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ABSTRACT

Deep Generative Machine Learning Models have been
growing in popularity across the design community thanks to
their ability to learn and mimic complex data distributions.
While early works are promising, further advancement will de-
pend on addressing several critical considerations such as de-
sign quality, feasibility, novelty, and targeted inverse design. We
propose the Design Target Achievement Index (DTAI), a differ-
entiable, tunable metric that scores a design’s ability to achieve
designer-specified minimum performance targets. We demon-
strate that DTAI can drastically improve the performance of gen-
erated designs when directly used as a training loss in Deep
Generative Models. We apply the DTAI loss to a Performance-
Augmented Diverse GAN (PaDGAN) and demonstrate superior
generative performance compared to a set of baseline Deep Gen-
erative Models including a Multi-Objective PaDGAN and spe-
cialized tabular generation algorithms like the Conditional Tab-
ular GAN (CTGAN). We further enhance PaDGAN with an auxil-
iary feasibility classifier to encourage feasible designs. To evalu-
ate methods, we propose a comprehensive set of evaluation met-
rics for generative methods that focus on feasibility, diversity,
and satisfaction of design performance targets. Methods are
tested on a challenging benchmarking problem: the FRAMED
bicycle frame design dataset featuring mixed-datatype paramet-
ric data, heavily skewed and multimodal distributions, and ten
competing performance objectives.

1 INTRODUCTION

Automatically creating innovative designs that outperform
all existing solutions and meet complex real-world engineering
constraints is the holy grail of data-driven engineering design.
This is an incredibly demanding task and current design automa-
tion tools remain insufficient for full autonomy in product de-
sign. Recently, Deep Generative Models have emerged as a vi-
able means to bring us toward this overarching design automa-
tion goal. Deep Generative Models (DGMs) refer to machine
learning algorithms that leverage sequential layers to learn pro-
gressively deeper understandings of design representations. Typ-
ically, these models are trained to understand the distribution of
existing designs in some design space (usually using a dataset of
existing designs), then generate new designs by sampling from
this learned distribution.

DGMs are typically trained to maximize the statistical simi-
larity between distributions of generated samples and the under-
lying data distribution. In engineering design, design objectives
and constraints make statistical similarity metrics insufficient and
sometimes inappropriate. Despite this, an overwhelming ma-
jority of research in engineering design continues to optimize
and evaluate methods using statistical similarity. We believe the
continuation of this practice is rooted in two central challenges.
Firstly, appropriate metrics to evaluate DGMs on engineering ob-
jectives such as design performance, feasibility, and novelty are
poorly established. Secondly, researchers lack effective methods
to build these auxiliary objectives into training procedures and
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instead fall back upon the established structural similarity as the
central training mechanism. Addressing these two challenges is
the central thrust of this paper.

Contributions: Our key contributions are summarized as fol-
lows:

1. We propose a multifaceted set of evaluation metrics for Deep
Generative Models in engineering design consisting of our
novel DTAI metric, as well as seven other metrics focusing
on design and performance space diversity, novelty, feasibil-
ity, and target satisfaction.

2. We introduce the Design Target Achievement Index (DTAI),
a differentiable scoring metric which allows Deep Genera-
tive Models to prioritize, meet, and exceed multi-objective
performance targets specified by a designer.

3. We augment a state-of-the-art Performance-Augmented Di-
verse GAN with a loss based on our DTAI function and fea-
sibility estimator and demonstrate that this framework yields
significant performance improvements, such as increasing
the average proportion of design targets met by 45% and the
proportion of feasible designs by 30% versus state-of-the-
art tabular generation methods. To our knowledge, this pro-
posed framework marks the first Deep Generative Method
that actively optimizes for overall design performance, di-
versity, feasibility, and target satisfaction simultaneously.

4. We evaluate several existing Deep Generative Models using
our proposed evaluation metrics on a challenging real-world
design dataset with ten competing objectives and compli-
cated regions of infeasibility. We demonstrate that our
DTAI-augmented method significantly outperforms baseline
DGMs in numerous performance metrics.

In the following sections, we discuss the dataset used, the meth-
ods tested, the evaluation metrics proposed, and the results of our
analysis.

2 REVIEW OF DEEP GENERATIVE MODELS IN ENGI-
NEERING DESIGN
In a recent review of Deep Generative Models (DGMs), Re-

genwetter et al. [1] discuss the application of DGMs across en-
gineering design fields and analyze key limitations in the current
state-of-the-art in DGM methodology. The authors suggest that
successfully addressing several key challenges will be essential
in the continued development of DGMs for engineering design.
Four of these challenges are design quality, design novelty, more
robust design representation methods, and targeted inverse de-
sign. In this section, we briefly summarize the state of the cur-
rent research, as well as key drivers behind each of these four
challenges. For a more detailed review and discussion, we refer
the reader to [1].

