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ABSTRACT
When designing evidence-based policies and programs,

decision-makers must distill key information from a vast and
rapidly growing literature base. Identifying relevant literature
from raw search results is time and resource intensive, and is
often done by manual screening. In this study, we develop an
AI agent based on a bidirectional encoder representations from
transformers (BERT) model and incorporate it into a human team
designing an evidence synthesis product for global development.
We explore the effectiveness of the human-AI hybrid team in accel-
erating the evidence synthesis process. To further improve team
efficiency, we enhance the human-AI hybrid team through active
learning (AL). Specifically, we explore different sampling strate-
gies, including random sampling, least confidence (LC) sampling,
and highest priority (HP) sampling, to study their influence on the
collaborative screening process. Results show that incorporat-
ing the BERT-based AI agent into the human team can reduce the
human screening effort by 68.5% compared to the case of no AI
assistance and by 16.8% compared to the case of using a support
vector machine (SVM)-based AI agent for identifying 80% of all
relevant documents. When we apply the HP sampling strategy
for AL, the human screening effort can be reduced even more: by
78.3% for identifying 80% of all relevant documents compared
to no AI assistance. We apply the AL-enhanced human-AI hybrid
teaming workflow in the design process of three evidence gap
maps (EGMs) for USAID and find it to be highly effective. These
findings demonstrate how AI can accelerate the development of
evidence synthesis products and promote timely evidence-based
decision making in global development in a human-AI hybrid
teaming context.
Keywords: AI in design, Natural Language Processing,
Global Development, Evidence Synthesis

1. INTRODUCTION
In 2011 the U.S. Agency for International Development (US-

AID) released Evaluation Policy, and in doing so made an ambi-
tious commitment to rigorously evaluating evidence in order to
make evidence-based policy [1]. Evidence-based policy refers
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to public policy that is based on, or informed by, evaluated and
objective evidence. To emphasize the importance of evidence-
based policy within USAID and the U.S. government, the Foun-
dations for Evidence-based Policymaking Act of 2018 required
all agencies under the Act to “affirm the agency’s commitment
to conducting rigorous, relevant, evaluations and to using evi-
dence from evaluations to inform policy and practice” [2]. It is
imperative in part because these policies dictate the expenditure
of billions of dollars. For example, in 2017, USAID spent $1.01
billion on foreign agricultural assistance alone [3].

However, evaluating all available evidence has been made
burdensome by the current information explosion. In 2018 alone,
global research output in science and engineering was 2.6 million
articles, which grew at a rate of 4% annually from 2008-2018 [4].
A person’s capacity to understand all available research is limited.
Policy-makers have thus turned to evidence synthesis to under-
stand the growing corpus of research available and make informed
decisions. Evidence synthesis refers to the process of compiling
information and knowledge from many sources and disciplines
to inform decisions [5, 6]. However, creating evidence synthesis
products like evidence gap maps (EGMs) requires extensive time
and effort from human experts. EGMs, as described in the Re-
lated Works section, visualize interventions and their associated
outcomes [7], and have been shown to provide incredible value
to decision-makers in fields ranging from agriculture to public
health [5]. For example, Figure 1 represents a portion of an
EGM available from 3ie 1. We can see there is a research gap
between the interventions of “water access & management” and
“improved seeds” and the outcomes regarding “profit”. Policy-
makers can plan future investments and research accordingly.

Our goal is to accelerate the design of EGMs in the global
development space and alleviate the burden of information fil-
tering. The International Initiative for Impact Evaluation (3ie)
is one of the global leaders in generating EGMs for decision-
making. 3ie’s current evidence synthesis process includes signif-
icant expert screening of documents and moderate use of machine
intelligence, often taking nearly six months to complete [6]. Nat-
ural language processing (NLP), a form of artificial intelligence

1https://developmentevidence.3ieimpact.org/egm/food-systems-and-nutrition-
evidence-gap-map
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(AI), has long been used for text comprehension. Recently, the
rule-based NLP models have attracted some attention and been
explored to promote evidence-based decision making in the med-
ical, legal, and global development fields [8–10]. The work that
has successfully done so may be improved upon by incorporating
the latest transformer- and transfer learning-based NLP models.

1.1 Contributions
Title and abstract (TA) screening is one of the most time-

consuming steps in the EGM design process, typically involving
comprehending the titles and abstracts of tens or hundreds of
thousands of papers for screening. Through collaborating with
3ie, we make the following contributions:

1. We develop a BERT-based AI agent to accelerate the TA
screening portion of the EGM design process, and incor-
porate it into a human team to explore the efficiency gains
made through human-AI teaming. With the best combi-
nation, our AI agent reduces human effort by 78.3% when
identifying 80% of all eligible documents, as compared to
no AI assistance.

2. We compare our BERT-based AI agent against the industry
standard SVM-based model, and find that the BERT-based
model outperforms SVM in both model performance (12%
average increase in accuracy for the three EGMs) and saved
effort (17% reduction in required effort in the simulated case,
and a 46% average reduction in effort for the three deployed
EGMs).

3. We identify the optimal training size (5,000 documents) for
both model performance and saved effort.

4. We compare active learning strategies and find that by using
HP or LC we can decrease human effort by an additional
30% (compared to BERT with no AL) for identifying 80%
of all included documents.

5. We support the development of three EGMs: Agriculture,
Nutrition, and Resilience.

2. RELATED WORK
In the following sections we describe related work in the

fields of evidence gap maps, natural language processing, and
active learning, particularly in the context of human-AI teams.

2.1 Evidence Gap Maps
EGMs are one form of evidence synthesis - the process of

compiling information and knowledge from many sources and
disciplines to inform decisions [5, 6]. Evidence synthesis pro-
vides more reliable information about a topic than a single study
by systematically collecting, categorizing, and analyzing a broad
range of studies [11]. Evidence synthesis for decision making
was largely popularized by the biomedical field, but it provides
clear benefits for decision-makers in any field [9, 12, 13]. Thus,
evidence synthesis is an incredibly valuable tool for decision-
makers in global development seeking to design policies and
fund research [5].

