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ABSTRACT

Ship design is a years-long process that requires balancing complex design trade-offs to create a ship that
is efficient and effective. Finding new ways to improve the ship design process can lead to significant cost
savings in the time and effort required to design a ship and cost savings in the procurement and operation of
a ship. One promising technology is generative artificial intelligence, which has been shown to reduce design
cycle time and create novel, high-performing designs. In literature review, generative artificial intelligence
has been shown to generate ship hulls; however, ship design is particularly difficult as the hull of a ship
requires the consideration of many objectives. This paper presents a study on the generation of parametric
ship hull designs using a parametric diffusion model that considers multiple objectives and constraints for
the hulls. This denoising diffusion probabilistic model (DDPM) generates the tabular parametric design
vectors of a ship hull, which is then constructed into a point cloud and mesh for performance evaluation.
In addition to a tabular DDPM, this paper details adding guidance to improve the quality of generated
parametric ship hull designs. By leveraging a classifier to guide sample generation, the DDPM produced
feasible parametric ship hulls that maintain the coverage of the initial training dataset of ship hulls with a
99.5% rate, a 149x improvement over random sampling of the design vector parameters across the design
space. Parametric ship hulls produced with performance guidance saw an average of 91.4% reduction in
wave drag coefficients and an average of a 47.9x relative increase in the total displaced volume of the hulls
compared to the mean performance of the hulls in the training dataset. The use of a DDPM to generate
parametric ship hulls can reduce design time by generating high-performing hull designs for future analysis.
These generated hulls have low drag and high volume, which can reduce the cost of operating a ship and
increase its potential to generate revenue.

Keywords Naval Architecture · Generative Artificial Intelligence · Deep Generative Models · Denoising
Diffusion Probabilistic Model · DDPM · Multi-objective Design · Design Constraint Satisfaction · Drag
Reduction · Parametric Design · Ship Design

1 Introduction

Generative artificial intelligence (AI) models produce new instances of information that resemble the data
used to train the model. While generative AI is famously known for generating text and image information,
it can also be used to generate information to engineer products. Recent advances in generative AI provide
promising new avenues to quickly generate designs. Including additional information in the training, such
as a design’s performance, can be leveraged to create designs with high performance. These advances are
especially useful in the design of ships. Ship design currently requires a large team of naval architects to
balance design trade-offs in a single ship’s design. A generative AI model specifically trained to generate
ship hulls can improve this workflow. Training such a model successfully is enabled by the availability of
large datasets that include both design and performance information for ship hulls [1]. Hull design was
chosen as a starting point for the generative model as the shape of the hull has a direct impact on over 70%
of the cost of a ship [2]. It is also one of the first steps in the traditional workflow for ship design [3]. The
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hull shape affects several key aspects of a ship’s performance, including the buoyancy, upright stability,
hydrodynamics, and general arrangements of the ship. With these considerations, the design of ship hulls
provides an impactful avenue for the application of machine learning for engineering design.
A well-designed machine learning tool for ship design could learn design trade-offs for ships through
the continual design and evaluation of many ship designs. This work demonstrates the use of a guided
denoising diffusion probabilistic model (DDPM), a type of deep generative model, to rapidly generate
high-performing and feasible parametric ship hull designs by generating parameters in a tabular format.
This model, called ShipGen, generates early-stage hull designs considering seven performance metrics,
creating shapes with low drag and high cargo-carrying capacity. Figure 1 shows an overview of the work
presented, highlighting that the implementation of classifier and performance guidance during the sampling
process generates hulls with high performance. This work features model training with a publicly available
dataset of parametric ship hulls, called ShipD [1]. The following sections detail the literature review of
previous work, the methodology for creating and evaluating a tabular DDPM, the evaluation of ship hulls
generated by the DDPM, and a discussion on the impact of the work. The hulls generated with the use
of the guided DDPM are intended to be candidate designs for future analysis. As such, these generated
hulls may not necessarily look exactly like realistic hull forms, but instead have design features that, in
combination, lead to high performance. Through the development of the performance-guided DDPM for
ship hull generation, the novel contributions of this paper are:

1. The first known use of denoising diffusion probabilistic models for generating parametric tabular data
for an engineering performance-focused design application.

2. Showcase that classifier guidance in the DDPM navigates complex design feasibility constraints to
generate feasible samples with over 99% success while maintaining dataset design coverage.

3. Use of guidance to improve ship hull performance, with samples having an average 91.4% reduction in
wave drag coefficient and 47.9x more displaced volume compared to the mean performance of the hulls
in the dataset.

Figure 1: Overview of utilizing a DDPM to generate parametric ship hull designs. When leveraging classifier and performance
guidance from pre-trained neural networks, the DDPM is able to generate ship hull designs with high performance.
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2 Prior Work

Generative AI for ship hull design was influenced by research in computational ship design and machine
learning literature. The first subsection details prior work in computational ship design, including ship hull
design representation, hull form design optimization, and the use of machine learning in ship design. The
second subsection details the development of diffusion models and their applications in engineering design.

2.1 Computational Ship Design

Computational Ship Design refers to the application of computer-based modeling, simulation, and opti-
mization techniques in the design and analysis of marine vessels, facilitating more efficient, innovative, and
integrated design solutions. Historically, computational ship design can be divided into three categories:
design representation, forward modeling which includes surrogate models, and inverse design or synthe-
sis, which includes optimization methods. Recently, generative AI methods have emerged as a powerful
technique, which could be used for the representation and synthesis of ship hull designs.
In order to design a product with computational methods, the product needs to be represented in a way that a
computer can understand. For ship design, the two most popular modes are parameterized vectors [1, 4–12],
and free form deformation techniques [13–18]. The benefit of using parameterized design representations for
a hull is that the design is defined by a set of tunable parameters that both human designers and computers
can interpret. The ease of use of parametric design representations has often limited the diversity of possible
hull shapes. Conversely, FFD techniques present a different landscape. They allow for the creation of a
broad array of shapes. Yet, these representations can be challenging for humans to interpret without a visual
representation of the hull form. The works of Khan et al. [19–21], Shaeffer et al. [22, 23], and Bagazinski
et al. [1] have looked at various methods to create diverse design spaces and design datasets for ship hull
design. These efforts aim to harness machine learning in ship hull design.
In addition to design representation, computational design often has metrics for evaluating a design’s
performance. Finding computationally efficient methods for evaluating each generated design could lead to
enhanced design generation. Hydrodynamic drag stands out as the predominant performance metric for
ships in literature. Several rapid drag prediction techniques exist. Some, like Hollenbach’s and Savitsky’s
methods, rely on statistical regressions from test data [24–26]. Other fast methods to predict wave drag
are linear wave solvers, which provide accurate drag measurements with reduced computational effort
relative to traditional computational fluid dynamics techniques. These solvers use potential flow to simulate
the waves produced by a ship in a steady forward motion to estimate drag as a result of surface wave
propagation. Different linear wave solvers include Michell’s Integral [27, 28], Rankine Panel Methods [29],
Neumann-Kelvin Theory (also called Dawson’s Method) [30], and Neumann-Michell Theory [31–33]. These
potential flow solvers input the 3D geometry of a hull and provide estimates of drag at typical operating
speeds of a hull. The third method of creating a fast prediction of drag is to build a small dataset of drag
measures to train a neural network to predict drag from a hull’s design representation [5, 6, 9, 13–16, 19, 20,
34, 35].
Combining hull design representation with efficient drag prediction equips designers with the tools needed
for optimization algorithms. This enables hull design creation tailored for specific scenarios. A common
objective in optimization literature is minimizing hull drag while adhering to geometric constraints. More
recently, computational hull design has also been attempted using a tabular generative adversarial network
(GAN) to quickly generate ship hull instances, that could be used for seeding populations for design
optimization [21]. The next improvement for generative AI in ship design is to implement a denoising
diffusion probabilistic model (DDPM) for generating hull designs. Diffusion models provide improvements
over GANs for generative design as DDPMs are more stable to train and provide superior sampling quality.
Additionally, diffusion models can implement guidance without retraining the whole generative model. This
way, new constraints or performance objectives can be integrated into design generation simply, whereas a
GAN would need to be retrained for every new design consideration. [36]. For ship hull design, this means
that a single model can be trained to generate high quality hulls that are tailored to specific user needs by
integrating guidance models for different design considerations. This is particularly useful for ship design
so that information from the design of many classes of ships can be considered in designing a ship hull.

2.2 Generative Design with Diffusion Models

The transition from traditional design methods leads to a cutting-edge generative AI model: the denoising
diffusion probabilistic model (DDPM). Gaining momentum in the machine learning domain, DDPMs
iteratively modify a noisy data vector over many specified steps, transforming random data to mirror the
statistics of training data [37]. The development of DDPMs in the last few years has shown that they are
capable of generating complex data and already have applications for engineering design. For example,
DDPMs were shown to create higher quality images as compared to generative adversarial networks [37], a
particularly difficult task as images are comprised of large patterns of pixels to visually represent something
a human could see with their eyes.
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DDPMs work by training a neural network to predict small iterative denoising steps. The algorithm for
training a diffusion model as defined by Ho et al. is in Table 1.