Design Quality: Design Quality (Performance) is an essential
component of the design process. Design quality may be com-
prised of many diverse (and sometimes competing) objectives.
For example, the key measures of a bicycle’s quality may in-
clude weight, cost efficiency, structural integrity, aesthetics, aero-
dynamics, and ergonomics. Designs must be high-performing
to be competitive, economically viable, and positively impact
customers. As Regenwetter et al. [1] note, most existing Deep
Generative Models fail to account for design performance of any
kind, instead solely training to minimize statistical divergence
between the distribution of generated samples and the original
data distribution. This trend can potentially be attributed to the
fact that most DGMs are adapted from disciplines such as com-
puter vision where “realism,” of generated samples is the ulti-
mate goal. In general, approaches to incorporate design quality
into DGMs fall into three broad categories:

1. Building performance-estimating objectives into the training
function of the DGM [2–5] allows the DGM to directly opti-
mize for performance during training. For example, Ahmed
& Chen [2,3], train a surrogate model which estimates aero-
dynamic lift and drag and build this surrogate into the overall
loss calculation to generate airfoil designs with high lift/drag
ratios. Chen & Ahmed’s approach simultaneously builds
a diversity score of the generated samples into the train-
ing procedure, which can improve design novelty, an objec-
tive that, like quality, is similarly overlooked when training
solely to minimize statistical divergence.

2. Iteratively training the DGM on datasets augmented with
high-perfoming generated designs [6–10] can bias genera-
tive models toward higher-performing regions of the design
space. For example, Shu et al. [8] generate 3D models of
aircraft, computationally evaluate their aerodynamic proper-
ties, then add high-performing models to their dataset before
retraining their model.

3. Fitting surrogate models to link a learned latent design rep-
resentation with performance parameters [11–15] can allow
direct gradient-based optimization of latent vectors to de-
code into designs. For example, Li et al. [14] use a varia-
tional autoencoder to learn a latent embedding of phononic
crystal designs, then optimize latent variables using a Deep
Neural Network by mapping latent vectors to target band
gap values.

Our proposed Design Target Achievement Index (DTAI) builds
on the first approach by directly aggregating performance esti-
mates into the novel DTAI training loss.

Design Representation: Designs can be digitized using count-
less representation schemes, and as Regenwetter et al. [1] note,
many commonly used parameterizations severely limit the us-
ability of generated designs in downstream tasks. Representa-
tions like images and voxelizations are easy to train on due to
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their spatially-structured properties, but generated designs are
difficult to evaluate using computational analysis tools like Fi-
nite Element Analysis, and even more challenging to physically
fabricate. DGMs trained on design representations using inter-
pretable physical dimensions of products are much more viable
in downstream tasks, but are significantly more challenging to
train, due to the lack of structure in their representation, mixed
datatypes, and heavily unpredictable distributions [16]. These
challenges of training DGMs on tabular parametric data are noted
across domains [17].

Inverse Design: Most existing DGMs in engineering de-
sign lack any mechanism to condition design generation to-
ward a specific set of designer-specified performance targets.
The recently proposed Performance-conditioned Diverse GAN
(PcDGAN) [18] generates designs whose performance exactly
matches a single designer-specified target performance. In this
work, however, we consider design problems in which the al-
gorithm attempts to exceed a set of multiple minimum perfor-
mance targets, a task which Deep Generative Models have, to our
knowledge, not yet addressed. However, many approaches from
the multi-objective optimization field consider such minimum
performance targets, albeit with some limitations. A common ap-
proach sees targets handled as hard constraints which take prece-
dence over any sort of design optimality. This approach is seen in
well-known optimization algorithms like NSGA-II [19], which
prioritize the resolution of constraint violation before moving on
to optimization. While this rigid treatment of design targets can
be helpful, hard constraints lack the nuance afforded by softer de-
sign objectives, a challenge which we address with our proposed
Design Target Achievement Index.

3 EVALUATING GENERATIVE MODELS
Establishing metrics to evaluate DGMs on training objec-

tives beyond structural similarity is essential. In engineering de-
sign, we are often given performance targets during design tasks
that constitute the minimum performance necessary to meet de-
sign goals. In practice, designers implicitly adapt their design
process based on these minimum performance targets in ways
that are difficult to quantify:

1. If a design is underperforming the performance target in a
particular design objective, design iterations should focus on
improving performance in this objective

2. If a design is drastically outperforming the performance tar-
get in a particular design objective, design iterations should
not prioritize the further improvement of this objective

3. Design metrics are typically weighted adaptively to match
the relative importance of different design targets.

While we can semantically describe these phenomena, the ex-
isting tools used in multi-objective design optimization like hy-

pervolume fail to capture their nuance. Instead, we propose the
Design Target Achievement Index, a fast, differentiable scoring
method of design performance that addresses each of these con-
cerns by adaptively weighting objectives and specifically reward-
ing designs that satisfy design targets (Sec. 3.1). We then discuss
several other metrics measuring various other aspects of design
generation, such as diversity and feasibility.