The International Initiative for Impact Evaluation (3ie) has
pioneered the use of EGMs, which present a visual overview of
completed and ongoing impact evaluations and systematic re-
views in a specific sector [14]. 3ie creates these EGMs via the

“thematic [collection] of information about impact evaluation and
systematic reviews that measure the effects of international de-
velopment policies and programmes” [7]. The final product is
a matrix, organized by “intervention” categories on the vertical
axis and “outcome” categories on the horizontal axis. Interven-
tions are the action taken in the study, and outcomes are the result
of the action. Each cell of the matrix contains studies that rigor-
ously evaluate the impact of a specific intervention on a specific
outcome.

FIGURE 1: A REPRESENTATION OF A PORTION OF A 3IE EGM
SHOWING TWO INTERVENTIONS AND FOUR OUTCOMES. RE-
SEARCH GAPS EXIST BETWEEN THE TWO INTERVENTIONS AND
THE OUTCOME “PROFIT”. DOTS OF DIFFERENT COLORS REPRE-
SENT DIFFERENT EVIDENCE TYPES. DOT SIZES INDICATE HOW
MANY DOCUMENTS EXIST IN EACH GROUP.

3ie sets the global standard for EGMs, and the mapping
method has been adapted by organizations including the Camp-
bell Collaboration, the World Bank Independent Evaluation
Group, and USAID [14]. Like other forms of evidence synthesis,
EGMs begin with an expansive and systematic search of schol-
arly databases and “grey literature” sources (such as repositories
of government documents or websites of think-tanks) to identify
potentially relevant studies. EGM teams then screen these search
results to identify studies that meet the EGM’s criteria for inter-
ventions evaluated, outcomes measured, implementation setting,
and study design. Once eligible studies are identified, the EGM
team extracts information on interventions, outcomes, and other
key characteristics of each study to determine its placement in the
EGM matrix and to allow for analysis of trends in the literature.

3ie uses a software called EPPI-Reviewer which aids in the
creation of EGMs. While EPPI-Reviewer has some machine
learning functions that can accelerate screening [15], most EGM
tasks are still performed manually. Thus, each EGM requires sig-
nificant human effort and expertise, with many EGMs requiring
nearly six months to complete [6]. Given that one of the main
barriers to evidence use among policymakers is the lack of timely
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FIGURE 2: A HIGH LEVEL VIEW OF THE CURRENT EGM CREATION PROCESS.

research outputs [16], there is a critical need to reduce the time
and effort needed to complete the EGM design and development
process.

The high level steps of designing an EGM are shown in
Figure 2. Our work focuses on step three, in which reviewers
screen documents for inclusion in an EGM based on their title
and abstract. Selected documents will move on to full-text review.
We create three transformer-based NLP models that automatically
classify documents for inclusion at this step.

2.2 Natural Language Processing in Evidence Synthesis
NLP is a field of machine learning in which computational

machines are trained to understand text and spoken language.
Historically in NLP words are represented as vectors where simi-
lar words are located near each other in continuous space [17–19].
In the medical field, the development of an NLP-based model for
automating evidence synthesis, called BioMedICUS, improved
the scalability and performance of text analysis and processing
of biomedical and clinical reports [8]. The success of NLP in
the medical field has led to its use in other fields, with models
like LexNLP, which automatically extracts information from legal
text [9].

There are several industry-standard NLP tools used to aid
human experts when designing evidence synthesis products like
EGMs. The most common tools include EPPI-Reviewer, Rayyan,
and RobotReviewer [12, 13], and all of these utilize support vector
machines (SVM) as their primary ML model [20–22].

Furthermore, rule-based NLP models have been explored to
promote evidence-based decision making in multiple fields [10].
However, the rule-based models are often case-specific. It re-
quires significant effort to adapt a rule-based model from one
EGM to another. Moreover, it is challenging to capture all the
subjective criteria used by humans and embed them into the de-
fined rules comprehensively.

Modern NLP models have been largely shaped by the intro-
duction of the transformer in 2017, which allowed text inputs to
be fed in parallel and achieved state-of-the-art results over SVM
and other models in many NLP tasks [23]. Bidirectional Encoder
Representations from Transformers (BERT) is among the most
well-known transformer-based models and has been extensively
explored in NLP tasks such as language translation and question

answering [24, 25]. Other such models include GPT and models
based off of it [26].

Our work explores BERT-based NLP models as a tool for
human-AI teams designing EGMs for global development, which
involves more unstructured studies and broader domains than
other fields. Recent research that is perhaps most similar to our
work is srBERT [27], which explores fine-tuning a BERT model
with topic-specific articles in order to accelerate the screening
process for a systematic review about “moxibustion for improving
cognitive impairment” [27]. Our work, on the other hand, works
with much larger and broader datasets in order to create EGMs.
Additionally, we exhibit the effectiveness of our NLP tool in a
real human-AI team and ultimately create three deployed EGMs in
Agriculture, Nutrition, and Resilience. We utilize the experience
of creating deployed EGMs to explore the nuances of human-AI
teaming in this design process.

2.3 Active Learning and Human-AI Teams
In many AI tasks, obtaining labeled training data is expen-

sive and time-consuming [28]. We are motivated to explore
avenues to decrease the size of training data needed by using ac-
tive learning (AL). AL is the concept that an ML algorithm can
perform better with less training data if it is allowed to choose
the data from which it learns. AL has been applied to deep
learning problems such as image classification [29, 30], speech
recognition [31], data exfiltration detection [32], and many NLP
tasks [33]. There are three main problem setups, or scenarios,
in which a learner may be able to ask queries: membership
query synthesis [34], stream-based selective sampling [35], and
pool-based sampling[36]. The most commonly used pool-based
sampling strategies evaluate and rank the entire unlabeled pool
in terms of informativeness and then select the best queries [37].
There are also different query strategies for choosing which un-
labeled instances to query. The most commonly used query
strategy is uncertainty sampling [36]. In this strategy, the learner
queries the instances for which the learner is least certain how to
label [37]. Within the uncertainty sampling category, there are
three primary measures that evaluate how uncertain the learner is
about each instance: least confidence [38], margin sampling [39],
and entropy [40].

During the training, AL tries to optimize the information
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flow from humans to AI to improve AI performance with less
training data. In this study, AI is working collaboratively with
humans instead of alone. Accordingly, both the information flow
from humans to AI and that from AI to humans are important
to the performance of human-AI hybrid teams. Therefore, AL
in such a context should consider the bi-directional information
flows.