1: repeat
2: X0 ∼ q(X0)
3: t ∼ Uni f orm({1, ..., T})
4: ϵ ∼ N(0, I)
5: Take gradient descent step on:

∇θ ||ϵ − ϵθ(
√

ātX0 +
√

1 − ātϵ, t)||2
6: until converged

Table 1: This is the training algorithm for a standard DDPM. The DDPM is represented by the function ϵθ(X0, ϵ, t) in step 5.

In the algorithm, the generated sample (design parameters) are represented by X, and noted with subscripts
to indicate the denoising timestep. The DDPM itself is represented by ϵθ , indicating that the DDPM is trained
to predict a small change in random noise across the vector. Once trained, a DDPM generates samples by
denoising a Gaussian noise vector over the predetermined timesteps. This results in samples that are within
the training data’s statistical distribution. In the case of images, this could be a “deep fake” that looks like
the training data. In the case of ship hull design, it could be a parameterized ship hull design. The sampling
algorithm defined by Ho et al. is defined in Table 2.

1: XT ∼ N(0, I)
2: for t = T, ..., 1 do
3: Z ∼ N(0, I) if t > 1, else z = 0
4: Xt−1 = 1√

αt
(Xt − 1−αt√

1−ᾱt
ϵθ(Xt, t)) + σtZ

5: end for
6: return X0

Table 2: This is the sampling algorithm for a standard DDPM. The DDPM is represented by the function ϵθ(Xt, t) in step 4.

Subsequent advancements in DDPMs introduced guidance, where gradients from a classifier neural network
guide image synthesis to match a specific image classification label [36]. This evolution birthed text-to-image
DDPMs that employ text-based guidance to craft custom, lifelike images [38, 39]. Guided DDPMs have
found applications in generating 3D shapes from image data [40].
Guided diffusion can be applied to engineering design generation. For example, guided diffusion has been
used to create two-dimensional structures [41–43] and vehicles [44] using image data. In these instances, the
guidance of the design generation by image-based DDPMs is applied to constraint satisfaction and improved
performance. DDPMs can generate high-quality designs, navigate complex constraints, and implement
precise generation with guidance, which makes them an excellent deep generative model for designing ship
hulls. The subsequent sections demonstrate a tabular DDPM to generate parametric ship hull designs that
give improved performance through the implementation of guidance.

3 Methods

This section outlines the methodology behind developing a guided DDPM for ship hull design. This section
explores the ship hull dataset, delves into tabular DDPMs, and introduces both classifier and performance
guidance for sampling ship hulls with a DDPM. A secondary methods section on conditional DDPMs is
included in the Appendix.

3.1 Ship-D Dataset and Hull Parameterization

The Ship-D dataset consists of 30,000 parameterized ship hulls. The hulls are parameterized with 45 terms.
These terms are applied to a set of algebraic equations to define and characterize the surface of the hull.
These terms were construed through analyzing and characterizing the shape and curvature of many different
publicly available hull geometries. The parameters cover various aspects:

• Principal dimensions (e.g., overall length, beam at main deck)
• Cross-section of the parallel midbody (e.g., deadrise angle, chine radius)
• Geometry of bow and stern taper
• Geometry of bulbs at bow and stern
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These parameters, designed to capture a range of curvature and shapes, encompass the features seen in a
diverse variety of vessels from large ships to smaller boats. Their dual design facilitates human understanding
and computer-generated input. Full documentation of the hull design parameters is provided at https:
//decode.mit.edu/projects/ShipGen/. Additionally, Figure 20 in the Appendix lists the parameters and
provides details so human designers can create parametric hulls with this representation. A glimpse into
the Ship-D dataset is provided in Figure 2, showcasing the diverse shapes achievable with the parametric
design scheme. As these designs are randomly sampled across the entire feasible design space, they do
not necessarily look like realistic hull designs. The performance of these hulls was not considered in their
random sampling. Many of these hulls are relatively low performing: having high drag, low displacement
volumes, and high surface area. The feasibility criteria used to generate these hulls are described in the next
section.

Figure 2: A selection of hulls from the Ship-D dataset, showing the variability possible with the hull parameterization. A
random sampling from the dataset may lead to unrealistic hulls, containing combinations of features that do not resemble
real-world ships and features that lead to poor performance.

3.1.1 Feasibility Constraints for Hull Geometry
While the parameterization can define a large design space of hull geometries, constraints on the parameteri-
zation are needed to ensure that a feasible hull will be produced by a specific set of parameters. To satisfy a
“feasible” hull shape, the hull’s surface only needs to satisfy two criteria:

1. The hull is watertight, meaning that there are no holes on its surface.
2. The hull surface is not self-intersecting.

As the hull surface is defined by a set of equations with constants dictated by the parameter values, conditions
to determine whether a hull’s surface satisfies the two main feasibility criteria can be solved algebraically.
The advantage to algebraically solving these conditions is significantly reduced computational effort to check
hull feasibility with the algebraic constraints compared to feasibility checks with mesh generation. After
searching through the design space of the hull parameterization and examining the equations that define
the hull surface, a set of forty nine constraints were defined to determine if a hull surface produced from a
specific parameterization satisfies the two feasibility criteria. Figure 21 in the Appendix lists the 49 algebraic
constraints and provides information on each of their satisfaction conditions.
Conversely, the two feasibility criteria can be checked by constructing the mesh of a hull and analyzing its
surface. Mesh generation and feasibility checks are computed in O(Nlog(N)), where N is the number of
vertices on the mesh. On an Intel Core i9-10980XE processor, the construction and check of a hull mesh with
approximately 80,000 vertices is 1.77 seconds. Comparatively, the algebraic constraints check the design
feasibility of a parametric hull in 0.000199 seconds. This is a ten-thousand-fold increase in speed for checking
design feasibility with the algebraic constraints. A uniform random sampling of the design parameters leads
to generation of a feasible hull in approximately 1 per 150 tries. In addition to the 30,000 feasible hulls in
the Ship-D dataset, an additional 20,000 design vectors (called invalid samples) that violate at least one
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feasibility constraint were generated. These invalid samples are used to train models in classifying and
distinguishing between feasible and infeasible design vectors [41].

3.1.2 Hull Performance Measures
The Ship-D dataset already contains ten geometric measures and thirty-two wave drag calculations for each
hull. The ten geometric measures allow naval architects to characterize a hull when designing a ship. The
ten geometric measures are calculated using trapezoidal integration at ten draft marks spaced along the
depth of the hull. These ten geometric measures are:

1. Height of draftmark
2. Length of the waterline
3. Area of the waterplane
4. Surface area of the hull below the specified draftmark (wetted surface)
5. Longitudinal centers of flotation (waterplane centroid)
6. Second moment of area about the longitudinal axis of the waterplane
7. Second moment of area about the transverse axis of the waterplane
8. Displaced volume below the draftmark
9. Longitudinal center of buoyancy

10. Vertical center of buoyancy
As these metrics have the units of length to some power Ln, they are normalized by the first term in the
parameterization, LOA, to its respective power. For example, lengths are normalized by LOA, areas by
LOA2, volumes by LOA3, and area moments of inertia by LOA4. This allows computational analysis on the
geometry of the hull to be performed independently of the hull’s scale.
In addition to the geometric measures, the Ship-D dataset has thirty-two wave drag coefficients for each hull
across four different drafts and eight velocity conditions. The four drafts are 25%, 33%, 50%, and 67% of the
hull’s total depth. The eight velocity conditions are normalized using Froude scaling. The eight velocities
are between Fn = 0.10 and Fn = 0.45 in increments of 0.05, corresponding to typical operating conditions
of traditional displacement hulls [45, 46]. The Froude number is the relative scaling between inertial and
gravitational forces described in the equation below:

Fn =
U√
gL

(1)

Where U is the hull speed, g is gravity and L is a length scale. The length used in simulating the 32 speed-draft
conditions of the hulls was the length of the waterline at the tested draft mark. This way, thirty two unique
conditions were measured. Wave drag is both a function of the hulls geometry, and the hydrodynamics
of waves propagating off of the hull from it’s forward motion. Including a full spectrum of speed-draft
conditions in the dataset allows a machine learning model to learn the effects of drag due to changing
submerged geometry with draft and speed. This provides significantly more information relating to the
geometry and performance of a hull than available by measuring a single operating condition. This allows a
generative model using the Ship-D dataset to generalize wave drag in the design process. As the generative
model is intended to produce conceptual hull designs, it is imperative that the exact speed-draft condition be
unknown so that the model generates hulls that generally have low drag. The future work section will detail
goals for generating hull designs tailored to specific use cases, which could include specific speed-draft
conditions.
The Michell Integral was chosen to simulate wave drag over other linear wave methods for its relative
computational efficiency and the accuracy it provides. The Michell integral is a linear estimate of the wave
drag of a slender ship in forward motion. It is defined by the following equation [27, 28]:

Rw =
Aρg2

πU2

ˆ ∞

1
(I2 + J2)

λ2
√

λ2 − 1
dλ (2)

where ρ is the density of water, g is gravitational acceleration, U is the ship’s speed, and A, I, andJ are
integrated terms relating to the surface normal across the hull and the direction of wave propagation. Further
insight into these terms is in Michell’s paper form 1898 [27].
In addition to scaling the relative speed and draft conditions for the hulls, the wave drag is also scaled to
ensure consistency across the dataset:

Cw =
Rw

1
2 ρU2 · LOA2 (3)