3.1 Design Target Achievement Index (DTAI)

We propose a novel approach to quantify a design’s perfor-
mance with respect to multiple performance targets in a single
metric. Consider a design, i, and let its performance be pi,k
with respect to a particular performance target, tk, for k ∈ {1...T}
where T is the number of design objectives (i.e. weight, safety
factor, etc.). In any given objective, k, we desire our design’s
performance to exceed the performance target: pi,k ≥ tk. In this
formulation, we require that design performance and targets be
strictly positive and the objectives maximized, however, most de-
sign objectives can be trivially reformulated as such. We express
the design’s performance with respect to each target as the ratio,
ri,k, between performance and the performance target:

ri,k =
pi,k

tk
(1)

When our design’s performance exceeds the target, ri,k ≥ 1. We
propose the following piecewise scoring function to compute an
individual target achievement score, si,k in terms of ri,k.

si,k =

{
αk(1− ri,k) ri,k ≤ 1
αk
βk
(1− eβk(1−ri,k)) ri,k > 1

(2)

This function is parameterized by two tuning factors, αk and βk,
which are best visualized graphically. αk adjusts the importance
of target k and can be thought of as the key weighting factor used
to tune the relative importance between performance targets. βk
is slightly more subtle and reflects the relative importance of fur-
ther improvement to the objective after the performance target
is met. Continuing to optimize some objectives may be more
helpful than others and this parameter gives designers the ability
to adjust for this nuance. For most design problems, we recom-
mend βk values around 3−5. Figures 1 and 2 show the effect of
adjusting αk and βk.

The individual scores si,k for each objective are easily
summed into an aggregate score, then scaled by the theoretical
minimum and maximum values for the sum, smin and smax. This
final result is our proposed Design Target Achievement Index,
sDTAI .

sDTAI,i =
(∑n

k=1 si,k)− smin

smax − smin
(3)
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FIGURE 1: Effect of α parameter on Design Target Achievement
Index.

FIGURE 2: Effect of β parameter on Design Target Achievement
Index.

smin and smax are easily derived as:

smin =−
T

∑
k=1

αk, smax =
T

∑
k=1

αk

βk
(4)

The proposed scoring function has numerous benefits that make
it desirable both in an evaluation setting and as an objective func-
tion for the training of Deep Generative Models:

1. DTAI has a large derivative with respect to an individual ob-
jective when it is currently underperforming the correspond-
ing performance target. Conversely, the objective has an ex-
ponentially decaying derivative with respect to an individ-
ual objective as it further outperforms the objective’s perfor-

mance target.
2. DTAI is differentiable across the entire space of possible

performance and constraint values and its derivative is con-
tinuous. This allows it to be used directly in the optimization
functions of gradient-based generative methods.

3. DTAI is easy to calculate, with computational cost scaling
linearly with the number of design objectives.

4. DTAI is bounded between zero and one. The gradient of
DTAI is also bounded given a particular set of α and β pa-
rameters.

5. The scoring function allows for easy weighting of objectives
and modulation of score decay, which enables easy and pre-
cise customization by the designer.

We note that this scoring metric is intended for use in targeted
inverse design applications, where generating high-performing
designs to meet a specific set of performance targets is the over-
arching goal. This score is poorly suited for quantification of
performance space coverage or unconditional design synthesis.

3.2 Hypervolume (HV)
Hypervolume is a useful metric for simultaneously quanti-

fying performance space coverage and overall design optimality
of a collection of design candidates. When calculating the hyper-
volume metric of a set of designs, we consider a T-dimensional
space where T is the number of design objectives. The hypervol-
ume is given by the volume of the union of all points within some
hypercube spanning one of the designs and a common reference
point.

Hypervolume is a frequently used metric in multi-objective
optimization and typically aims to quantify a solution set’s prox-
imity to the Pareto front [20, 21]. In the context of targeted in-
verse design (i.e. designing a product for a specific collection
of design targets) hypervolume suffers from several limitations.
In particular, hypervolume tends to 1) Over-reward further opti-
mization of objectives that have already exceeded performance
targets 2) Under-reward focused performance improvements to
meet performance targets 3) Ignore the relative importance of
different targets. 4) Require non-negligible computational ex-
pense. Though implanting design targets as the reference point
for hypervolume calculation is a method to ensure that only de-
signs that exceed all performance targets are scored, this method
remains rather inflexible since designs that nearly miss perfor-
mance targets are treated the same as designs that drastically miss
them. For this reason, we select a reference point far below the
performance targets of each objective, which we discuss further
in Sec. ??.