In fact, common barriers stopping human screeners from in-
corporating AI into their EGM design process include a mismatch
in existing workflows, and a steep learning curve [13]. Research
shows that human-AI teams using active learning for a real life
task can lose the human agent’s trust if the AI agent makes irrel-
evant suggestions or predictions during the training process [32].
Therefore, we explore and discuss the effective integration of AI
tools into the existing EGM design process. We also use AL-
based approaches to maximize the accuracy of the AI classifier,
while minimizing the workload put on the human screeners.

3. METHODOLOGY
In this work, we utilize a BERT-based NLP model to accel-

erate the design process of evidence gap maps. We utilize the
NLP tool in the workflow of a real human-AI team with members
of 3ie. We supported the development of three deployed EGMs
in the topics of Agriculture, Nutrition, and Resilience.

We analyze how different ML methods and data training sizes
affect the human-AI team performance, focusing on the trade-
offs between model accuracy and human effort. We compare our
fine-tuned BERT model against the industry standard SVM-based
NLP tools. Further, we explore the effect of active learning with
various query strategies on model accuracy and human effort.

Our work is comprised of two case studies:

1. Deployed EGM design: Actively designing and creat-
ing three EGMs regarding Agriculture, Nutrition, and Re-
silience.

2. Simulated EGM design: Using a pre-existing, fully labeled
dataset to retrospectively study the most effective classifi-
cation algorithms (SVM vs. BERT) and active learning
strategies for EGM creation.

These two case studies present different challenges and prior-
ities. In the simulated EGM design, we have the benefit of a fully
labeled dataset, which we can practice multiple techniques on. In
the deployed EGM design, we are in the real-world situation of
creating an EGM from scratch using a human-AI team. There-
fore, we only have labels for the documents that we specifically
choose to screen.

Further, in the deployed EGM design, we are motivated to
design the most comprehensive and informative EGM while ef-
ficiently utilizing human resources. Consequently, we want to
minimize time that human experts spend screening irrelevant
documents, and screen only the relevant documents. This con-
trasts the strategy in classical active learning to query or screen
the documents we are most uncertain of.

3.1 Dataset Description
For the simulated EGM design, our data is provided by 3ie

and is derived from manually labeled documents from 3ie’s De-

velopment Evidence Portal (DEP) 2 [41], an expansive repository
of impact evaluations and systematic reviews in global develop-
ment across a wide range of sectors. We utilize a dataset of
68,539 documents screened for inclusion in 3ie’s DEP to de-
velop and evaluate our classification model. Table 1 shows the
key attributes of the dataset, such as title, abstract, and inclusion
decisions.

Attribute Description
Title Title of the paper.
Abstract Abstract of the paper.
Keywords Keywords of the paper.
Year Publication year.
Publication type Journal, conference proceeding, re-

port, etc.
Source The source of the paper, e.g., jour-

nals or conferences.
Inclusion decision Whether the paper is included as a

relevant study. If not, what is the
exclusion criterion.

TABLE 1: THE KEY ATTRIBUTES IN THE DEVELOPMENT EVI-
DENCE PORTAL DATASET.

In this study, the title of each paper is integrated into the
abstract as a sentence at the beginning. The BERT classification
model takes the integrated texts as the input. The label of “in-
cluded” or “excluded” is derived from the inclusion decision. To
train the binary classification model, the “0” class corresponds
to the “excluded” papers, and the “1” class comprises the “in-
cluded” papers. This dataset is highly imbalanced, containing
5,281 included papers and 63,258 excluded papers. The crite-
ria for excluding the papers are also extracted for training the
criterion-specific classification models.

For our deployed EGM design, we are actively designing
three EGMs. As indicated in Figure 2, and per 3ie’s EGM work-
flow, we gather our initial dataset via a literature search through
scholarly databases and grey literature sources. For the three
EGMs, their initial dataset sizes are as follows: Agriculture 221k,
Nutrition 117k, and Resilience 60k.

3.2 Data Pre-processing
The raw documents are pre-processed to remove noise. Two

types of noise are removed in this step. The first is non-English
texts. A portion of the papers provide titles and abstracts in
multiple languages. Since our models only take texts in English
as input, the sentences in languages other than English are noise
to the models and should be removed. The second type comprises
English text content that is irrelevant to the scope of the document,
such as a copyright statement. The pre-processing consists of
five steps. (1) Each document is parsed into sentences. (2) A
language detection model is used to identify sentences written
in non-English languages. (3) We manually label the sentences
from 500 documents with the “relevant” and “irrelevant” labels.
(4) A BERT classification model is trained on the labeled data
to predict the labels of the other sentences. The accuracy of the

2https://developmentevidence.3ieimpact.org/

4



FIGURE 3: PROPOSED UTILIZATION OF NLP TOOLS IN A HUMAN-AI TEAM TO SCREEN, UNDERSTAND, AND CLASSIFY DOCUMENTS
(REPRESENTED BY CIRCLES) IN ORDER TO INFORM EVIDENCE-BASED POLICY DECISIONS. OUR GOAL IS TO ACCELERATE THE DESIGN
PROCESS FOR EGM PRODUCTS IN THE GLOBAL DEVELOPMENT FIELD.

model is higher than 0.99. (5) Once the irrelevant sentences are
removed, the remaining relevant sentences are integrated back
into the original documents.

3.3 Priority Score
In this study, the AI agent is operationalized by a BERT

binary classification model, which employs a 12-layer pre-trained
uncased BERT embedding module with a hidden size of 768. The
BERT embedding module is followed by a dropout layer with a
drop rate = 0.1 and a linear layer that outputs a 2-dimensional (2D)
vector as the final classification prediction. As described above,
the AI agent needs to sample or prioritize the unlabeled papers
according to the probabilities of being relevant, as predicted by
the classification model. This probability is named the “priority
score” (PS) in definition 1.