Typical drag coefficients of hulls are scaled by the wetted surface area of the hull. Within the dataset, however,
the wetted surface area of the hulls can vary greatly. Instead, the Length-Overall (LOA) is used instead
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as this is the first term in the parameterization. For the purposes of applying machine learning using the
dataset, the wave drag coefficient can be characterized by the remaining 44 terms in the parameterization
and the hull’s relative speed and draft.
An additional two measures of the hulls are included in this paper and will be added to the Ship-D dataset.
The first measure is the Gaussian curvature of the hull’s surface. The second metric is a measure of the largest
rectangular prism that can be vertically lowered into the hull, referred to as MaxBox for the remainder of
this paper. Gaussian curvature quantifies the double curvature of a surface. The average Gaussian curvature
is calculated for these hulls to assess the manufacturing complexity of the hull’s surface. As most large ships
are constructed from welded sheet steel or aluminum, bending a sheet along two principal axes of curvature
is a difficult task for both the sheet forming process and for welding the edge of a complex surface to another.
By measuring the average double curvature of each hull, an understanding of the difficulty of manufacturing
the hull surface is gained for the dataset. The Gaussian curvature is calculated for the hulls using a finite
difference method to measure the principal curvature of the hull in the YZ plane and in the XY plane for a
uniform grid of points on the hull [47]. Equation 4 calculates the average Gaussian curvature over the surface
of the hull. The terms RXY and RYZ are the radii calculated using the finite difference method along the two
principal axes of hull’s surface. Gaussian curvature has units 1/L2 and is hence normalized by LOA2

GC =

‚
S

dA
RXY(x,y,z)·RYZ(x,y,z)

Total Surface Area
(4)

The MaxBox measures the box with maximum volume that is completely inscribed by the hull that can be
vertically lowered into the hull through the waterplane at the hull’s top deck. This provides a measure for
evaluating a candidate region within the ship hull for allocating cargo holds. Additionally, as the MaxBox is
open at the deck of the ship, a crane can service this entire volume within each hull. The MaxBox for each
hull was optimized with a Nelder-Mead simplex optimization algorithm to maximize the volume of the box
while constrained by the surface of the hull and the waterplane of the top deck [48]. Included in the dataset
is the forward (X) position of the box, its length, width, depth, and volume. These results are normalized by
their length dimensionality, 1/LOA and 1/LOA3.
Among the available performance measures in the Ship-D dataset, seven were selected to be implemented
in the performance-driven design generation of ship hulls. The goal of selecting the seven performance
metrics that generally describe the quality of a hull. These metrics provide an avenue to compare hulls
directly to each other with useful characteristics that consider the hulls’ hydrodynamics, hydrostatics, and
manufacturability. These seven performance metrics are:

1. Aggregated sum of wave drag coefficients.
2. Surface area of the hull up to 50% of its total depth
3. Total surface area of the hull
4. Displaced volume of the hull up to 50% of its total depth
5. Total displaced volume of the hull
6. Volume of the MaxBox
7. Gaussian curvature

The aggregated sum of wave drag coefficients was selected as a way to quickly characterize the general
wave drag of a given hull. In large ships, wave drag is the primary component in the ship’s total drag. By
learning how a ship’s hull shape affects drag, a generative AI model could generate hulls with low wave
drag, saving ship operation costs through reduced fuel consumption. The aggregated sum of the wave drag
coefficients is defined in Equation 5. It is important to note that this performance metric and five of the other
metrics are all represented on a logarithmic scale. Due to the geometry of the hull designs these performance
metrics span several orders of magnitude across the Ship-D dataset. The distribution of the logarithmic
scaled performance metrics is normal, a desired quality for machine learning.

Cw∗ =
32

∑
i=1

log10(Cwi ) (5)

The surface area of the lower half of the hull was selected as a performance measure as this is the portion of
a hull’s surface that is most likely to be submerged when the hull is in water. The wetted surface of the ship
affects the viscous drag acting on the hull. Reducing the wetted surface area of a hull can reduce the total
drag of a ship, saving operation costs through reduced fuel consumption. Additionally, the total surface area
of the hull was selected as this can consider the amount of material needed to manufacture the surface of the
ship hull. By reducing the total surface area of the ship, manufacturing costs can be reduced by generating
hull designs with less total surface area. The two measures of surface area are provided in Equation 6 and
Equation 7.
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SA50%∗ = log10

(´ T/Dd=0.5
0 δSA(z) δz

LOA2

)
(6)

SA100%∗ = log10

(´ T/Dd=1.0
0 δSA(z) δz

LOA2

)
(7)

The displaced volume of the bottom half of the hull was selected as it characterizes the portion of the
hull that contains much of the displaced volume for buoyant forces. This performance metric therefore
characterizes the relative total weight of the ship and its cargo. Learning how the hull design parameters
affect the displaced volume of the hull can lead to generating hull designs that can carry more weight.
The total displaced volume of the hull was also selected as this measure characterizes the total volume
capacity available for cargo, outfitting, and other systems on the ship. Learning how the ship hull design
parameters affect its total displaced volume, ship hulls with greater total volume can be generated. These
two measures of volume affect the ability of ships to generate revenue through the shipment of cargo. The
two volume measures are calculated with Equation 8 and Equation 9. With the intention of maximizing the
volume metrics in hull generation, the volume measures are multiplied by -1. This conforms the volume
maximization problem to a “minimization” problem akin to the other performance objectives.

V50%∗ = − log10

(´ T/Dd=0.5
0 δV(z) δz

LOA3

)
(8)

V100%∗ = − log10

(´ T/Dd=1.0
0 δV(z) δz

LOA3

)
(9)

An additional measure of volume is the MaxBox volume. As described earlier in this section, the MaxBox
metric measures the ratio of the most useful cargo-carrying volume of the ship compared to the hull’s total
displaced volume. Learning how the design parameters affect MaxBox can lead to the generation of hulls
with more useful cargo-carrying capacity. This can also lead to greater revenue through a ship’s operation.
MaxBox is not on a logarithmic scale like the other measures and it is calculated with Equation 10.

MaxBox∗ = − VolumeMaxBox

VolumeT/Dd=1.0
(10)

The final performance metric selected is the average Gaussian curvature of the hull. Since Gaussian curvature
is a measure of a hull’s surface complexity, it affects the manufacturing costs of a ship. Reducing the average
Gaussian curvature of a ship hull can lead to reduced manufacturing costs, making it a critical metric for a
ship hull. The average Gaussian curvature is normalized for machine learning using Equation 11.

GC∗ = log10(GC · LOA2) (11)

While the aforementioned seven metrics were chosen to demonstrate the efficacy of the proposed method-
ology, it is crucial to highlight that this is not an exhaustive list of performance measures for ship hull
evaluation. Indeed, a significant strength of the proposed diffusion model lies in its adaptability. It allows
users to integrate additional performance metrics without necessitating retraining. This flexibility under-
scores the model’s robustness and its potential to be tailored to various specific needs, optimizing designs
based on a myriad of performance criteria.

3.2 Dataset Coverage and Generated Sample Evaluation

In order to characterize the DDPMs’ abilities to cover the total parametric dataset space and generate feasible
designs, two measures are utilized throughout the remainder of the paper. To visually characterize how
a set of generated hull designs covers the dataset space of the Ship-D hulls, a two-dimensional principal
component analysis is trained with the Ship-D parametric design vectors. When evaluating the designs
generated with DDPMs, the PCA of the generated samples is plotted against the PCA of a random selection
of the Ship-D dataset hulls. This shows the relative spread of the generated designs compared to the dataset
hulls. In addition to visualization, coverage and realism quantify a model’s ability to generate samples
similar to the training dataset.

• Coverage is quantified as the mean chamfer distance of each dataset instance from its nearest neighbor
among the generated samples.

• Realism, on the other hand, measures the mean chamfer distance of each generated sample instance
from its closest match within the dataset [49].
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Chamfer distance is the Euclidean distance between two hull design vectors. For two sets of parameterized
hull designs, A and B, the Chamfer distance finds the distances from a design vector in A to its nearest
neighbor in B. The distance metric used is the squared Euclidean distance between the two vectors. The
formula for this evaluation metric is:

CD = ∥An − Bn∗∥2 (12)

where Bn∗ is the nearest neighbor of the design vector An in B. Chamfer distance is normalized for coverage
and realism with the following equation:

CD∗ =
1

NA
∑NA

n=1 CDn − CDworst-case

CDbest-case − CDworst-case
(13)

where NA is the number of points in set A and CD∗ is a normalized Chamfer distance, being coverage or
realism. As a baseline, coverage is linearly normalized between the best- and worst-case scenarios derived
from an analysis of the dataset. The best-case coverage is the mean nearest neighbor distance of each hull in
the dataset (100% coverage), which is equal to 4.315. The worst-case coverage is the mean chamfer distance
between the centroid of the dataset hulls and each hull in the dataset, (0% coverage), which is equal to 26.930.
realism is also linearly normalized to be between the minimum and maximum chamfer distance between the
dataset hulls and their nearest neighbor.
To benchmark the DDPMs’ ability to generate feasible samples, two studies on the feasibility of hulls
generated by interpolating between hull design vectors were conducted. The first study generated sample
hulls by finding the midpoint between two random hull design vectors from the Ship-D dataset. The second
study generated sample hulls by finding the midpoint between a random hull and its nearest neighbor in
the Ship-D dataset. The results of these studies are provided in the Results Section.
An additional benchmark study was conducted using a tabular generative adversarial network called
CTGAN [50]. The CTGAN was trained to generate feasible hull designs, only gathering information from
the 30,000 feasible hull designs in the Ship-D dataset. The goal of this benchmark study is to compare the
ability of the CTGAN and the DDPM to generate feasible hulls and cover the dataset without explicitly
identifying feasible or infeasible hull designs for the model. In training, the CTGAN learns the parametric
information encoded in the design vectors and generates samples to match the distribution of the dataset
samples. The results of this study are included in Table 3 and Table 4.
When leveraging classifier guidance with a DDPM to generate feasible samples, the dataset coverage is
greatly affected by the same hyperparameter that influences the feasibility of generated samples.