3.3 Design Diversity (DSD & PSD)
In generative design problems, we may seek to generate a

diverse set of design candidates to give a designer a variety of
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design possibilities. Given a set of generated designs, we can
score the diversity of each design by calculating its similarity to
the other designs in the set and averaging these values. Mathe-
matically,

sdiv, i =
1

n−1 ∑
j∈P

(φ(yi,y j)) (5)

Here, sdiv, i is the diversity score, y is the set of generated de-
signs, and yi refers to the ith design in the generated set. n is the
number of sampling iterations, P is a randomly selected set of
n designs from y, and φ is the kernel function calculating simi-
larity, in this case, Euclidean Distance. Design diversity can be
calculated in the design space by calculating the similarity be-
tween parametric design vectors, which we call Design Space
Diversity (DSD). Design diversity can also be quantified in the
performance space by calculating the similarity between vectors
of design performance values, which we call Performance Space
Diversity (PSD).

3.4 Design Novelty (DN)
Quantifying a design’s novelty can be important in real-

world design tasks where intellectual property is an important
concern. We adopt an approach based on [2]. Given a set of de-
signs, we can score the novelty of each design by calculating its
similarity to the designs in the original dataset and finding the
minimum value (similarity to the most similar original design).
Mathematically,

sDN, i = min
j
(φ(yi,x j)) (6)

Here, sDN, i is the novelty score, yi refers to the ith design in
the generated set, and x j refers to the jth design in the original
dataset. Again, φ is the kernel function calculating similarity, for
which we use Euclidean Distance.

3.5 Geometric Feasibility Rate (GFR)
Generating physically feasible designs is an important con-

sideration when evaluating generative methods. The Geomet-
ric Feasibility Rate is simply the ratio of total designs found to
be feasible to the number of designs where feasibility status is
known. By leveraging the simulation pipeline of the FRAMED
dataset, we have a convenient way to explicitly quantify the Geo-
metric Feasibility Rate of generated designs. Simply stated, fea-
sible designs satisfy a set of predefined feasibility rules provided
by FRAMED’s authors and furthermore build into a valid 3D
model provided.

3.6 Target Success Rate (TSR)
Evaluating a generative method’s ability to create designs

that satisfy performance targets is critical. While the Design Tar-
get Achievement Index (DTAI) proposed is largely affected by

a generated design’s ability to satisfy performance targets, quan-
tifying the raw fraction of performance targets satisfied is also a
helpful reference metric. This ratio is expressed as the fraction of
the design targets met or exceeded by any given design, weighted
by the importance (as specified by the designer) of the targets.

sT SR,i =
T

∑
k

αkqi,k (7)

qi,k =

{
1 pi,k ≥ tk
0 pi,k < tk

(8)

Here, T is the number of performance objectives. αk is the im-
portance of objective k and is the same parameter as the hyper-
parameter α in DTAI.

3.7 Minimum Target Ratio (MTR)
We may also want to evaluate the degree to which generated

designs are meeting or failing performance targets. For any gen-
erated design, yi and objective k consider the ratio ri,k between a
designs performance pi,k and the performance target tk. sMT R,i is
defined as the minimum such ratio.

sMT R,i = min
k

(
pi,k

tk

)
(9)

When the MTR is greater than one, it tells us by at least how
much the performance in each objective outperforms the perfor-
mance target. When the MTR is less than one, it tells us how far
the design is underperforming the target in its most delinquent
objective. Unlike the TSR, the MTR is not weighted by target
importance.

4 FRAMED DATASET
For this study, we select the recently-introduced FRAMED

dataset [22], which at the time of this work (version 1.0), con-
sists of 4500 community-designed bicycle frame models param-
eterized over 37 design variables: tube lengths, diameters, and
thicknesses, frame material, and frame junction locations. Three
sample frame models from the dataset are rendered and shown in
Figure 3. The FRAMED dataset provides model weight, and a
set of 9 structural performance measures for a total of 10 objec-
tives. These performance measures are derived from simulation
results calculated in Finite Element Analysis (FEA) under three
loading cases:

1. In-plane loading: Bottom bracket vertical and horizontal
displacement, Dropout vertical and horizontal displacement,
safety factor

2. Transverse loading: Bottom bracket lateral displacement
3. Eccentric loading: Bottom bracket vertical displacement and

rotation, safety factor
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FIGURE 3: Examples of geometrically feasible bicycle frame
models from the FRAMED dataset.

FIGURE 4: Examples of geometrically infeasible bicycle frame
models from the FRAMED dataset.

These performance metrics constitute a challenging mixed
optimization problem with competing objectives. This bicycle
frame optimization task is an active research field with significant
commercial investment.

