
LINKS: A DATASET OF A HUNDRED MILLION PLANAR
LINKAGE MECHANISMS FOR DATA-DRIVEN KINEMATIC
DESIGN

Amin Heyrani Nobari ∗1, Akash Srivastava2, Dan Gutfreund3, and Faez Ahmed4

1 Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139, Email: ahnobari@mit.edu

2MIT-IBM Watson AI Lab, IBM Research, Cambridge, Massachusetts 02142, Email:
akash.srivastava@ibm.com

3MIT-IBM Watson AI Lab, IBM Research, Cambridge, Massachusetts 02142, Email:
dgutfre@us.ibm.com

4Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA
02139, Email: faez@mit.edu

ABSTRACT

In this paper, we introduce LINKS, a dataset of 100 million one degree of free-
dom planar linkage mechanisms and 1.1 billion coupler curves, which is more
than 1000 times larger than any existing database of planar mechanisms and is not
limited to specific kinds of mechanisms such as four-bars, six-bars, etc.which are
typically what most databases include. LINKS is made up of various components
including 100 million mechanisms, the simulation data for each mechanism, nor-
malized paths generated by each mechanism, a curated set of paths, the code used
to generate the data and simulate mechanisms, and a live web demo for interactive
design of linkage mechanisms. The curated paths are provided as a measure for
removing biases in the paths generated by mechanisms that enable a more even de-
sign space representation. In this paper, we discuss the details of how we can gen-
erate such a large dataset and how we can overcome major issues with such scales.
To be able to generate such a large dataset we introduce a new operator to gener-
ate 1-DOF mechanism topologies, furthermore, we take many steps to speed up
slow simulations of mechanisms by vectorizing our simulations and parallelizing
our simulator on a large number of threads, which leads to a simulation 800 times
faster than the simple simulation algorithm. This is necessary given on average,
1 out of 500 candidates that are generated are valid (and all must be simulated to
determine their validity), which means billions of simulations must be performed
for the generation of this dataset. Then we demonstrate the depth of our dataset
through a bi-directional chamfer distance-based shape retrieval study where we
show how our dataset can be used directly to find mechanisms that can trace paths
very close to desired target paths. Furthermore, we discuss how we plan to expand
LINKS to include more complex mechanical components and expand the dataset
in the future. our work is available at https://github.com/ahnobari/LINKS. We be-
lieve LINKS will enable a vast array of computational approaches in kinematic
design.

INTRODUCTION

The analysis and synthesis of the kinematics of different mechanisms are among the longest-standing
problems in engineering design, capturing the attention of many scientists and engineers throughout
history (Lipson, 2008). Despite the attention on kinematic synthesis, the design of complex kine-
matic systems is still not well-understood and is often limited to specific tasks, which require trial

∗Address all correspondence to this author.

1



and error, expert knowledge, or heuristics to find good designs. In recent decades, however, the in-
troduction of computational design approaches has shifted the focus toward inverse kinematic design
using optimization methods (Lipson, 2008; Bächer et al., 2015; Cabrera et al., 2002; Varedi-Koulaei
& Rezagholizadeh, 2020; Ebrahimi & Payvandy, 2015; 10., 2010; Khan et al., 2015b; McGarva,
1994; Chu & Sun, 2010a; Deshpande & Purwar, 2019a; Vasiliu & Yannou, 2001; Deshpande &
Purwar, 2019b; 2020; 10., 2018; Radhakrishnan & Campbell, 2011; Khan et al., 2015a). Amongst
computational approaches, there is rising interest in applying data-driven approaches for inverse de-
sign. This has led to a plethora of research on the application of statistical machine learning and deep
learning models in inverse kinematics (Vasiliu & Yannou, 2001; Deshpande & Purwar, 2019b; 2020;
Khan et al., 2015a) and engineering design (Regenwetter et al., 2021). Unlike optimization-based
approaches which may suffer from large design space, data-driven approaches present the oppor-
tunity of learning compact representations from existing datasets. However, many computational
and data-driven approaches are limited by the size of datasets available, with some only focusing
on modifying existing mechanisms (Bächer et al., 2015) and others limited to specific topologies of
mechanisms (such as 4-bars, 6-bars, etc.) (Cabrera et al., 2002; Varedi-Koulaei & Rezagholizadeh,
2020; Ebrahimi & Payvandy, 2015; 10., 2010; Khan et al., 2015b; McGarva, 1994; Chu & Sun,
2010a; Deshpande & Purwar, 2019a; Vasiliu & Yannou, 2001; Deshpande & Purwar, 2019b; 2020;
Khan et al., 2015a). These limitations are primarily due to a very large design space — the range
of problem requirements and mechanism variations are practically limitless. As such, learning the
entire design space requires large training datasets, which are hard to collect and time-consuming to
simulate.