3.3 Denoising Diffusion Probabilistic Models

A denoising diffusion probabilistic model (DDPM) is a generative AI model that generates new instances
of data by denoising random information over many steps, so that the generated sample falls within the
statistical distribution of the training dataset samples. A tabular DDPM was built and trained on the
ship hull parametric design information from the Ship-D dataset. The DDPM used to create ShipGen was
inspired by the work of Kotelnikov et.al, called TabDDPM [51]. Unlike popular image-focused diffusion
models, this DDPM is trained on tabular information to generate tabular information. Prior to training, the
parametric design vectors were transformed with a quantile normalizer to re-scale the distribution of the
design parameters to have a normal distribution with the same mean and variance as the parameters in
the dataset. A second linear transformation re-scaled the bounds so that the range of each parameter exists
between -1 and 1. These transformations ensure that the parametric design data is fit for the tabular DDPM.
Training this model provided a baseline to verify that the tabular DDPM produces ship hulls with parametric
information within the relative distribution of the Ship-D dataset. The Results Section provides the results of
both the parameter distribution and feasibility constraint satisfaction of these generated samples.

3.3.1 Standard Diffusion Model
The standard DDPM follows the training and sampling algorithms defined in Table 1 and Table 2. The
standard DDPM implicitly learns the statistical relationships between the parameters in each sample. In
the sampling process, the trained DDPM generates samples that are statistically similar to the designs in
the dataset. There is no extra consideration for design feasibility or design performance. Since the Ship-D
dataset is comprised of randomly sampled hulls that meet the feasibility criteria, any increase in the DDPMs
ability to produce feasible hulls compared to pure random sampling is due to the DDPM implicitly learning
the relationships between the design parameters that lead to feasible hull designs.
During training, a feasible design vector is quantile normalized and partially noised according to the training
algorithm in Table 1. Then the DDPM predicts a noised vector given the timestep embedding and the
partially noised vector. The mean squared difference between the predicted noise vector and a pure noise

9



ShipGen PREPRINT

vector is the loss of this prediction. The mean squared loss then back-propagates through the DDPM to
update its weights and biases. This process is repeated for the 30,000 feasible design vectors across one
thousand denoising timesteps in random batches to train the DDPM. Figure 3 illustrates the training process
for one design vector at one timestep.

Figure 3: During training, the DDPM predicts a denoising step, given a timestep embedding and a partially noised sample
design vector.

After training, the standard DDPM can sample new design vectors. The initial seed for sampling is a
Gaussian noise vector of size N, where N is the number of design parameters. The DDPM denoises this
vector one thousand times, taking into account the timestep embedding at each iteration. After the denoising
process, the final denoised vector is reverse-quantile normalized so that it becomes a design vector fitting the
Ship-D parametric design scheme. This generated design vector can then be checked for feasibility constraint
satisfaction. If the design is feasible, a point cloud and mesh of the hull is generated to evaluate the sample’s
performance. Figure 4 illustrates the sampling process for a single design vector.

Figure 4: During sampling, the standard DDPM denoises a vector over one thousand timesteps, generating a sample design
vector that statistically aligns with the training data.

3.3.2 Classifier Guidance for Diffusion Models
An additional method of influencing sample generation towards feasibility constraint satisfaction is with
classifier guidance [36]. Classifier guidance leverages the gradients of a trained design classifier during the
standard DDPM’s sampling process to influence a design to meet a certain classifier label. In this case, the
classifier label characterizes whether a design is feasible or infeasible. Here, the 30,000 Ship-D design vectors
and the 20,000 infeasible design vectors trained a classifier to predict design feasibility. At each timestep in
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the sampling process, the gradient of the trained classifier for a target class, fϕ(y|Xt), with respect to the
parameterized design vector, Xt, is calculated. This gradient is multiplied by a hyperparameter, γ, and is
added to the sample during Step 4 of the DDPM sampling algorithm defined in Table 2. A classifier guided
DDPM is created by replacing Step 4 with Equation 14.

Xt−1 =
1√
αt

(
Xt −

1 − αt√
1 − ᾱt

ϵθ(Xt, t)
)
+ σt(Z(1 − γ)) + γ∇Xt fϕ(y|Xt) (14)

The Results Section provides data from tuning γ, as it will be shown that the hyperparameter has an effect
on both the likelihood of producing feasible hull design vectors and on the distribution of these vectors
relative to the Ship-D dataset. Without the need to additionally train the standard DDPM itself, adding
guidance gradients in the sampling process can be accomplished easily. Figure 5 and Figure 6 illustrate
classifier guidance used in conjunction with performance guidance to generate parameterized hull designs
with high performance. The next subsection details the addition of more guidance models to generate hulls
while considering the hull’s performance.

3.3.3 Performance Guidance for Diffusion Models
Similar to classifier guidance, a neural network trained to predict the performance of a hull can also be
used to guide sample generation. Seven residual neural networks were trained to predict the normalized
performance of a hull given its parametric design vector. The 30,000 feasible hull designs in the ShipD
dataset were used for the training data. The performance prediction neural networks all have the same
structure: 4 hidden layers with 256 nodes, where the first hidden layer is added as a residual to the final
hidden layer. The normalization of the performance metrics distributes them over a Gaussian, improving
the prediction accuracy of the neural network.
During sampling, the gradients of the normalized performance prediction from the neural networks is used
to guide the DDPM’s sampling process. The performance gradient of each of the objectives, ∇Xt Pi(Xt) is
multiplied by a weight, λi. While generating samples, the weights of the λ values for each performance
objective are normalized so that they are positive and sum to 1.0 for each sample. This way, a broad spectrum
of samples is generated with unique combinations of weighted influences from the seven performance
objectives. Performance guidance is achieved by replacing Step 4 in the DDPM sampling algorithm with
Equation 15.

Xt−1 =
1√
αt

(
Xt −

1 − αt√
1 − ᾱt

ϵθ(Xt, t)
)
+ σt(Z(1 − γ)) + γ∇Xt fϕ(y|Xt)−

7

∑
i=1

λi∇Xt Pi(Xt) (15)

During sampling, the gradients of both the classifier and performance prediction models are calculated at
each timestep. Weighting these gradients with γ and λ influences the impact each individual model has
on the sampling process. The classifier guidance weight, γ, is set equal to 0.5 so that both a high degree of
sample diversity and sample feasibility are maintained. Figure 5 shows how guidance from the classifier
and performance prediction models are implemented into the denoising process.
Figure 6 highlights the contributions of both the feasibility classifier and the performance prediction neural
networks in guidance. For performance guidance, the gradients of the seven performance prediction
networks are calculated for each sampling timestep for Xt. Then, the gradients are weighted by their
respective λ value. The sum of the weighted gradients is subtracted from the output of the standard DDPM
to create the next partially denoised vector, Xt−1, in the sampling process. The gradients are subtracted to
follow the scheme of “minimizing” the performance objectives in generated samples.
After sampling, the generated design vectors are checked for feasibility. The performance of the feasible
generated hulls are then calculated with the same simulations used to create the original dataset. In the
Results Section, Table 5 will showcase the mean normalized performance between the dataset hulls and the
generated hulls, as well as a scale factor between the true performance of the two sets of hulls. The Results
Section also provides data on the fit of these performance regression networks.

4 Results

This section contains the results of the studies described in the Methods Section. The first subsection provides
results on the feasibility and design spread of parameterized hulls generated with interpolation between
existing hulls in the Ship-D dataset. The second subsection gives the results of generating feasible hulls
using a standard tabular DDPM and with a guided DDPM. The third subsection provides the results on
generating hulls using performance guidance, including the results of the performance prediction residual
neural networks. The Appendix contains the results of training a conditional DDPM with both feasible and
invalid hulls.
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Figure 5: For guided sampling, generated vectors are denoised with the standard DDPM at each timestep and then influenced
with guidance gradients in each denoisng iteration.

Figure 6: Classifier and performance guidance is the result of leveraging gradients of pre-trained models to influence the
denoising process of the DDPM. The figure highlights the models implemented for this experiment.