Compared to other datasets frequently used to test and
benchmark generative methods, such as the UIUC airfoil
database, FRAMED’s ten objectives make for a significantly
more complex multi-objective optimization problem. Addition-
ally, FRAMED considers the problem of design feasibility by
sorting frames into feasible and infeasible designs. Frames are
determined to be infeasible through a systematic check of ge-
ometric flaws. These flaws include negative tube lengths and
thicknesses, triangles with one side longer than the sum of the
counterparts, or dimensions that would cause parts not to con-
nect. Some frames tha pass the explicit checks fail to generate
into a proper 3D model when built in the FEA simulation soft-
ware, the reasons for which are highly unpredictable and nearly
impossible to exhaustively list. Three frames that build incor-
rectly in the FEA simulation software are shown in Figure 4.
While most of these frames are invalid, their status is uncertain,
so they are discarded. FRAMED also presents a challenge for
DGM training in that it features mixed datatypes (categorical and
continuous), and features data with multimodal and skewed dis-
tributions, as seen in Figure 5. Unlike most DGM models used
for image data, DGM models for tabular data are less well un-

FIGURE 5: Examples of multimodal and skewed parameter dis-
tributions in FRAMED dataset.

derstood and are generally considered more challenging to train.
FRAMED also shares the simulation methodology, code,

and 3D CAD model files, which gives us the capability to sim-
ulate models we generate while testing the various Deep Gener-
ative Models discussed in this work. Critically, this allows us to
evaluate and benchmark these generative methods with a variety
of evaluation metrics, most of which are based on performance
values calculated using FRAMED’s simulation methodology.

5 GENERATIVE MODELS
In this section, we present the Deep Generative Models eval-

uated in this paper, discussing the core functionality and key
innovations of each method. We additionally present two triv-
ial baseline cases which we test alongside the Deep Generative
Models.

5.1 Baselines
To establish baselines, we consider two trivial “generative

methods” against which to benchmark more advanced frame-
works. The first of these is a simple random sampling from the
dataset. The second of these is a linear interpolation between
dataset designs. Mathematically, we generate an interpolant, dint
by randomly selecting two designs from the dataset, x1 and x2 as
well as in interpolation factor, γ ∈ [0,1]. Our interpolant is given
by:

xint = γ x1 +(1− γ)x2 (10)

While both of these random sampling methods may be practical
methods to select designs, we expect the Deep Generative Mod-
els tested to outperform these baselines in most metrics.

5.2 Generative Adversarial Network
Introduced in 2014, the Generative Adversarial Network

(GAN) [23] has become a staple across numerous fields, largely
due to its unprecedented performance in generating convincing
human faces [24]. The GAN consists of a generator network and

6 Copyright © 2022 by ASME



a discriminator network that play an adversarial game in which
the discriminator attempts to distinguish real samples from the
dataset from generated samples from the generator, while the
generator attempts to fool the discriminator. Though many vari-
ations of the GAN have been proposed, we use a standard GAN
as a baseline.

5.3 Tabular Generation Algorithms
The task of generating tabular parametric data frequently

occurs in non-design-related applications. As such, many al-
gorithms have been proposed to address the tabular generation
problem, though, to our knowledge, all have focused on sta-
tistical similarity as the key training objective. We test two
well-established methods, the Tabular Variational Autoencoder
(TVAE) and the Conditional Tabular Generative Adversarial Net-
work (CTGAN) [17] introduced by Xu et al. in 2019. CTGAN
and TVAE established state-of-the-art performance on tabular
data generation for their respective classes of generative meth-
ods (GAN and VAE). These methods serve primarily as a bench-
mark for high-performance methods that do not explicitly ad-
dress performance-aware design generation.

While we refer the reader to Xu et al.’s paper [17] for de-
tails, we summarize the key innovations below. CTGAN and
TVAE primarily address key challenges of tabular data, such as
multimodal or skewed distributions, mixed datatypes (continu-
ous and categorical), and skewed categories, all of which are
common in the FRAMED data. CTGAN and TVAE both im-
plement advancements to better handle both continuous and cat-
egorical datatypes in tabular data.

To better learn continuous data, the authors implement a
method that they call “mode-specific normalization.” This ap-
proach assumes that continuous variables fall into a Gaussian
Mixture distribution and learns a Variational Gaussian Mixture
Model. Sampled parameters are then probabilistically assigned
to a particular mode and represented in terms of this assigned
mode and the corresponding p-value within that mode’s Gaus-
sian distribution. This allows CTGAN and TVAE to more reli-
ably learn complex distributions over continuous parameters.

To better learn categorical data, CTGAN trains condition-
ally using possible values of every categorical parameter in the
data as the training condition. This prevents CTGAN from ig-
noring particular data categories, avoiding mode collapse. TVAE
improves performance on categorical data simply by employing
mixed activation functions in the final layer of its decoder. In
particular, categorical variables are generated using a softmax ac-
tivation. The combination of advancements for categorical and
continuous parameters in tabular data makes CTGAN and TVAE
particularly effective in mixed-datatype tabular generation prob-
lems.

In our testing, CTGAN and TVAE are trained on the original
dataset designs without any one-hot encoding and do not utilize

the performance data. We train for a maximum of 2000 epochs.

5.4 Performance-Augmented Diverse GAN (PaDGAN)
Introduced in 2021 by Chen & Ahmed, the Performance-

Augmented Diverse GAN (PaDGAN) [2] specializes in
performance- and diversity-aware design generation. PaDGAN
demonstrated convincing synthesis performance on a variety of
synthetic datasets as well as an airfoil design problem, generat-
ing a diverse set of samples that significantly exceeds the original
dataset in average performance.