Definition 1. Priority score is the probability that a paper is
a relevant paper predicted by the AI agent, which is calculated by
𝑃𝑆(𝑝) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑃𝑟𝑒𝑑 (𝑝)) [1], where 𝑃𝑟𝑒𝑑 (𝑝) is the predic-
tion output from the classification model for a paper 𝑝, which is
a 2D vector. The “1” in the equation indicates that PS(p) is the
probability of the paper being classified to the “1” class. Follow-
ing this definition, higher screening priority scores are assigned
to the papers with higher predicted probabilities of being relevant.

3.4 Sampling Strategies
According to the predicted PSs, we apply three different

query strategies to sample papers from the unscreened subset,
which will be labeled and added to the training set in the next
iteration.

1. Least confidence: The least confidence (LC) query strategy
is one of the commonly used strategies for active learning,
which samples papers that the model is least certain how to
classify [37], as shown by

𝑥∗𝐿𝐶 = arg max
𝑥∈𝑋

𝑈 (𝑥) (1)

The classification uncertainty𝑈 (𝑝) of the paper p is derived
from the classification model output 𝑃𝑟𝑒𝑑 (𝑝) through

𝑈 (𝑝) = 1 − 𝑚𝑎𝑥(𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥((𝑃𝑟𝑒𝑑 (𝑝))) (2)

2. Highest priority: The highest priority (HP) query strategy
samples papers with the highest PSs, given by

𝑥∗𝐻𝑃 = arg max
𝑥∈𝑋

𝑃𝑆(𝑥) (3)

This query strategy is adapted from the uncertainty sampling
strategies [36]. For evidence synthesis, all relevant papers
need to be verified by a human agent, so the papers most
likely to be relevant are first sampled.

3. Random: The random query strategy randomly samples
papers from the unlabeled list without using any informa-
tiveness measure. In this case, no AL is applied.

3.5 Human-AI Hybrid Team Workflow
We assume the human-AI hybrid team is tasked with screen-

ing a set of papers to identify papers satisfying a given scope.
The human agents start the TA screening process by specifying
the screening criteria. Then, the AI agent randomly samples a
subset of papers, which are screened by the human agents as the
initial training set. On this basis, our model is trained to learn the
screening criteria from the training. With the learned knowledge,
the AI agent predicts the PSs of the unscreened papers. Accord-
ing to the predicted PSs, the AI agent needs to check whether the
screen-train-predict-sample loop should stop. If not, it employs
a certain strategy to sample a set of papers to be screened for the
next iteration.

Once the AI agent decides to stop training the model after a
few iterations, it prioritizes all the unscreened papers according to
their predicted PSs. Then, the human agents screen the prioritized
papers in batches and decide at which batch the screening process
should be ended. Since the dataset is imbalanced, a random
over-sampling method is applied to the training set to make the
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FIGURE 4: THE WORKFLOW OF THE HUMAN-AI HYBRID TEAM.
H REPRESENTS HUMAN AGENTS.

numbers of samples from both classes equal. In this study, the
AI agent samples a batch of 1,000 papers each time. The batch
number is selected because it balances the gain from and the cost
of updating the model.

3.6 Evaluation Metrics

In the ML domain, accuracy and F1 score are commonly used
to evaluate the performance of classification models. However,
these metrics alone are not informative enough to assess the
performance and efficiency of the human-AI hybrid teams. In
this study, we evaluate the performance of the human-AI hybrid
teams in terms of human effort in definition 2 needed for achieving
an inclusion rate in definition 3. The computational cost reflects
team efficiency from another perspective, which is not discussed
in this study.

Definition 2. Human effort is defined as the ratio (𝐻𝐸)
between the number of papers that need to be screened manually
(𝑛𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑑) for identifying a given amount of relevant papers
and the total number of papers (𝑛 = 68, 539 in the simulated
EGM design case study) in the dataset, which is calculated by:
𝐻𝐸 = 𝑛𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑑/𝑛.

Definition 3. Inclusion rate is the ratio (𝐼𝑅) between the
number of included papers being identified (𝑛𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑑) and the
total number of included paper (𝑛𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑 = 5, 281 in the sim-
ulated EGM design case study) in the dataset, calculated by:
𝐼𝑅 = 𝑛𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑑/𝑛𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑 . With limited resources, a higher
inclusion rate is preferred.

Given a set of scientific papers and the screening criteria,
an efficient human-AI hybrid team should minimize the human
effort and computational cost for achieving a satisfying inclusion
rate or maximize the inclusion rate with available human effort
and computational resources. Additionally, the F1 score of the
corresponding classification model in each case is also reported
for assessing the performance of the AI agent.

4. EXPERIMENTAL SETUP
In this section, we discuss the experimental setups for the

two case studies: deployed EGM design and simulated EGM de-
sign. The aspects specific to each case study are described in 4.1
and 4.2, while their shared components like baseline techniques
and implementation details are described in sections 4.3 and 4.4.

4.1 Deployed EGM Design Experiments
The human-AI team is tasked with designing three EGMs

for deployment: an Agriculture, Nutrition, and Resilience EGM.
For each one, the human-AI interaction and, therefore, our exper-
iments are targeted at the title and abstract screening process.

The three EGMs are created independently and following the
same process. They start with the following size of datasets: Agri-
culture 221k, Nutrition 117k, and Resilience 60k. The human-AI
workflow used for the title and abstract screening of each EGM
is shown in Figure 4 and described above in section 3.5. Once
the process is complete for each EGM, the human-AI team has
labeled a small subset of each dataset. We utilize these labeled
datasets for the following experiments.

4.1.1 Model Performance Experiments. We explore the
effectiveness of the industry standard SVM methods and our pro-
posed BERT method in classifying documents as relevant or ir-
relevant for each of the three EGMs. Due to the real-world nature
of this case study, we only have labels for those documents which
we choose to screen. For each of these labeled datasets, we per-
form a 85% - 15% train-test-split and determine the classification
accuracy.

4.1.2 Human Effort Experiments. We also compared the
trained BERT and SVM models in terms of human effort to assess
hybrid team efficiency. Specifically, we suppose the documents
in the test set would be screened in descending order of priority
scores predicted by the BERT and SVM models respectively.
Human effort is defined as the percentage of documents that
humans need to screen for getting a specific inclusion rate. The
hybrid team is more efficient if fewer documents must be screened
to obtain the same number of included documents. That is, less
human effort is needed.