4.1 Benchmark Feasibility Constraint Satisfaction Studies

An initial study generating hulls using interpolation methods was conducted to measure the success rate of
generating feasible hulls using the Ship-D dataset. The first study generated thirty thousand parametric hulls
by interpolating the parameters halfway between two random hulls belonging to the Ship-D dataset. This
interpolation method generated feasible hulls at a rate of 93.1%, listed in Table 4. The second interpolation
method generated hulls by interpolating between a dataset hull and its nearest neighbor hull. The second
interpolation method generated feasible hulls, with a success rate of 93.8%. Table 3 lists the dataset coverage
of these two interpolation methods. The first interpolation method maintains a normalized coverage ratio
of 0.965 compared to the baseline coverage, while the second interpolation method exceeds the baseline
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coverage, having a ratio of 1.059. These two interpolation methods will serve as benchmarks for the feasibility
and dataset coverage analysis on hulls generated with the DDPM.
The CTGAN benchmark study provided a baseline for a trained generative model to generate feasible hulls
implicitly. The CTGAN was trained on the 30,000 feasible hull designs Ship-D dataset to implicitly learn the
combinations of parameter values that define “feasibility”. This study generated thirty thousand samples
of hulls and measured the dataset coverage and feasibility of these samples. The sample coverage was
decreased with the CTGAN, having a normalized coverage ratio of 0.94 compared to the baseline. This
is slightly reduced from the interpolation benchmark coverage ratios of 0.965 and 1.059. The coverage
measures for the CTGAN study are included in Table 3. Of the CTGAN generated samples, only 0.7% satisfy
all feasibility constraints. This finding is included in Table 4. The CTGAN is only marginally better than
randomly sampling the design space to create a feasible parametric hull design. Further analysis of the
CTGAN benchmark study is included in the Discussion Section.

4.2 Feasibility Constraint Satisfaction with Tabular Denoising Diffusion Probabilistic Models

This subsection provides the design feasibility and dataset coverage of samples generated with different
types of DDPMs. The types of DDPMs considered for sample generation are the standard DDPM and guided
DDPM. The following subsections provide the results for each type of DDPM.

4.2.1 Standard DDPM Leads to Good Feasibility and Coverage
A standard DDPM is trained only on the parametric design information from the dataset. Samples generated
from a standard DDPM are made up of the implicit statistical relationships learned from the parameters in
feasible hulls. The standard DDPM produces feasible hulls 51.1% of the time, as seen in Table 4. Throughout
the Results Section, a two-dimensional principal component analysis (PCA) is used to illustrate the spread of
generated sample hulls compared to the Ship-D dataset hulls. The PCA is trained on the parametric hull
design data from the Ship-D dataset and is used to transform generated samples into the two-dimensional
PCA for visualization. Figure 7 shows that the standard DDPM generates samples that maintain most of the
dataset coverage, maintaining a normalized coverage ratio of 0.984. The dataset coverage and feasibility of
samples created with the standard diffusion model are included in Table 3 and Table 4.

Figure 7: Two-dimensional Principal Component Analysis of the hull parameterization shows that hulls generated with a
standard DDPM maintain most of the dataset coverage.

4.2.2 Guided Denoising Diffusion Probabilistic Model for Enhanced Feasibility
While the standard DDPM generates feasible hulls with a relatively high success rate, feasibility can be
improved by leveraging guidance from a pre-trained classifier neural network. The classifier identifies hulls
as satisfying all the constraints or violating at least one of the forty nine constraints. This classifier network
was implemented in the denoising step of generating samples with a standard DDPM to guide the generation
of hulls towards satisfying the feasibility criteria. As mentioned in the Methods Section, the degree to which

13



ShipGen PREPRINT

the guidance influences sample denoising is tied to a hyperparameter, γ. Figure 8 shows the percentage of
generated feasible samples among generated samples versus γ. Note that when γ = 0, the denoising process
is the same as the standard DDPM. In addition to design feasibility, γ also affects the dataset coverage
of the generated samples, as shown in Figure 9. As defined in the Methods Section, generated samples
have increased realism with a generated sample by decreasing the Chamfer distance to its nearest neighbor
belonging to the dataset of designs. Similarly, the generated samples have increasing dataset coverage
with decreasing distance of every dataset point to its nearest neighbor belonging to the generated samples.
Realism and coverage are measured as the mean normalized chamfer distance between the generated hulls
and the dataset hulls. Table 3 quantifies coverage, showing that increasing γ reduces the dataset coverage
substantially. To maintain dataset coverage similar to the interpolation studies, γ should be less than or
equal to 0.35. To balance both design feasibility and dataset coverage among generated samples, γ is set
to 0.5. This way, feasible samples are generated 99.5% of the time and maintain a dataset coverage ratio
greater than 0.9. The remaining plots in this subsection capture a snapshot of samples generated with guided
diffusion with γ set to 0.2, 0.35, 0.5, 0.65, 0.80, and 1.0. Table 4 shows the trend of both increasing success in
generating feasible hulls. The PCA charts in Figure 10 illustrate the reduction in coverage with increasing γ.
Figure 11 shows that classifier guidance has a significant influence on the feasibility of generated samples
throughout the denoising process.

Figure 8: Hull design feasibility is highly dependent on γ in guided diffusion. The percentage of feasible generated hulls is
above 90% when γ is greater than 0.3

Figure 9: Realism and coverage of the generated samples is strongly affected by γ. When γ is approximately 0.5, the sum of
realism and coverage is maximized.
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Generation Method Chamfer Distance Normalized Coverage
(Lower is Better) (Higher is Better)

Random Dataset Sample 4.315 (Baseline) 1.000
Interpolation Study 1 5.099 0.965
Interpolation Study 2 2.976 1.059

CTGAN 5.660 0.940
Standard DDPM 4.672 0.984

Guidance: γ = 0.2 4.731 0.982
Guidance: γ = 0.35 5.067 0.967
Guidance: γ = 0.5 6.002 0.925
Guidance: γ = 0.65 8.453 0.817
Guidance :γ = 0.8 13.611 0.589
Guidance: γ = 1.0 27.054 -0.005

Table 3: The table provides the dataset coverage for the different sampling methods. These values are normalized between
the best- and worst-case scenarios found in the dataset. The standard DDPM covers the dataset better than the CTGAN. By
adding guidance to the DDPM, dataset coverage is maintained when γ ≤ 0.5.

Figure 10: Two-dimensional Principal Component Analysis of the hull parameterization shows that the dataset coverage is
reduced by increasing the hyperparameter, γ

4.3 Hull Generation with Performance Guided Denoising Diffusion Probabilistic Model

In addition to generating feasible samples, guidance can also generate high-performing parametric hull
designs. The following subsections provide the results from training performance prediction neural networks
on seven objectives and the results from measuring and simulating hulls generated using multi-objective
performance guidance.

4.3.1 Performance Prediction Training
Using the performance data from the Ship-D dataset, seven residual neural networks were trained to predict
the performance of the hulls given the parameterized design vector. Table 5 summarizes the results of the
training, using R2 as a measure of the goodness of fit for these neural networks. Figure 12 shows the plot
of the regression prediction versus the simulation calculation for the aggregate wave drag measurement.
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Generation Method Feasibility Rate
Interpolation Study 1 0.931
Interpolation Study 2 0.938

CTGAN 0.007
Standard DDPM 0.511

Guidance: γ = 0.2 0.839
Guidance: γ = 0.35 0.962
Guidance: γ = 0.5 0.995
Guidance: γ = 0.65 1.000
Guidance: γ = 0.8 1.000
Guidance: γ = 1.0 1.000

Table 4: The table shows the fraction of generated samples that are feasible. The standard DDPM generates feasible samples
73x more often than CTGAN. Increasing γ increases the proportion of feasible samples. All generated samples are feasible
when γ ≥ 0.65

Figure 11: Leveraging classifier guidance improves the feasibility of generated samples throughout the denoising process
compared to the standard DDPM (no guidance). The classifier guidance is tuned to γ = 0.5.

Figure 13 shows the same plots for the remaining six performance metrics. The blue dashed line in these
figures represents the perfect regression prediction, exactly aligning with the simulation calculation. The
wave drag coefficient, surface area, and volume prediction neural networks have high R2 fits and hug the
blue dashed line closely. The MaxBox and Gaussian Curvature predictions have lower R2 values, however,
they are still sufficient for use with performance-guided DDPM sampling [44].

Performance Objective Training Fit: [R2]
Wave Drag Cw 0.973
Surface Area50% 0.983
Surface Area100% 0.982
Volume50% 0.988
Volume100% 0.986
VolumeMaxBox 0.784
Gaussian Curvature 0.765

Table 5: The performance prediction neural networks have high goodness-of-fits to the training data, which enables
performance guidance in DDPM sampling with these objectives.
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Figure 12: Comparison of the neural network prediction to the simulation value (ground truth) across the dataset for
aggregate wave drag. This regression had a R2 equal to 0.973. A perfect prediction (R2 = 1) is shown by the blue dashed line.

4.3.2 Multi-objective Guided Performance Hull Generation
The seven performance prediction neural networks were implemented with the guided DDPM to generate
1000 hulls. Each objective in these samples was randomly weighted so that the influence of each of the
performance metrics varied among the samples. The feasibility classifier guidance was tuned to γ = 0.5 to
maintain some variability and dataset coverage among the samples and to not overpower the performance
guidance. The samples generated with performance guidance were feasible 83.9% of the time. The PCA
plot of these generated samples is shown in Figure 14. These samples do not cover the sample range of the
design space as the Ship-D dataset hulls.
After sampling, the 839 feasible hull designs were simulated and measured with the seven performance
objectives. The mean and standard deviation of the performance metrics among the Ship-D dataset and
the generated samples are provided in Table 6. These metrics are scaled according to Equations 5- 11,
so it is important to note that these values exist on a logarithmic scale. Among these samples, the wave
drag coefficients and displaced volumes showed significant improvements in their performance. These
improvements were at the expense of a relative increase in the surface area and Gaussian curvature. The
generated samples have wave drag coefficients for any single speed/draft condition that is, on average,
91.4% lower than the average wave drag coefficients of the Ship-D dataset hulls. For the displaced volumes,
these generated hulls have an average 114x increase in displaced volume in the bottom 50% of the hull
depth and an average 47.9x increase in the total displaced volume of the hull. The generated hulls have, on
average, 2.1x more total surface area, 4.4x more surface area in the bottom 50% of the hull, and 1.51x more
double curvature compared to the Ship-D hulls. This is not desirable. The MaxBox metric saw a small, but
negligible decrease in the volume ratio of the hull belonging to the MaxBox, where the generated samples
have an average 5.2% reduction in the MaxBox volume ratio compared to the hulls in the dataset. This result,
however, is far overshadowed by the substantial increase in total available volume in the hull.
In addition to measuring the performance of these hulls, a .stl mesh and 5 images of each hull were created
for visual analysis. Figure 15 shows nine of these hulls. A major difference in these generated hulls is their
higher length-to-beam ratios compared to the Ship-D hulls seen in Figure 2.