We refer the reader to the original paper by Chen & Ahmed
for implementation details but summarize the key innovations
below. PaDGAN implements an auxiliary training loss based
on a Determinantal Point Process (DPP), which calculates a ma-
trix over a batch of designs based on the similarity of designs
in the batch and the quality (performance) values of the designs.
The DPP loss is then calculated from this DPP matrix using a
scaled log determinant. PaDGAN relies either upon a determin-
istic quality function or a differentiable approximation for the
quality known as a surrogate model.

An essential component of PaDGAN is a rapid performance
evaluation method, which can be queried during training to eval-
uate generated design candidates. Our performance objectives
have no deterministic relations based on design parameters and
simulating designs in the training loop is too costly, so we fit
a surrogate model to approximate the ten adjusted performance
values and provide this model to PaDGAN to query during train-
ing. We select a deep neural network with four hidden lay-
ers of 200 neurons and batch-normalization and rectified lin-
ear unit activation functions after every hidden layer. This sur-
rogate achieves a coefficient of determination of 0.681 on the
entire dataset, implying that the regression fit is moderately
strong. While FRAMED’s authors present a higher-performing
surrogate based on ensembles of individual regressors, including
non-differentiable tree-based regressors, PaDGAN requires that
the loss calculation be fully differentiable. Identifying higher-
performing differentiable surrogates is an area for future work.

PaDGAN inherently optimizes for a single objective, but
Chen & Ahmed extend PaDGAN to Multi-Objective PaDGAN
(MO-PaDGAN) with a method for combining multiple objec-
tives into a single aggregate score. MO-PaDGAN proposes com-
puting a randomly averaged weight of the different performance
values for each sample propagated through the scoring function.
The authors’ primary motivation for this approach is the explo-
ration of different regions of the design space’s “Pareto-front.”
The Pareto-front is a boundary of the design space consisting of
all potentially “optimal” designs where any improvement in one
objective must come at the expense of another. Since PaDGAN
and MO-PaDGAN require that objectives be maximized, we try
taking a simple inverse to convert deflection and weight objec-
tives into maximization problems. We find that MO-PaDGAN
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trains unstably since it requires that performance scores within
a batch be of similar magnitudes. This instability traces back to
unbounded individual objective scores since objectives can be ar-
bitrarily close to zero before inversion. To avoid this instability
we propose an alternate approach that bounds resultant scores:

si,k =
pk,med

pk,med + pi,k
(11)

Here, pk,med is the median performance in objective k of all
dataset designs, while pi,k is the performance of a particular de-
sign, i to be scored. Scores can then be weighted using the below
function, where wk are random weights in a given range, say,
[0,1].

sMO,i =
∑

T
k si,k ∗wk

∑
T
k wk

(12)

5.5 DTAI and Classfier-augmented PaDGAN
While the proposed approach allows us to use MO-PaDGAN

on FRAMED, we propose to replace sMO scores with Design
Target Achievement Index (DTAI) scores instead. DTAI is better
suited for targeted inverse design, spending less time exploring
regions of the design space and focusing on direct optimization
given a specified set of minimum performance targets.

We further augment PaDGAN with an auxiliary classifier
trained to classify feasible bicycle frames. We scale our DTAI
score by this classifier’s predicted likelihood of the given frame
being geometrically valid and use this scaled score in PaDGAN’s
DPP loss.

sTot,i = sDTAI,i ∗Q(yi) (13)

Here, Q is a classifier that predicts the likelihood of a design, yi
to be valid. Like the regressor, we are limited to differentiable
surrogates and select a neural network that achieves a classifi-
cation F1 score of 0.71. PaDGAN implements two tuning pa-
rameters, γ0, which adjusts the weight of performance score in
the loss function (compared to diversity), and γ1, which adjusts
the weight of the combined performance and diversity loss in the
overall training respectively. We set γ0 = 5, γ1 = 0.5, and train
for 50,000 iterations.

6 METHODOLOGY
To test each of the methods, we first train the framework

on only the valid designs in the full FRAMED dataset. We
then generate 250 designs using the trained model, filter out ini-
tially infeasible designs, then simulate all remaining designs us-
ing the FEA simulation framework proposed in FRAMED. We
then evaluate all feasible designs on the evaluation metrics pro-
posed (save for Geometric Feasibility Rate, which is evaluated as

the ratio of feasible to infeasible designs). We repeat this process
three times for every method and report median scores over the
three instantiations.

6.1 Data Preprocessing
FRAMED’s raw deflection values are given as absolute de-

flections, but we simplify to only consider deflection magnitudes.
Since we assume the maximization of a set of positive objectives,
we invert deflection and weight objectives (excepting PaDGAN
when DTAI loss is not used – See Section 5.4). We hereby re-
fer to these modified performance values as the ‘adjusted perfor-
mance values.’ We discuss some of the training intricacies below.