4.2 Simulated EGM Design Experiments
In this case study assume the human-AI hybrid team is tasked

with screening a set of 68,539 documents to identify documents
satisfying a given scope. This dataset is fully labeled, and we
can therefore test the efficacy of different training sizes and active
learning sampling strategies.

4.2.1 Training Size Experiments. For ML model training,
a larger training set often benefits model performance but needs
more human effort to label the data. In the human-AI hybrid team,
the trade-off between the model performance and the required
human effort for labeling should be balanced carefully to achieve
high team efficiency. We conduct experiments to investigate how
the training size affects hybrid team efficiency - both in terms
of the model performance (F1 score) and human effort required.
Specifically, we start with an initial training set of 1,000 papers;
to expand the training set, we randomly sample 1,000 papers,
label them, and add them to the training set in each iteration from
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1,000 to 6,000. During training, we use 85% of the papers in the
training set to train our model and 15% as a validation set. All
the other papers compose the testing set.

4.2.2 Active Learning Experiments. When the AI agent
samples new papers to be screened, the query strategy used af-
fects the informativeness of the sampled papers, which further in-
fluences the ML model performance and hybrid team efficiency.
We compare two different sampling strategies, LC and HP, with
random sampling through experiments. For each sampling strat-
egy, we start with the same initial training set of 1,000 papers
with the random sampling case. After that, we sample 1,000 new
papers using the LC or HP strategy to expand the training in each
iteration. We experiment with training sizes ranging from 1,000
to 7,000 for the two sampling strategies.

4.3 Baseline
To answer RQ1 - how much human effort can be saved when

the AI agent is trained on an optimal data size?, we compare the
best case from the experiments with different training sizes with
the baseline cases. In the first case, the human team works alone
on the same task without any AI assistance. That is, the human
agents randomly screen papers from the dataset. The second
case employs a support vector machine (SVM)-based classifier,
which is developed for retrieving randomized controlled trials and
available in the EPPI-Reviewer software [22]. For the second
baseline, we also experiment with four different training sizes
ranging from 1,000 to 7,000, from which the best model is used
as the baseline.

To answer RQ2 - how much human effort can be further
saved by enhancing the hybrid team through active learning?,
the best model from the experiments with different training sizes
is used as the baseline, where all the sampled papers are randomly
selected. We compare the best models from the experiments with
the LC sampling strategy and the HP sampling strategy to the
baseline model, respectively.

4.4 Implementation Details
In this study, our models are trained with a learning rate

of 1 × 10−5. There is a warm-up phase at the beginning of the
training process, which lasts for one epoch. The experiments
were performed on Intel(R) Xeon(R) W-2295 CPU @ 3.00GHz
3.00 GHz, with 18 cores and 256 GB of RAM. Model training and
predicting were conducted on Nvidia RTX A5000 GPUs (single
GPU per run). Each experiment is repeated five times. When the
predicted uncertainties and PSs are needed to sample new papers
with the LC and HP strategies, we use the mean values of the
predictions from the five runs to improve the repeatability of the
results.

5. RESULTS
In the following sections we present the results of our ex-

periments in both case studies: the deployed EGM design, and
the simulated EGM design. We compare different ML models,
training sizes, and active learning sampling strategies and report
their effects on model performance and human effort. Further,
we go on to discuss the limitations of our work and the future use
of human-AI teams in EGM design.

5.1 Deployed EGM Design Results

FIGURE 5: THE CLASSIFICATION ACCURACY OF BERT AND SVM
MODELS FOR THE THREE EGMS CREATED: AGRICULTURE, NU-
TRITION, AND RESILIENCE.

In this section we compare inclusion classification done by
BERT and SVM models. We compare model performance across
two different metrics: overall accuracy, and saved effort. The
BERT model is our proposed approach, whereas the SVM model
is what tools like EPPI Reviewer utilize to classify documents,
and therefore represents the industry standard.

5.1.1 Model Accuracy. Figure 5 shows the accuracy of the
BERT and the SVM classifcation models for each of the three
EGMs we created. The results show that for all three EGMs, the
BERT model resulted in higher accuracy than the SVM model.
The most common NLP tools used to aid EGM creation today
are based on an SVM model, so our results suggest that utilizing
BERT for classification has benefits over the industry standard
EGM-creation tools.

5.1.2 Saved Effort. Figure 6 shows how inclusion rate
varies with human effort. The orange “Ideal” line indicates a per-
fect inclusion rate, where only relevant documents are screened
and therefore all documents seen are included. The grey “With-
out ML” line indicates a case in which human experts must screen
all documents at random in order to find all of the included doc-
uments. We compare two ML strategies, BERT and SVM, and
find that BERT outperforms SVM for all three EGMs.

We carried out a set of experiments with the screened papers
of the three EGMs for the comparison. Aiming at an inclusion rate
of 80% for the screened papers, we found that the human raters
needed 47% less human effort for Agriculture, 17% less human
effort for Nutrition, and 75% less human effort for Resilience
when working with the BERT-based models rather than with the
baseline EPPI-Reviewer’s SVM. The raw values of human effort
for BERT and SVM for the three EGMs are shown in Table 2.
The effort-saving capabilities of the BERT models are further
amplified in the real screening process, in which the models are
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FIGURE 6: HOW INCLUSION RATE VARIES WITH HUMAN EFFORT FOR THE THREE DEPLOYED EGMS. A HIGHER INCLUSION RATE AT A
LOWER HUMAN EFFORT IS PREFERRED. BERT OUTPERFORMS SVM IN ALL THREE EGMS.

EGM SVM BERT Percent Effort
Saved by BERT

Agriculture 53% 28% 47%
Nutrition 29% 24% 17%
Resilience 68% 17% 75%

TABLE 2: HUMAN EFFORT REQUIRED TO REACH AN 80% IN-
CLUSION RATE FOR EACH OF THE THREE EGMS AND THE TWO
ML MODELS, SVM AND BERT. THE PERCENT EFFORT SAVED BY
BERT IS CALCULATED AS THE PERCENT DIFFERENCE BETWEEN
HUMAN EFFORT FOR BERT AND SVM.

updated multiple times as new labeled documents come in as
training data. In this case, the model improves iteratively over
time. As its classification accuracy increases, the model can
suggest only the most relevant documents to the human raters.
This type of active learning is explored in the simulated dataset
and described in section 5.2.2.