5 Discussion

The following subsections provide insight into the results of the studies presented. The first subsection
reviews the successful generation of feasible designs with the different DDPMs. The second subsection pro-
vides an analysis of the dataset coverage of the DDPMs, with special attention made to the γ hyperparameter
used in the classifier-guided DDPM. The third subsection analyzes the performance of the hulls generated
with performance guidance. The Appendix contains a discussion on the conditional DDPM study.
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Figure 13: Comparison of the neural network prediction to the simulation value (ground truth) across the dataset for the
remaining six performance metrics. All of these performance metric regressions are well resolved. A perfect prediction
(R2 = 1) is shown by the blue dashed line.

Performance Objective
Ship-D Dataset Generated Samples Scaled Factor

(Y∗gen) (Y∗DS) (Ygen/YDS)Mean Std. Mean Std.
Wave Drag Cw -73.40 17.38 -107.45 23.90 0.086
Surface Area50% -1.71 0.53 -1.07 0.19 4.365
Surface Area100% -1.09 0.45 -0.76 0.19 2.138
Volume50% 4.78 0.81 2.72 0.59 114.815
Volume100% 3.80 0.62 2.12 0.43 47.863
VolumeMaxBox -0.407 0.010 -0.384 0.072 0.948
Gaussian Curvature 2.43 0.529 2.61 0.24 1.514

Table 6: The table shows the mean and standard deviation of the performance metrics across the Ship-D dataset hulls and the
feasible generated hulls. The generated hulls saw a 47.9x increase in total volume and a 91.4% relative decrease in wave drag
coefficient across all speeds.

5.1 Feasibility Constraint Satisfaction

Of the different DDPMs, only the classifier-guided DDPM showed to successfully sample feasible parameter-
ized hull designs with the same success rate as the interpolation study. The standard DDPM, while only
producing a feasible hull approximately half of the time, was able to do so only by implicitly learning the
statistical relationships between design parameters in feasible hulls. The standard DDPM’s feasibility success
rate of 51.1% success rate is significantly higher than the success rate of 0.66% seen by randomly sampling the
design space. In the comparison between CTGAN and DDPM, a significant performance gap was identified,
particularly in constraint modeling. The CTGAN benchmark study revealed that the standard DDPM is
two orders of magnitude more successful at generating feasible hulls than the CTGAN model. While the
dataset coverage study demonstrated CTGAN’s ability to produce parameterized vectors representing the
dataset statistics, leading to high coverage, it struggled to generate these design vectors with combinations of
parameter values that result in high feasibility. This suggests that CTGAN may face challenges in implicitly
learning the statistical correlations between the parameters to the extent that DDPM does, underlying the
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Figure 14: Two-dimensional Principal Component Analysis of the hull parameterization shows that the performance-guided
DDPM with γ = 0.5 leads to sample coverage that is skewed relative to the distribution of the Ship-D dataset as a result of
the performance guidance.

Figure 15: A selection of hulls generated with multi-objective guided performance generation. Notice the relative slenderness
of the hulls leading to drastically reduced drag coefficients relative to the dataset hulls.

need for a comprehensive examination. Such an examination, backed by empirical and theoretical analysis,
is essential to delve deeper into the observed challenges and understand the inherent model characteristics
or learning behaviors causing the performance disparity. Without this thorough analysis, making definitive
claims regarding the observed differences remains speculative. A deeper comparative study on constraint
satisfaction across different deep generative models is needed to make such claims.
Finally, the guided classifier guidance showed that by tuning the γ hyperparameter, the rate of feasible
hull generation varied. In order to meet the feasibility benchmark of 93% feasible hulls, the γ should be set
between 0.35 and 1. Table 4 also shows that simply by including a small influence of guidance (γ = 0.2), the
success of generating feasible hulls improves significantly compared to the standard DDPM. For performance
guidance, the success rate of generating feasible hulls was 83.9%, which is lower than the benchmark target,
but this comes at the benefit of producing high-performing hulls, even with γ = 0.5. This reduction in
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the feasibility satisfaction rate is due to the added influence of the performance guidance, which does not
consider feasibility when generating samples. Further work in hyperparameter tuning can lead to higher
success rates in feasible and high-performing hull generation. Overall, a DDPM with classifier guidance can
be used to generate feasible design vectors with a high degree of success in an extremely complicated design
space.

5.2 Dataset Coverage

Among the DDPMs, there were varying degrees of dataset coverage. Visually comparing the design space
coverage of the Ship-D dataset hulls and the generated samples proved to be reasonably effective at analyzing
the dataset coverage. Among the two interpolation methods, interpolation between a random design vector
and its nearest neighbor was the best benchmark for dataset coverage as the diversity in the generated
samples relied on the diversity of the randomly selected design vectors. The standard DDPM was also
effective at maintaining dataset coverage as it was trained to generate sample hulls that are representative of
the hulls in the dataset, as seen in Figure 7. The standard DDPM also maintains dataset coverage better than
CTGAN. Finally, the DDPM with classifier guidance heavily relied on γ for maintaining dataset coverage.
As γ is increased to produce feasible hulls with a higher success rate, the dataset coverage of the feasible
samples decreases. Figure 9 was made to quantify the coverage and realism of the samples in addition to
visually inspecting the PCA distribution of the generated samples. The best balance of maintaining a high
feasibility success rate and dataset coverage was at γ ≈ 0.35 − 0.5, as shown in Table 3. With increasing
γ the generated samples lose diversity and cluster around the center of the PCA distribution. While the
performance-guided DDPM was not intended to generate designs that cover the dataset, Figure 14 suggests
that these generated samples do maintain some diversity and dataset coverage. Overall, the classifier-guided
DDPM is shown the maintain a large breadth of dataset coverage with careful tuning of its hyperparameters.

5.3 Performance Guidance

The DDPM with performance guidance produced hulls with mixed results. The performance guidance
created hulls with an average 91.4% lower drag and 47.9x higher displaced volumes than the hulls from
the original dataset. This is a highly desirable outcome of the performance guided sample generation.
This outcome, however, came at the expense of the generated hulls having increased surface area and
double curvature, which is not ultimately desirable. Further in-depth analysis, such as life cycle costs
assessments, is needed to weigh the impact these results would have on a real, scaled-up ship instead of a
non-dimensionalized parametric hull shape. Future work can also consider different tuning of the γ and
λ hyperparameters in the performance guidance of the hulls. The random λ weights used for this study
were likely not scaled appropriately for the magnitude of the gradients of the different performance metrics.
This could explain why the aggregate wave drag coefficient and displaced volume metrics were improved
drastically; while MaxBox was relatively unaffected, and surface area and Gaussian curvature were increased.
As these performance gradients were calculated using the weights of the regression neural networks, it
is possible that the magnitudes of gradients between the different regression models disproportionately
affected the net influence of guidance on design generation. This is rather apparent when comparing the
significant, yet desired, increase in hull volume and the undesired increase in surface area. These two
competing performance objectives should have maintained some balance of improvement across the DDPM
generated samples; however, the displaced volume performance objectives saw overwhelming improvement
that included a relative detriment to the surface area objectives. Nonetheless, the significant improvements
in wave drag coefficient and displaced volume have strong economic prospects on the cost of operating
a ship: the cost of fuel (drag) and the ability to generate revenue (carry cargo). Leveraging a DDPM with
performance guidance has been shown to generate hull shapes considering multiple objectives that can lead
to huge cost savings to ship operators. Future work will explore generating hulls with specific performance
requirements to find explicit applicability of guided DDPMs to generate hulls tied to real cost savings in ship
design.
In addition to the performance of the generated hulls, these generated samples share more semblance of real
ship hulls than do the Ship-D hulls. Figure 15 shows a sample of the generated hulls for visual inspection.
These hulls have higher length-to-beam ratios than the Ship-D hulls and have streamlines that are more akin
to real ship hulls.