6.2 Evaluation Metrics
Hypervolume calculations require a reference point. We se-

lect a reference point for hypervolume calculations such that each
dimension’s coordinate is equal to the FRAMED data’s 1st per-
centile objective score (worse than 99% of FRAMED designs in
each metric). Design Target Achievement Index, Target Success
Rate, and Minimum Target Ratio all require a set of minimum
performance targets. We select these targets to be equal to the
75th percentile objective score (better than 75% of FRAMED de-
signs in each metric). Note that many objectives are difficult to
simultaneously optimize since they inherently compete, so there
is no guarantee that these minimum performance targets are even
possible to simultaneously satisfy. This is a challenging objec-
tive, but realistic from an inverse design standpoint, as a designer
may often set difficult or even impossible targets and expect a de-
sign that comes as close as possible.

7 RESULTS
The overall results of our testing are shown in Table 1. We

find that CTGAN and TVAE yield similar results, so we only
present CTGAN results for simplicity. Table 2 presents an ab-
lation study analyzing the contributions of the DTAI loss and
auxiliary classifier to the proposed method’s performance. Fig-
ure 6 presents Violin plots of the distribution of Design Tar-
get Achievement Index, Target Success Rate, and Minimum Tar-
get Ratio over the space of generated designs for baseline meth-
ods. A continuous distribution is approximated over the 250 de-
signs generated by each method using a Kernel Density Estimate
(KDE).

7.1 Feasibility Performance
GAN and CTGAN perform poorly in generating feasible de-

signs. Many of the infeasible designs generated result from neg-
ative tube thicknesses, explaining interpolation’s strong perfor-
mance in feasibility since interpolating between positive thick-
nesses can never be negative. The difficulty to respect these
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TABLE 1: Deep Generative Models scored on the eight proposed evaluation metrics. Models from left to right: Randomly sampled
design subsets from the FRAMED dataset (Dataset), Random Interpolation between FRAMED designs (Interpolation), Vanilla GAN
(GAN) Conditional Tabular GAN (CTGAN), Proposed PaDGAN with DTAI and auxiliary Geometric Feasibility Classifier (Proposed)

Metric Dataset Interpolation GAN CTGAN Proposed

Mean Design Space Diversity (DSD) 8.60 13.28 10.08 14.12 9.48

Mean Performance Space Diversity (PSD) 3.80 3.40 2.71 3.95 2.71

Mean Design Novelty (DN) 0.00 7.17 8.30 8.02 9.96

Geometric Feasibility Rate (GFR) (%) 100.0 100.0 65.2 65.7 95.9

Hypervolume (HV) *10ˆ-7 4.81 4.00 3.04 3.54 3.82

Mean Design Target Achievement Index (DTAI) 0.53 0.58 0.71 0.52 0.79

Mean Target Success Rate (TSR) (%) 24.0 31.3 28.6 24.4 69.8

Mean Minimum Target Ratio (MTR) 0.32 0.37 0.41 0.32 0.43

TABLE 2: Ablation Study Contrasting Proposed PaDGAN with DTAI training loss and auxiliary classifier against PaDGAN without
DTAI (-DTAI), without the auxiliary classifier (-CLF), and MO-PaDGAN (-DTAI, -CLF).

Proposed -DTAI -CLF -DTAI, -CLF

Mean Design Space Diversity (DSD) 9.48 6.21 5.80 7.11

Mean Performance Space Diversity (PSD) 2.71 2.24 2.44 2.62

Mean Design Novelty (DN) 9.96 9.90 10.52 9.94

Geometric Feasibility Rate (GFR) (%) 95.9 82.5 83.2 87.1

Hypervolume (HV) *10ˆ-7 3.82 3.82 3.40 2.95

Mean Design Target Achievement Index (DTAI) 0.79 0.80 0.72 0.69

Mean Target Success Rate (TSR) (%) 69.8 67.7 51.4 48.4

Mean Minimum Target Ratio (MTR) 0.43 0.51 0.46 0.42

feasibility constraints reflects the GAN and CTGAN’s difficulty
to learn sharp thresholds. In contrast, the auxiliary classier in
the proposed method provides the model with a strong gradient
signal to avoid infeasible regions and shift the model’s learned
thresholds.

7.2 Target Achievement Performance
Interpolation, GAN, and CTGAN all perform poorly in Tar-

get Success Rate (TSR), each achieving less than 1 in 3 design
targets on average per design. In the proposed method, DTAI
guides PaDGAN training to specifically achieve design targets,
scoring just under 70% design feasibility on average. Its dis-
tributions across designs are also significantly more consistent

than competing objectives, as seen in Figure 6. Using DTAI as
a loss unsurprisingly improves DTAI scores, which themselves
are highly reflective of target achievement performance. Inter-
estingly, the standard GAN achieves moderately higher DTAI
performance than the dataset, perhaps because it fails to capture
less-conventional portions of the design space that may tend to-
wards lower performance. PaDGAN with DTAI also achieves the
best average Minimum Target Ratio (MTR), indicating that it is
coming closer to targets across all objectives. This improvement
in MTR is less pronounced than TSR or DTAI, potentially be-
cause MTR doesn’t reflect the designer’s weighting of objective
importance, while the DTAI loss guiding training does. Nonethe-
less, the improvement of MTR over baselines is still significant.