5.2 Simulated EGM Design Results
5.2.1 Saved Effort. The performance of the human-AI hy-

brid team is assessed through inclusion rate (IR) and human effort
(HE). Figure 7 shows the variation of IR with HE when our model
is trained with different training sizes. The grey “Without ML”
line in the figure corresponds to the condition where the human
agents work alone without any AI agent. Since the human agents
randomly screen papers form the dataset, IR is equal to HE in this
case. The orange “Ideal” line close to the y-axis denotes the ideal
case, in which each screened document is an included document,
and no excluded documents are screened. The slope of this line
is 5,281 (the total number of included papers) / 68,539 (the total
number of papers in the dataset). The other curves in the figure
describe how the IR changes as the human agents invest more
screening efforts when the BERT-based AI agent is trained on the
datasets with different sizes.

Each curve consists of two parts. The first straight line part
indicates the process that the human agents label papers from the
dataset to prepare the training set. Since the screened papers are
randomly selected, the IR is equal to HE. Once the training set is
ready, our model is trained on it to predict the PSs of the unlabeled

FIGURE 7: HOW INCLUSION RATE VARIES WITH HUMAN EFFORT
WHEN OUR BERT-BASED MODEL IS TRAINED WITH DIFFERENT
TRAINING SIZES. A TRAINING SIZE OF 5,000 PERFORMS BEST,
AS INDICATED BY REACHING AN INCLUSION RATE OF 0.8 WITH
THE LOWEST HUMAN EFFORT.

papers. The curved part following the straight line corresponds to
the process during which the human agents screen the unlabeled
papers sequentially according to the predicted PSs. Since the
unlabeled papers are prioritized for screening, the curves are
much steeper in this second portion than in the first, which has
the same slope as the “Without ML” line. In the curved portion,
the initial slopes are close to the slope of the ideal line, then
gradually decrease later on. This trend suggests that the papers
with higher PSs are more likely to be identified as included papers
than the papers with lower PSs, implying the effectiveness of the
AI agent in prioritizing the unlabeled papers for screening.

Since a high-performing human-AI hybrid team can achieve
a higher IR with a lower HE, its initial slope should appear closer
to the “Ideal” line in 7. As the training size increases, the curve
gets steeper, indicating improved model performance. This is in
line with the increasing F1 scores shown in Figure 9. However,
because a larger training size needs more human labeling effort
(i.e., a longer straight line in the first part along the diagonal line),
it may also impair the efficiency of the human-AI hybrid team.
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FIGURE 8: HOW INCLUSION RATE VARIES WITH HUMAN EFFORT
FOR THE DIFFERENT ML MODELS: OUR MODEL (BERT), THE IN-
DUSTRY STANDARD (SVM), AND “IDEAL” AND “WITHOUT ML”
BASELINES.

Given a target IR of 80%, the curves show that the hybrid team
gets the highest efficiency when the training size is 5,000. Under
this condition, the human agents only need to screen 25.2% of
the papers to get an IR of 80%, while they need to screen 80% of
the papers to get the same IR in the case without the AI guidance.
Therefore, when the BERT-based AI agent is incorporated into
the human team, it can save 54.8% human screening effort for
getting the IR of 80%.

We also compare the BERT-based model with the SVM
model used in the EPPI-Reviewer software in terms of their ef-
fectiveness as the AI agent. Similarly, we train the SVM model
with different training sizes (1,000, 3,000, 5,000, 7,000), among
which the training size of 5,000 needs the least human effort for
getting the IR of 80%. Figure 8 compares the best BERT-based
model (5,000) and the best SVM model (5,000), suggesting that
the BERT-based model enables the human agents to save more
screening efforts compared to the SVM model for getting any IR.
Specifically, the human agents can save 5.1% more screening ef-
forts when working with the BERT-based AI agent than working
with the SVM-based AI agent for getting the IR of 80%. There-
fore, our BERT-based model is more effective in acting as the AI
agent.

5.2.2 The Effect of Active Learning. In the following sec-
tion, we discuss how the strategies for sampling new data to ex-
pand the training size affect the performance of the AI agent and
the efficiency of the human-AI hybrid team for the TA screening
task.

Active Learning, Training Size, and Model Performance
Here we report the results of the experiments with different

training sizes and different sampling strategies to demonstrate the
effect of incorporating the AI agent into the human team, answer-
ing RQ1. Following the protocol of the classification problems
with the imbalanced dataset, we use the F1 score computed at
the default threshold of 0.5 as the classification metric. In these
experiments, the sampled papers are randomly selected. The
black curve in Figure 9 shows the variation of the F1 score with
the training size. As the training size increases, the F1 score

improves with diminishing marginal effect, especially when the
training size is larger than 5,000.

FIGURE 9: HOW MODEL PERFORMANCE, AS SHOWN BY THE F1
SCORE, VARIES WITH TRAINING SIZE AND ACTIVE LEARNING
SAMPLING STRATEGY. THE BARS INDICATE ONE STANDARD ER-
ROR. WE FIND THAT THE LEAST CONFIDENCE (LC) STRATEGY
PERFORMS THE BEST.

FIGURE 10: HOW DIFFERENT AL SAMPLING STRATEGIES AF-
FECT THE HUMAN EFFORT AND INCLUSION RATE RELATION-
SHIP. THE DOTTED LINE PORTION OF EACH CURVE REPRE-
SENTS THE SCREENING-UPDATING-PREDICTING-SAMPLING IT-
ERATIONS, WHILE THE SOLID LINE PART CORRESPONDS TO
THE PROCESS WHEN THE HUMAN AGENTS SCREEN THE PRIOR-
ITIZED PAPERS.