Large public datasets, such as IMAGENET (Deng et al., 2009), MNIST (Ciresan et al., 2011),
CIFAR-10 (Krizhevsky, 2009), with millions of annotated examples, have been widely attributed as
one of the leading factors behind the success of machine learning approaches in computer vision. In
contrast, one of the major roadblocks facing data-driven methods for the engineering design com-
munity and not just inverse kinematic design when it comes to applying deep learning approaches
is a lack of large public datasets (Regenwetter et al., 2021). We note that the data used in exist-
ing data-driven kinematic design approaches is limited by both size (most current databases include
tens of thousands of mechanisms (Deshpande & Purwar, 2019a;b; 2020)) and complexity of mecha-
nisms (limited to 4-bars, 6-bars, etc.). As such, there is a need for large public datasets for kinematic
design, which can enable high-performing data-driven models, provide a library of designs for prac-
titioners to study, and establish benchmark problems for future work.

Producing very large datasets for kinematic design is a challenging problem due to the need for an
appropriate representation scheme that does not waste resources in creating infeasible designs, and
the large computation time required in simulating the movement of all linkages and ensuring diver-
sity in the dataset. To address these gaps, we introduce LINKS, a dataset of 100 million one degree of
freedom (1-DOF) planar linkage mechanisms with complexity going up to 20 linkage joints. LINKS
is created with a primary focus on the “Path Generation” problem. The path generation problem is
the task of designing linkage mechanisms that generate a particular path described by a finite series
of point coordinates. The dataset is made up of a large number of mechanisms and the simulated
coupler paths traced by each joint of said mechanisms. However, it can be extended easily to other
types of problems such as “Function Generation” and “Motion Generation” (See (McCarthy & Soh,
2010)).

To produce LINKS, we overcome significant roadblocks. First, we create an efficient generation
scheme that allows for randomly sampling valid mechanisms. To do this, we introduce a new op-
erator that guarantees to create valid, non-degenerate, and non-locking mechanisms without any re-
dundancies. We show that the proposed operator is more efficient than a widely used operator from
literature (Lipson, 2008). Second, we develop an efficient forward simulation algorithm, which is
both vectorized and parallelized, enabling us to simulate mechanisms on a multi-core system in half
a second, compared to the 454 seconds needed by a single thread non-vectorized solver. As we dis-
cuss later, the algorithm randomly samples many parameters, which leads to locking mechanisms
in the majority of the simulations. For example, randomly sampling mechanisms with more than
ten joints lead to a 99% infeasible (locking) mechanism (see Fig. 4), requiring a simulator to do a
hundred simulations before adding one item to the dataset. Creating an efficient simulator allowed
us to generate the LINKS dataset in hours instead of requiring months.

Another challenge faced in generating a dataset of linkages and associated coupler paths is the
extreme skewness in the types of shapes obtained from all the coupler paths. We observe that two

2



types of shapes, circles, and arcs, make up 62% of the paths traced. These two shapes are less
interesting from the perspective of inverse kinematic synthesis (as theoretical solutions for such
shapes are easily obtained). To address this issue, we detect and filter these shapes, which leads
to two datasets. One raw dataset with everything and one curated subset of paths, which randomly
removes 99.5% of these two shapes and associated mechanisms.

We believe LINKS can serve as a standard dataset for kinematic synthesis for data-driven approaches
and help establish a common benchmark for future comparison of different machine learning meth-
ods. Furthermore, we hope that the introduction of such a large dataset will help garner more atten-
tion toward the kinematic synthesis problem and expedite the research and amount of information
accumulated on the topic.

The key contributions of this paper are:

1. We propose a new operator, named J-operator, that allows us to generate feasible mecha-
nisms with a single degree of freedom.