9 Copyright © 2022 by ASME



FIGURE 6: We demonstrate violin plots over the set of designs synthesized by each generative method for several metrics. Approxi-
mate distributions generated using Kernel Density Estimates are denoted with the colored curves. The black vertical boxes denote the
interquartile range of the distribution, while the thin vertical line denotes the 5%-95% confidence interval. The median is denoted with
a white point.

PaDGAN with DTAI even improves in Hypervolume scores over
GAN and CTGAN. This indicates that despite the emphasis on
targeted improvements to objectives, the overall performance of
the generated set across all objectives is increased.

7.3 Ablation Study
The ablation study shown in Table 2 contrasts the proposed

PaDGAN with DTAI and auxiliary classifier against variants

without the classifier (-CLF) and using MO-PaDGAN’s ran-
dom objective weighting instead of DTAI (-DTAI). We note
that the standard MO-PaDGAN (-DTAI, -CLF) was arguably
the previous state-of-the-art in performance-aware design gen-
eration using DGMs. We outperform Mo-PaDGAN in ev-
ery metric tested, with significant improvements in feasibility
(95.9% from 87.1%), DTAI (0.79 from 0.69), Target Success
Rate (TSR) (69.8% from 48.4%), and Hypervolume (3.82E − 7
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from 2.95E −7).

8 LIMITATIONS AND FUTURE WORK
We demonstrated the sweeping improvements that can be

achieved by incorporating feasibility and performance into DGM
training losses. As discussed in Section 2, an inherent limitation
with this approach is that the entire loss calculation procedure
must be differentiable, which necessitates differentiable evalua-
tion functions and surrogate models. Developing higher perform-
ing surrogates or even rapid differentiable numerical simulations
is a promising approach to improve DGM performance.

Since scoring methods requires time-intensive numerical
simulation, we were limited in the tuning of the generative meth-
ods tested, and acknowledge that results may vary depending
on the initialization of methods. While we mitigated this un-
certainty by simulating three batches of 250 designs from three
instantiations of each method and taking median values, mod-
erate variability in results can be expected. Future work may
include testing larger number of samples and more runs to im-
prove the confidence in the results, as well as exploring effects
of hyperparameter selections.

This work leaves many avenues for further expansion.
Training using only a high-performing subset of bicycle frames
from the dataset may improve the performance of the DGMs
tested, particularly the vanilla GAN and the tabular generation
algorithms, as they factor in no notion of design performance.
Testing the DTAI metric with other performance-aware genera-
tive frameworks besides PaDGAN would also be valuable. Fi-
nally, testing more methods and datasets would yield a more
complete perspective. We encourage researchers to test new gen-
erative methods using our evaluation metrics on the FRAMED
dataset or other datasets of their choice. We also hope to compare
and contrast DGMs tested in this work against Multi-Objective-
Optimization approaches such as NSGA-II [19].

Throughout the testing of DGMs in this work, we eval-
uated feasibility of roughly 14,000 bicycle frame designs and
simulated roughly 10,000 using the same methodology as the
FRAMED dataset. While these DGM-generated datapoints
should be used with caution as training data for other DGMs
to limit potential bias, they may serve as an excellent addition
to the FRAMED dataset for supervised learning tasks (and indi-
rectly improve future DGM performance by improving accuracy
and generalizability of surrogate models.

9 CONCLUSION
We introduce a novel differentiable scoring metric called

Design Target Achievement Index (DTAI) which allows Deep
Generative Models to prioritize, meet, and exceed multi-
objective performance targets. We augment a Performance-
Augmented Diverse GAN with our DTAI objective and demon-

strate significantly improved performance in design generation.
We then further augment this PaDGAN with an auxiliary classi-
fier to encourage the generation of feasible results. To bench-
mark our method, we evaluate a variety of Deep Generative
Models, including the Multi-Objective PaDGAN, and special-
ized tabular generation algorithms CTGAN and TVAE. Methods
are tested on a challenging bicycle frame design problem with 10
performance objectives. To rigorously evaluate methods for di-
versity, novelty, constraint satisfaction, overall performance, and
feasibility, we propose a comprehensive set of evaluation met-
rics and score all tested methods on these metrics. The proposed
PaDGAN with DTAI loss and auxiliary classifier significantly
outperforms baselines in most performance objectives and fur-
ther outperforms other PaDGAN variants in ablation studies. All
in all, this work establishes a novel Deep Generative Frame-
work that actively optimizes performance, diversity, feasibility,
and target satisfaction to establish a new state-of-the-art in de-
sign generation using Deep Generative Models.
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