Similar to the random sampling case, the training size af-
fects the performance of our classification model. As shown in
Figure 9, a larger training size improves the F1 score when the
LC strategy is applied. If we employ the HP strategy, a moderate
training size (e.g., 2,000) benefits the F1 score most, and a larger
training set impairs the F1 score when its size surpasses a certain
value (e.g., 2,000). Overall, sampling new papers using the LC
strategy leads to better classification models than randomly sam-
pling new papers, as indicated by the higher F1 score; however,
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Human Effort to Reach an 80% Inclusion Rate

BERT + HP

BERT + LC

BERT

SVM

Without ML

0.0 0.2 0.4 0.6 0.8

FIGURE 11: THE HUMAN EFFORT REQUIRED TO REACH AN 80%
INCLUSION RATE FOR VARIOUS MODELS. LOWER HUMAN EF-
FORT IS PREFERRED. WITH NO ML, IT TAKES 80% HUMAN EF-
FORT TO REACH AN 80% INCLUSION RATE.

the HP sampling strategy results in worse classification models
than random sampling, indicated by the lower F1 scores.

Active Learning, Training Size, and Human Effort
The selected AL sampling strategy and the training size also

affect the human-AI team efficiency. Under the random sampling
condition, a moderate training size can well balance the trade-off
between higher model performance and more labeling effort for
creating the training data, leading to the highest team efficiency.
We observe similar trends for AL. To get an IR of 80%, the
human-AI hybrid team achieves the highest team efficiency with
a training size of 7,000 when the LC and HP sampling strategies
are applied, respectively.

Figure 10 compares the team efficiency among different sam-
pling conditions, including random sampling, LC sampling, and
HP sampling. We can see that the efficiency of the human-AI
hybrid team is improved substantially with active learning. When
the LC and HP strategies are applied, the human agents can re-
spectively save 7.4% and 7.8% screening effort for getting the
IR of 80%. Specifically, the dotted line portion of each curve
represents the screen-update-predict-sample iterations (i.e., the
“AI: Stop training?” loop in Figure 4), while the solid line part
corresponds to the process when the human agents screen the
prioritized papers according to the predictions from the finalized
AI model.

We can see that the dotted line portions of the LC and the
HP curves are much steeper than the dotted line portion of the
random sampling curve. The trends suggest that with both the
LC and HP sampling strategies, a larger portion of the sampled
papers are included papers compared to the random sampling
strategy. That is, the LC and the HP sampling strategies, espe-
cially HP, improve team screening efficiency substantially during
the screening-updating-predicting-sampling iterations. This can
be explained by the sampling strategies themselves. The LC
strategy samples the papers with the highest classification un-
certainties. Given the highly imbalanced dataset, our model is
less confident in classifying the papers from the minor class, i.e.,

the included papers from the “1” class, leading to more papers
being sampled from the minor class. The HP strategy samples
the papers with the highest predicted PSs, which are more likely
to be included papers by the definition of PS.

Moreover, by sampling the papers with the highest classifi-
cation uncertainties, the LC sampling strategy also enables our
model to learn more efficiently from human labeling compared
to the other sampling strategies. This is evidenced by the obser-
vation that the solid curve part of the blue curve is steeper at the
early phase than the solid curve parts of the red and black curves
in Figure 10 and the highest F1 scores for LC in Figure 9.

6. DISCUSSION
Figure 11 provides a comprehensive view of the various ML

methods we compared, and their effect on human effort. The
figure shows the human effort required to reach an 80% inclusion
rate for no ML assistance, an SVM-based model, a BERT-based
model, and a BERT-based model with the LC or HP AL sampling
strategies. We observe that the BERT-based model outperforms
SVM, with a 16.8% relative reduction in human effort. The
results show that the AL strategies reduce human effort even
further, by about 30% compared to BERT without AL. Since our
motivation is to accelerate the EGM design process and decrease
the resource and time intensity of the process, this result is of
great significance.

Within the hybrid team, effective interactions and mutual
learning between the human agents and the AI agent can improve
team performance significantly. When the LC sampling strategy
is applied, both the information flow from the human agents to the
AI agent (i.e., human knowledge conveyed in the labeled papers)
and the information flow from the AI agent to the human agents
(i.e., the AI predictions conveyed in the sampled or prioritized
papers) play a role in improving the efficiency of the human-AI
hybrid teams. In contrast, when the HP sampling strategy is ap-
plied, the information flow from the AI agent to the human agents
plays a major role in benefiting hybrid team efficiency, especially
during the screen-update-predict-sample iterations. However, in
HP, the information flow from the human agents to the AI agent
is not as beneficial for improving model performance.

In a practical screening process, we only know the labels of a
part of the papers in a dataset, which means the actual IR, as well
as its overall changing trend, is unknown. In such a scenario,
it is difficult to determine when to stop expanding the training
set and updating the AI agent and when to stop screening the
prioritized papers. The changing scale of the predicted rankings
of the unlabeled papers and the growth rate of IR can inform us
about the stopping. Small changes in the paper rankings and a
low growth rate of IR may suggest we stop updating the AI agent
and stop screening the prioritized papers, respectively.

From the records of twelve human screeners working on an
agriculture development EGM, we learn that a human screener
can screen 38.6 (𝑆𝐸 = 1.00 ) papers per hour on average. On
this basis, the AL-enhanced AI agent can save human screeners
(80%−17.4%) ×68, 539/38.6 = 1, 111.5 hours for TA screening
compared to the case without the AI agent. Compared to the case
using EPPT-Reviewer SVM as the AI agent, (30.3% − 17.4%) ×
68, 539/38.6 = 229.1 hours can be saved by our model.
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6.1 Discussion on AI-assisted Design of EGMs
The nature of our work creating EGMs for deployment and

use by USAID meant that our team faced many real-world chal-
lenges. In this section, we discuss the unique challenges and
limitations that arise when designing EGMs with AI-assistance.

The Cost of Communication The cost of communicating
in a human-AI team can be significant but difficult to quantify
as it involves multiple factors. One such factor is the time and
effort required to exchange information via email, which can lead
to delays and potential miscommunication. Additionally, updat-
ing document labels and merging datasets can be a complex and
time-consuming task that requires oversight and project manage-
ment to ensure accuracy. These activities can also be a source of
errors that can negatively impact the performance of AI models.
Finally, time lags between humans labeling documents, the AI
agent receiving the documents and updating the model, and then
the AI agent sending back newly ranked documents for human
screening means that one team may be operating with incomplete
data. Therefore, optimizing communication channels and imple-
menting efficient communication protocols can help reduce the
costs associated with human-AI team collaboration.

