EGM multiple times for each different
technique.

6.3 Future Use of Human-AI Teams for EGM Design
The AI sub-field of NLP is experiencing rapid growth.

Large language models (LLMs) like OpenAI’s Chat-
GPT [48], and Meta’s Galactica [49] are changing the way
the world perceives, exploits, and interacts with pretrained
language models. These models were released after we had
concluded our EGM creation; however, we predict that their
capabilities will shift the way that NLP is utilized in EGM
design.

We performed a number of exploratory experiments to
understand LLMs’ capability in EGM design. We explored
ChatGPT’s understanding of the relationship between cer-
tain interventions and outcomes by asking it “How can agri-
culture transformation change poverty, migration, and food
security” The LLM captured the general qualitative relation-
ships between the intervention (agriculture transformation)
and the outcomes (poverty, migration, and food security), but
did not output any quantitative implications, potential infor-
mation sources, or indications of how well the relationships
have been studied. This suggests to us that ChatGPT can cap-
ture the intervention-outcome relationships in a coarse reso-
lution, but cannot provide all the detailed information that a
human team or human-AI hybrid team can capture.

ChatGPT Experiment In a small-scale study, we ex-
plored whether ChatGPT could correctly output the inter-
ventions and outcomes of documents if shown the abstract
and a set of intervention options and outcome options. We
tested this on 50 documents that are part of 3ie’s published
EGM represented in Figure 1. The five intervention options
we provided in the prompt were as follows:

1. Water access and management
2. Improved seeds
3. Fertilizer access
4. Pesticide/herbicide access
5. Livestock access



The four outcome options were:

1. Income received
2. Assets
3. Output value
4. Profit

Looking at the top 1 accuracy, we gathered the follow-
ing results. For predicting the intervention, ChatGPT pro-
duced the correct output for 34 of the 50 documents. For
predicting the outcome, ChatGPT produced the correct out-
put for 22 of the 50 documents. In the cases in which the tool
was incorrect, the generative nature of this tool seemed to
combat the strict classification guidelines. For example, for
some abstracts ChatGPT would output two outcomes. This
went against the prompt, and did not align with the setup of
each document only appearing under one intervention and
one outcome in an EGM. However, identifying multiple out-
comes was consistent with certain aspects. For example, dur-
ing the reviewing process, each document may be assigned
multiple interventions and outcomes, then expert raters must
select one of these options for the final EGM. So while we
ultimately want to classify documents into a single interven-
tion and outcome, providing multiple options may still be
valuable.

The tool would often misclassify documents that were
meant to have the outcome of “Income received,” “Output
Value,” or “Profit” for one another. In fact, 18 of the 28 in-
correct outcome results fell into this category. The provided
definition of “Income received” is “The total monetary in-
come earned from some activity by an individual, household
or firm,” of “Output Value” is “Some measure of the value
of the output produced as a result of an intervention,” and of
“Profit”is “Individual and store revenue or profit. Here profit
refers to income net of costs.” The difference between these
three definitions is subtle, which might explain the frequent
misclassification among these three options. To add to that,
in our experiment we do not provide these definitions, solely
the intervention and outcome titles. We hypothesize that ef-
fective prompt engineering will be required to obtain the best
results possible.

Another case that arose frequently was an abstract that
explicitly stated that the intervention was, for example, a
“Farm Input Subsidy Programme” (FISP). In these cases,
ChatGPT would often stray from the five provided interven-
tion options and return the explicitly stated intervention (e.g.
FISP) as its answer. It was unable to determine under which
of the five intervention options FISP should fall. Cases like
these suggest that providing a generative LLM tool with a
set of heuristic rules developed from expert knowledge could
improve performance.

7 Conclusion
In this paper, we have studied (1) how incorporating the

BERT-based AI agent into the human team affects team effi-
ciency in the EGM design process and (2) how enhancing the
hybrid team through active learning (AL) can improve hybrid
team efficiency. We propose a human-AI hybrid teaming

workflow during TA screening portion of the EGM design
process. We a) design and deploy three EGMs for global
development in the areas of Agriculture, Nutrition, and Re-
silience, and b) conduct simulated experiments with a fully
labeled dataset to answer the research questions described
above. Our results show that the data size for training the
AI agent influences hybrid team efficiency. When the train-
ing size is optimized, the incorporation of the BERT-based
AI agent can reduce human effort by 68.5% compared to
the case without AI assistance and by 16.8% compared to
the case using the industry standard AI-agent for getting to
an inclusion rate of 80%. Moreover, enhancing the hybrid
team through AL can further reduce human effort by 30%
compared to BERT with no AL. The proposed human-AI
hybrid teaming workflow has been validated in the practi-
cal construction process of three EGMs. Therefore, the AL-
enhanced human-AI hybrid team can accelerate evidence gap
map (EGM) design, and decision making in the global devel-
opment field significantly.
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