2. We release the first publicly available linkage mechanism dataset, named LINKS, with 100
million mechanisms and 1.1 billion coupler curves.

3. We create a vectorized and parallelized forward solver, 800 times faster than a non-
vectorized solver.

4. To show that 62% of the coupler curves are circular and arc-shaped, revealing a large bias
in the dataset. We filter the dataset to reduce this bias and identify a curated subset of 600
million coupler curves.

5. We demonstrate a case study of mechanism retrieval by implementing a shape similarity-
based search on LINKS and show that it yields accurate and diverse results, showing the
efficacy of the dataset.

BACKGROUND & RELATED WORK

In this section, we provide a brief background on the path and motion generation problem in planar
linkages and discuss different approaches that are typically employed in the current literature. Then,
we will discuss the sequential generation of 1-DOF mechanisms and give an overview of simulation
approaches in the existing literature. For a more in-depth discussion on the topic of linkages and their
kinematics, interested readers are referred to (Erdman & Sandor, 1984; McCarthy & Soh, 2010).

COMPUTATIONAL INVERSE KINEMATICS

Computational approaches toward the inverse kinematics problem fall into three primary categories:
a) Numerical atlas-based approaches, b) Optimization-based approaches, and c) Data-driven ap-
proaches. With the advent of machine learning, data-driven kinematic design is rising in popularity.
While the LINKS dataset directly enables better data-driven design by providing a large and diverse
training dataset, it can also help improve the first two approaches by enabling a search over a larger
space or providing candidates for smart initialization of optimization methods.

Numerical atlas-based approaches: The first approach is when a database of mechanisms is
created and the paths produced by said mechanisms are used as a sort of a “numerical atlas”. The
atlas can be employed to look up the closest paths to any given desired path and use the associated
mechanism in the existing database as a solution. This retrieval step can also be integrated with a
local optimization of the mechanism to get as close to the desired path as possible (McGarva, 1994;
Chu & Sun, 2010b; Sun et al., 2015). In most of these approaches, the numerical atlas is usually
limited to a specific kind of mechanism or a handful of mechanism types, such as a four-bar or a
six-bar mechanism. These simple mechanisms with a few joints are limited in the types of paths
they can generate. In the example of four-bars, it is known that at most five points of a path can
be exactly matched (and even that is not always possible) (Reuleaux, 1875), which shows that even
with a sizeable atlas, the range of possible paths that can be traced will be limited. In LINKS, we
overcome this limitation by including mechanisms with a significantly higher number of joints and
providing an atlas of 1.1 billion coupler paths.

3



Optimization-based approaches: The second approach is what we call optimization-based ap-
proaches. These include works that employ different kinds of optimization algorithms to find the
most suitable mechanisms for any given target path. Although some researchers use genetic algo-
rithms or genetic programming methods to generate mechanisms with desirable paths (Lipson, 2008;
Khan et al., 2015b), others take the approach of using Fourier descriptors for optimization (Ullah &
Kota, 1997; Wu et al., 2011). Gradient-based optimization (Bächer et al., 2015) to modify an ex-
isting mechanism is also a common approach. Apart from a few exceptions (Lipson, 2008; Bächer
et al., 2015), most of these approaches are either limited to optimizing existing mechanisms (Bächer
et al., 2015), or are limited to specific kinds of problems. For example, Lipson et al. (Lipson, 2008),
focused on solving the straight line problem. The performance of population-based optimization ap-
proaches, such as genetic algorithms, also depends on initialization. Using the LINKS dataset, one
can gain improvements in such approaches by introducing candidates that are close to the desired
goal.