Trust in AI A major challenge that many AI recommendation
systems face is the “cold start” problem. The AI agent must
provide some prediction about the documents in the first iteration,
but at this point the model knows nothing about the new domain.
In our case, we pre-trained our model on documents in the global
development space, but this cannot ensure that it would perform
well in classifying documents for, say, an Agriculture-specific
EGM without any additional training data. This challenge, while
common, can lead to distrust in AI from the human team, if
they find the initial rankings to be incorrect. Additionally, the
training data for our models are labels from people, which can be
noisy. The AI model’s performance is constrained by the quality
of its training data, and therefore to have meaningful and accurate
model results, we must begin with consistent high-quality training
data.

“When to Stop”: A Business Decision Another challenge
in the deployed EGM design case study was determining when to
stop the screening process, the second question shown in Figure 4.
Our human-AI team faced a trade-off here between screening
more papers in order to improve model performance, or stopping
screening in order to move onto the next step in the EGM process
(Figure 2). This is ultimately a business decision in which the
team must weigh the resource cost of improving the model, and
identifying the most “true positive” documents. We experimented
with two techniques for determining “when to stop.” The first of
these techniques was calculating the similarity of the rankings of
the documents when ordered based on the priority score between
two consecutive iterations. If the similarity of the two rankings
was above a certain value after a screening iteration, we could
stop updating the BERT model. The second technique was to
terminate the human screening process at a specific real-time
inclusion rate, e.g., the number of relevant documents identified
from screening 1,000 documents in the current iteration. If the
number of relevant documents is lower than a given threshold, the
human screening team could stop the screening process. Future
work could specifically address the question of when to stop

screening, as it is a highly relevant decision for the human-AI
team.

Automation of Full-text Screening The EGM design pro-
cess, as depicted in Figure 2, includes both title and abstract
screening, and full-text screening. A natural continuation of our
work would be to use NLP to assist in the full-text screening
step. This step, however, presents the logistical challenge of ob-
taining the full-text documents. While many institutions have
subscription-based access to scholarly article databases, copy-
right issues make downloading and using full-text documents a
challenge when working among and between different institu-
tions. This ultimately dictated that our project scope remains in
the title and abstract screening process alone.

Additionally, to perform full-text screening, one would need
to train another BERT model to classify full-text documents for
inclusion. This means human screeners would need to generate
a training dataset for this task, which would require significant
human effort. Large language models (LLMs) may assist in this
challenge. LLMs which are trained on billions of documents [42]
have a broad understanding of language, and future work can
explore whether they can classify full-text documents without
domain specific training data.

Counterfactual Analysis Our team faced the challenge of
accurately comparing different document screening techniques -
such as using a BERT-based model, an SVM-based model, and
no ML model within the real-world setup. It was infeasible for the
human raters to create each EGM three separate times in order
to compare the entire process for each technique. Therefore,
we standardized our comparisons by performing retrospective
experiments after the human-AI team had labeled a subset of
the data. We present the results using this labeled subset. We
further aimed to address this limitation by including the second
case study - the simulated EGM design. In this case study, we
utilized a fully labeled dataset of 68,539 documents in order
to experiment with the various ML models and active learning
sampling strategies. However, this challenge means we do not
have true counterfactual analyses of how the EGM process would
have proceeded without any AI assistance. Future work could
further address this limitation by creating each EGM multiple
times for each different technique.

6.2 Future Use of Human-AI Teams for EGM Design
The AI sub-field of NLP is experiencing rapid growth. Large

language models (LLMs) like OpenAI’s ChatGPT [42], and
Meta’s Galactica [43] are changing the way the world perceives,
exploits, and interacts with pre-trained language models. These
models were released after we had concluded our EGM creation;
however, we predict that their capabilities will shift the way that
NLP is utilized in EGM design.

We have performed a number of exploratory experiments to
understand LLMs’ capability in EGM design. We explored Chat-
GPT’s understanding of the relationship between certain interven-
tions and outcomes by asking it "How can agriculture transfor-
mation change poverty, migration, and food security?" The LLM
captured the general qualitative relationships between the inter-
vention (agriculture transformation) and the outcomes (poverty,
migration, and food security), but did not output any quantitative
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implications, potential information sources, or indications of how
well the relationships have been studied. This suggests to us that
ChatGPT can capture the intervention-outcome relationships in a
coarse resolution, but cannot provide all the detailed information
that a human team or human-AI hybrid team can capture.

In a small-scale study, we explored whether LLMs could
identify the interventions and outcomes of ten of the documents
shown in the EGM in Figure 1. We fed ChatGPT the relevant
abstracts and asked it for the intervention and outcome of each
abstract. We found that the LLM was able to generate relevant
interventions and outcomes. One such response was “The inter-
vention is an agriculture transformation program, which is not
further specified in the paper. The outcome variables evaluated
in the study are poverty, migration, food security, and agricultural
revenue.” This generative capability can be powerful in the early
stage of EGM design, during which human experts determine the
intervention and outcome categories that frame the EGM scope
(shown as the column and row headers in Figure 1). Genera-
tive text can also be powerful for creating brief summaries of
many documents, which falls under the overall goal of evidence
synthesis.

7. CONCLUSION

In this paper, we have studied (1) how incorporating the
BERT-based AI agent into the human team affects team efficiency
in the EGM design process and (2) how enhancing the hybrid
team through active learning can improve hybrid team efficiency.
We propose a human-AI hybrid teaming workflow during TA
screening portion of the EGM design process. We a) design
and deploy three EGMs for global development in the areas of
Agriculture, Nutrition, and Resilience, and b) conduct simulated
experiments with a fully labeled dataset to answer the research
questions described above. Our results show that the data size
for training the AI agent influences hybrid team efficiency. When
the training size is optimized, the incorporation of the BERT-
based AI agent can reduce human effort by 68.5% compared to
the case without AI assistance and by 16.8% compared to the
case using an SVM-based agent for getting to an inclusion rate
of 80%. Moreover, enhancing the hybrid team through active
learning can further reduce human effort by 30% compared to
BERT with no active learning. The proposed human-AI hybrid
teaming workflow has been validated in the practical construction
process of three EGMs. Therefore, the AL-enhanced human-AI
hybrid team can accelerate evidence gap map design, and decision
making in the global development field significantly.
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