6 Conclusion

The goal of this work was to generate ship hulls using a denoising diffusion probabilistic model that considers
the performance of the hull as part of the design generation. First, by training a DDPM on a dataset of
randomly generated feasible hull designs, the DDPM was able to implicitly learn statistical relationships
between the design parameters to generate feasible parametric hulls. Then, by incorporating guidance
from performance prediction models trained on the same dataset of hulls, the DDPM was able to generate
high-performing hulls with only information learned from the low-performing hulls in the dataset.
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One critical aspect of leveraging generative AI on parametric design information is to generate feasible
designs. A standard diffusion model can generate feasible hulls approximately 51.1% of the time. While
this is much better than the success rate seen by randomly generating hull parameterizations (∼ 0.66%),
standard diffusion models do not yield feasible hulls at rates similar to interpolation methods (∼ 93%). By
leveraging the gradients of a classifier during the sampling process, the standard DDPM saw increased
feasibility among generated hull designs. The classifier guidance in the denoising process was influenced by
a tunable parameter, γ. By varying γ, the guided DDPM was able to generate hulls with different success
rates of feasibility at the expense of design coverage across the dataset. It was found that γ = 0.5 led to high
hull feasibility (99.5%) with limited detriment to dataset coverage.
As guidance was shown to be the most successful and versatile method of producing feasible hull designs,
guidance was also used to generate high-performing designs. Seven neural networks were trained to
predict the different performance metrics given a hull’s design vector. The gradients of these performance
prediction neural networks were implemented for performance guidance in the DDPM’s sampling process.
The aggregate wave drag coefficients of the generated hulls had a 91.4% mean reduction in drag coefficient
compared to the Ship-D hulls. The total displaced volume of the generated samples was on average 47.9x
larger than the mean displaced volume of the Ship-D dataset hulls. However, surface area, Gaussian
curvature, and MaxBox of the generated samples did not improve compared to the hulls in the dataset.
Overall, the significantly reduced drag coefficients and increased displaced volume are extremely beneficial
to ship design. These performance metrics dictate how expensive a voyage is (fuel costs due to drag) and
how much cargo the ship can carry (how much money can be made on a voyage). With this work, the
economic prospect of leveraging generative AI to design ship hulls is shown.

6.1 Future Work

Future work will focus on the continued study of generative AI to generate ship hulls and other systems on
a ship. Immediate future work will look at continued tuning of the λ weights during performance guidance
to generate hulls that have improved performance in all of the objectives. To accomplish this, a study on
hyperparameter tuning and guidance gradients will be performed. Further, work in leveraging guided
diffusion to generate high-performing ship hulls with specific performance targets will be explored. The goal
of this future work is to generate hulls that consider specific user-defined constraints (such as dimensions,
volume, speed, etc.) with high performance. This way, the design of ship hulls using DDPMs could be
analogous to similarly structured online text-to-image DDPMs, such as Dall-E [38] and Stable Diffusion [39].
In addition to generating ship hulls, further work in DDPMs to generate other aspects of ship design will be
explored, such as structural design generation, packing arrangements, machinery, and outfitting on a ship.
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A APPENDIX: Conditional Diffusion Model

The appendix contains an additional study performed by training a conditional DDPM. Conditional DDPMs
are similar to the standard DDPM, however, their structure includes extra layers that embed extra information
in the training and sampling process. The extra information in this study is a sample’s classification of being
feasible or invalid. The following subsections detail the Methods, Results, and a Discussion on leveraging a
conditional DDPM to generate hull designs.

A.1 Methods

A tabular DDPM was built with additional conditioning embedding layers to influence the model to produce
designs that satisfy the feasibility constraints. In addition to the 30,000 parametric hulls in the Ship-D dataset,
20,000 design vectors were randomly generated that do not meet at least one of the feasibility constraints.
The feasible ship hull design vectors and the infeasible vectors were labeled respectively. While training
the tabular DDPM, the feasibility label was provided to the conditional embedding layer with its respective
design vector in training. The goal of the conditioning is to use that additional label to influence the sampling
process to guide the tabular DDPM to produce designs that satisfy the feasibility constraints. To modify the
standard DDPM to become a conditional DDPM modify the gradient step (Step 5) in the DDPM training
algorithm with Equation 16, where C is the conditional embedding layer that is concatenated to the first
layer of the standard DDPM. In sampling, replacing Step 4 of the sampling algorithm with Equation 17,
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where C is the same conditional embedding layer concatenated to the first layer of the DDPM. The DDPM
training and sampling algorithms are provided in Table 1 and Table 2, respectively. The Results Section
provides the sample distribution and constraint satisfaction of ship hull design vectors generated with the
conditioned tabular DDPM.

∇θ ||ϵ − ϵθ(
√

ātX0 +
√

1 − ātϵ, t, C)||2 (16)

Xt−1 =
1√
αt
(Xt −

1 − αt√
1 − ᾱt

ϵθ(Xt, t, C)) + σtZ (17)

A.2 Results

The conditional DDPM was trained on the thirty thousand Ship-D hulls that satisfy all forty nine constraints
and twenty thousand invalid samples that violate varying numbers of the forty nine constraints. Two separate
sample generations were performed with the conditional DDPM. The first study tried to intentionally
generate feasible hulls. Figure 16 shows that the conditional DDPM produces feasible hulls 39.8% of the
time. The PCA plot in Figure 17 shows that the spread of the generated samples is within the bounds of the
dataset. This conditional DDPM can also intentionally generate invalid samples. Although this is not useful
in design work, the generation of invalid samples with the conditional DDPM shows that the model can
distinguish between “positive” and “invalid” samples in sample generation. Figures 18 and 19 showcase
the results of hulls that were intentionally created to violate the hull parameterization’s feasibility criteria.

Figure 16: Bar graph showing the number of individuals generated with an increasing number of constraint violations.
Leveraging a conditional DDPM to generate hull parameterization leads to hull parameterizations that satisfy all constraints
39.8% of the time
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Figure 17: Two-dimensional Principal Component Analysis of the hull parameterization shows that hulls generated with a
conditional DDPM maintain most of the dataset coverage; however, there is less design feasibility among the samples than
desired.

Figure 18: Bar graph showing the number of individuals generated with an increasing number of constraint violations.
Leveraging a conditional DDPM to generate invalid hull parameterization leads to the generation of samples that violate a
large spread of a number of design feasibility constraints.
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Figure 19: Two-dimensional Principal Component Analysis of the hull parameterization shows that invalid hull samples
cover the dataset space and more, as some of the parameters are intentionally sampled outside of the feasible range of some
parameters.

A.3 Discussion

The conditional DDPM was not able to produce feasible hulls at a rate that meets the interpolation study
benchmarks. It was surprising to see how poorly the conditional DDPM performed given that the model
was trained with distinction between feasible and infeasible design vectors. The conditional model, however,
could intentionally create infeasible hulls at will, which further adds to the surprise of the poor feasible hull
generation. It seems that the conditional DDPM struggled to distinguish the statistical relationships between
the parameters in the feasible and infeasible hulls during training. This result did not yield improvement
over the standard DDPM in generating feasible hulls, but it was excellent in generating a large diversity
of hulls with at least one constraint violation. This could be useful in future studies concerning design
feasibility.

B APPENDIX: Parametric Hull Design: Parameters and Constraints

This appendix provides documentation for the 45 hull design parameters and the 49 algebraic feasibility
constraints. Figure 20 lists the design parameters, describes the features, provides the ranges for each
parameter in the Ship-D Dataset. Figure 21 lists each of the 49 algebraic constraints, and describes the
conditions to satisfy each constraint. By satisfying all 49 algebraic constraints, the hull will satisfy the two
feasibility criteria:

1. The hull is watertight, meaning that there are no holes on its surface.
2. The hull surface is not self-intersecting.
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Hull Section Variable Name Units/Scaling Measure Value Range in Dataset
LOA Length Overall Primary measure of ship’s scale in meters LOA = 10
Lb Length of Bow Taper Fraction of LOA 0.05 < Lb < 0.9
Ls Length of Stern Taper Fraction of LOA 0.0 < Ls < 0.9
Bd Beam at Midship Deck Fraction of LOA 0.0833 < Bd < 0.333
Dd Depth of Hull Fraction of LOA 0.05 < Dd < 0.25
Bs Beam at Stern Deck Fraction of Bd 0.0 < Bs < 1.0
WL Design Draft Fraction of Dd, used for bulb design 0.0 < WL < 1
Bc Beam at Chine Fraction of LOA 0.05 < Bc < 0.5
Beta Deadrise angle Degrees 0.0 < Beta < 45.0
Rc Radius of Chine Fraction of Bc (strictly positive) 0.0 < Rc < 1.0
Rk Radius of Keel Fraction of Dd (can be positive or negative) -1.0 < Rk < 1.0

BOW(A) -4.0 < BOW(A) < 4.0

BOW(B) -4.0 < BOW(B) < 4.0

BK Bow-Keel Intersect
Fraction of Dd where Bow curve and keelrise 
curve intersect

0.0 < BK < 1.0

Kappa_BOW Start of keelrise – Bow
Fraction of Lb, where keel-rises from Z =0 towards 
bow

0.0 < Kappa_Bow < 1.0

DELTA_BOW(A) -4.0 < DELTA_BOW(A) < 4.0

DELTA_BOW(B) -4.0 < DELTA_BOW(B) < 4.0

DRIFT(A) -4.0 < DRIFT(A) < 4.0

DRIFT(B) -4.0 < DRIFT(B) < 4.0

DRIFT(C) 0 < DRIFT(C ) < 60

bit_EP_S Lower stern taper bit
Defines if stern taper is (1) Ellipse or (0) Parabola 
below transom

1 or 0

bit_EP_T Upper stern taper bit
Defines if stern taper is (1) Ellipse of (0) Parabola 
for the transom

1 or 0

TRANS(A) Transom Slope
Transom(z) = Az + B, defines the transom position 
between Dd and SK

-3.0 < TRANS(A) < 5.0

SK Stern-Keel Intersect
Defines intersection of Transom and the keelrise 
for the stern, fraction of Dd

0.0 < SK < 1.0

Kappa_STERN Start of keelrise – stern
Fraction of Ls where keel rises from z = 0 towards 
transom

0.0 < Kappa_STERN < 1.0

DELTA_STERN(A) -4.0 < DELTA_STERN(A) < 4.0

DELTA_STERN(B) -4.0 < DELTA_STERN(B) < 4.0

Beta_trans Deadrise angle for transom Degrees 0 < Beta_trans < 60
Bc_trans Beam at Transom Chine Fraction of LOA 0 < Bc_trans < 0.5
Rc_trans Transom Chine Radius Fraction of Bc_trans 0 < Rc. Trans < 0.5
Rk_trans Transom Keel Radius Fraction of Dd*(1-SK) -1.0 < Rk_trans < 1.0
bit_BB Bulbous Bow Bit Defines if (1) there is a bulbous bow or (0) not 1 or 0
bit_SB Bulbous Stern Bit Defines if (1) there is a bulbous bow or (0) not 1 or 0
Lbb Length of Bulbous Bow Fraction of LOA 0.0 < Lbb < 0.2
Hbb Height of BB Max Length Fraction of WL*Dd 0.0 < Hbb < 1.0
Bbb Beam of BB Fraction of Beam at z = Hbb 0.0 < Bbb < 1.0

Lbbm Length of Long. Bulb Curvature Fraction of Lbb where Bulb curve begins -1.0 < Lbbm < 1.0

Rbb Fillet Radius for BB 
Defines fillet radius of BB-Bow intersect as a 
fraction of Lbb

0.05 < Rbb < 0.33

Kappa_SB Start Position of Stern Bulb Defines x position of Stern Bulb as a fraction of Lb 0.0 < Kappa_SB < 1.0

Lsb Length of Stern Bulb Fraction of LOA 0.0 < Lsb < 0.2
HsbOA Height overall of Stern Bulb Fraction of WL*Dd 0.0 < HsbOA < 1.0
Hsb Height of SB Max Length Fraction of HsbOA*WL*Dd 0.0 < Hsb < 1.0
Bsb Beam of SB Fraction of Beam at z = Hsb 0.0 < Bsb < 1.0

Lsbm Length of Long. Bulb Curvature Fraction of Lsb where Bulb curve begins -1.0 < Lsbm < 1.0

Rsb Fillet Radius for SB
Defines fillet radius of SB-Stern Intersect as a 
fraction of Lsb

0.05 < Rsb < 0.33

Stern Geometry

Constants to define curve for 
midship width

DELTA_STERN(z) = Az2+Bz+C, where C is solved 
algebraically. Defines x position where midship 
beam for given z is achieved along stern taper

Bulb Geometries

Principle 
Dimensions

Midship Cross 
Section

Bow Geometry

Constants for Parabolic Bow 
Shape

BOW(z) = Az2+Bz + C, where C is solved so that 
min(Bow(z)) = 0, A,B,and C are scaled by Lbb and 
Dd

Constants to define curve for 
midship width

DELTA_BOW(z) = Az2+Bz+C, where C is solved 
algebraically. Defines x position where midship 
beam for given z is achieved along bow taper

Constants for curve that define 
drift angle along BOW(z)

DRIFT(z) = Az2+Bz+C, defines the drift angle in 
degrees from the bow as a function of height.

Figure 20: List of the hull design parameters, their scaling, and their value ranges within the dataset.
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Hull Section
Constraint 

Index
Satisfaction Criteria

0 Lb + Ls < 1 so that the bow taper and the stern taper are confined within LOA
1 WL < 1 so that any bulb definition does not exceed the top deck in height 
2 The intersection of the gunwale and the chine filet is above the height of the chine, Dc
3 Rc > 1 – ‘Chine radius is strictly positive’
4 Bc > 1 – ‘Beam at the chine is strictly positive’
5 Dc > 1 – ‘Height of the chine is strictly positive.’ Dc is defined algebraically with Rk, Beta, and Bc.

6 The intersection of the chine fillet and the hull bottom is inboard of Bc. This avoids jump discontinuities in the mesh. 

7
The intersection of the (keel radius and the hull bottom) is inboard of the intersection of the (chine radius and the hull 
bottom). This avoids jump discontinuities in the mesh

8
Rk is not equal to exactly 0. This avoids divide-by-zero errors in solving for the hull. This defined with some margin so 
|Rk| > 1e-8

9
The start of the keelrise at the bottom of the hull is forward of DELTA_BOW at Z = 0. This avoids jump discontinuities 
in the mesh and provides some length for bow taper to happen 

10 The drift angle at Z = 0 is less than 90 degrees. This constraint avoids errors in solving for the bow taper.
11 The drift angle at Z = 0 is greater than or equal to 0. This constraint avoids errors in solving for the bow taper.
12 The drift angle at Z = Dd is less than 90 degrees. This constraint avoids errors in solving for the bow taper.
13 The drift angle at Z = Dd is greater than or equal to 0. This constraint avoids errors in solving for the bow taper.

14
The drift angle at Z where Z is the vertex of the drift angle parabola function is less than 90 degrees. This constraint is 
only considered if the vertex is between Z = 0 and Z = Dd. This constraint avoids errors in solving for the bow taper. All 
the drift angle constraints ensure that the drift angle is between 0 and 90 degrees across the depth of the hull

15

The drift angle at Z where Z is the vertex of the drift angle parabola function is greater than or equal to 0 degrees. This 
constraint is only considered if the vertex is between Z = 0 and Z = Dd. This constraint avoids errors in solving for the 
bow taper. All the drift angle constraints ensure that the drift angle is between 0 and 90 degrees across the depth of 
the hull

16 The intersection of the bow rake and the keel rise, BKx, is at an X >= 0.

17 The intersection of the bow rake and keel rise, BKx, is forward of the start of the keel rise along the bottom of the hull

18 The height of the intersection of the bow rake and keel rise, BKz, is greater than or equal to 0
19 The height of the intersection of the bow rake and keel rise, BKz, is less than or equal to Dd
20 The length of the bow taper at Z = Dd is positive.
21 The length of the bow taper at Z = BKz is postiive

22
The length of the bow taper at Z, where Z is the vertex of the parabolic function defined by DELTA_BOW, is positive. 
This constraint only applies of the vertex of DELTA_BOW is between Z = 0 and Z = Dd

23
The length of the bow taper at Z, where Z is the vertex of the parabolic function defined by BOW (the bow rake) is 
positive. This constraint only applies of the vertex of BOW is between Z = 0 and Z = Dd

24
The start of the stern rise at the bottom of the hull is aft of DELTA_STERN at Z = 0. This avoids jump discontinuities in 
the mesh and provides some length for stern taper to happen

25 The stern taper at Z = SKz, the height of the intersection between the stern rise and the transom, is positive

26
The stern taper at Z, where Z is the vertex of the parabolic function defined by DELTA_STERN, is positive. This 
constraint only applies of the vertex of DELTA_STERN is between Z = 0 and Z = Dd

27 The stern taper at Z = Dd is positive.
28 The intersection of the transom and stern rise, SKx, is aft of the start of the stern rise along the bottom of the hull
29 The beam of the transom chine is less than the beam of cross section at the height of the transom chine

30 The intersection of the transom gunwale and the transom chine filet is above the height of the transom chine, Dc_trans

31 Rc_trans > 1 – ‘Transom chine radius is strictly positive’
32 Bc_trans > 1 – ‘Beam at the transom chine is strictly positive’

33
Dc_trans > 1 – ‘Height of the transom chine is strictly positive.’ Dc_trans is defined algebraically with Rk_trans, 
Beta_trans, and Bc_trans.

34
The intersection of the transom chine fillet and the transom bottom is inboard of Bc_trans. This avoids jump 
discontinuities in the mesh. 

35
The intersection of the (transom keel radius and the transom bottom) is inboard of the intersection of the (transom 
chine radius and the transom bottom). This avoids jump discontinuities in the mesh

36 Bulbous Bow, BB, lower vertical radius is less than Rk
37 BB longitudinal radius is less than Rk
38 BB beam is less than the beam of the hull cross section at Z = the lower vertical radius of BB
39 BB is forward of DELTA_BOW at Z = 0
40 BB is forward of DELTA_BOW at Z = the vertex of DELTA_BOW if the vertex is between Z and WL
41 BB is forward of DELTA_BOW at Z = WL
42 Bulbous Stern, SB, lower vertical radius is less than Rk
43 SB longitudinal radius is less than Rk
44 SB beam is less than the beam of the hull cross section at Z = the lower vertical radius of SB
45 SB height overall (HSBOA) is less than SKz
46 SB is aft of DELTA_STERN at Z = 0
47 SB is aft of DELTA_STERN at Z = HSBOA
48 SB is aft of DELTA_STERN at Z = the vertex of DELTA_STERN if the vertex is between Z = 0 and HSBOA.

Principle 
Dimensions

Cross Section 

Bow Section

Stern Section

Bulb Forms

Note: Bulb constraints only activated if Bit_BB or Bit_SB are activated

Figure 21: List of the parametric hull design constraints and a description of their satisfaction criteria
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