Data-driven approaches: More recently, machine learning-based approaches are increasing in
popularity and a few data-driven works have been published on the topic. In most of these works,
the previously mentioned approaches of “numerical atlas” and optimization are adapted to data-
driven approaches. For example, Deshpande et al., in their paper, have adapted an approach that
combined the numerical atlas approach with optimization (Deshpande & Purwar, 2019a;b; 2020).
They use variational autoencoders (VAEs) (Kingma & Welling, 2014) and clustering-based search
to find appropriate candidates that can generate a desired coupler curve. In their other works, they
employ VAEs and conditional VAEs (Sohn et al., 2015) to synthesize mechanisms. The datasets used
in such approaches are usually small and often limited to specific types of mechanisms (four-bar, six-
bar, etc.). For instance, a dataset of 6818 linkage mechanisms is utilized in (Deshpande & Purwar,
2021). Having a large dataset with millions of mechanisms can greatly benefit these models. In
other data-driven approaches, researchers have approached mechanism generation by conditioning
them on paths (Vasiliu & Yannou, 2001), which is again limited to four-bar mechanisms. In contrast
to these approaches which can be interpreted as the “numerical atlas” adaptations, other methods
have attempted to implement the equivalent to the optimization approach using machine learning.
One such work used deep Q learning (Mnih et al., 2013) and Lipson’s T and D operators (10., 2018).
Despite, not being limited to specific mechanisms, these reinforcement learning-based approaches
need retraining for every target shape. Due to a lack of benchmark problems, numerical atlas-based
approaches and reinforcement learning approaches have not been compared against each other for
the same target coupler curves.

What is evident is that machine learning approaches show great promise, however, at the moment,
two limitations can be observed in current approaches. The first is the limitation of many methods to
both specific mechanisms and problem types. The other limitation is a lack of benchmark problems
that can be used to compare the performance of different machine learning methods and establish
the strengths and weaknesses of any new approach that is developed. The LINKS dataset addresses
these limitations.

SEQUENTIAL GENERATION OF PLANAR MECHANISMS AND DEGREES OF FREEDOM

LINKS consists of planar linkage mechanisms with 1-DOF. It is crucial to discuss the existing ap-
proaches in generating such mechanisms before we introduce our approach. First, we must establish
the difference between mechanisms with one degree of freedom and mechanisms with mobility of
one. Unlike degrees of freedom, which can be ambiguous, the mobility of a planar linkage mech-
anism is clearly defined and easily measurable (See (Erdman & Sandor, 1984; McCarthy & Soh,
2010) for more details). The equation of mobility is as follows:

m = 3(n� 1)� 2j1 � j2 (1)

where n is the number of linkages and j1 is the number of 1-DOF pairs (such as joints or hinges
in planar mechanisms) and j2 is the number of 2-DOF pairs (such as cams, wheels, etc.). Since we
focus only on planar linkage mechanisms with simple joints/hinges, we can ignore the j2 term in
this equation. A mechanism with mobility of zero or negative mobility can be 1-DOF (an example
is shown in Fig. 1), and there can be mechanisms with mobility of one but degrees of freedom larger
than one (see Fig. 1), these happen when redundant linkages are added to mechanisms. Since the
focus of our dataset is on “path generation”, we build our dataset such that there are no redundancies,

4



Figure 1: Two mechanisms where DOF and mobility do not match as a result of redundant linkages.
In both images, one of the linkages highlighted in blue has to be removed to remove the redundancies
in the mechanism.

meaning that mechanisms in our dataset are guaranteed to be 1-DOF and have the mobility of one
at the same time.

An approach to generate 1-DOF mechanisms was proposed by Lipson (Lipson, 2008) and later also
used by Vermeer et al. (10., 2018). Lipson (Lipson, 2008) proposed two operators for editing 1-DOF
mechanisms such that the mechanisms would retain 1-DOF. He called these operators the T and D
operators which operated on linkages and proved that these operators will retain the original DOF of
the mechanism (Lipson, 2008). The D operator simply added a joint with two linkages connected to
the ends of the linkage being operated on and the T operator broke down the linkage being operated
in two. A limitation of their approach is that the algorithm will have to start from an existing 1-DOF
mechanism and the possible mechanisms that can be generated in such a method are, therefore,
sensitive to the initial mechanism. We propose an approach to operate on entire mechanisms based
on adding joints which describe in the methodology section.

SIMULATION OF KINEMATICS

There has been substantial work done in solving 1-DOF mechanisms, however, as mechanisms
get more complex, solving them becomes costly and the complexity of the closed form analytical
equations becomes gargantuan. As a result, algorithms-based and numerical approaches to solving
such systems are typically employed (Waldron & Sreenivasan, 1996; Sharma & Purwar, 2020).
The literature on this topic is extensive and beyond the scope of this paper, however, there are
a few relevant works that we will discuss here as they set up the context for future discussion.
Broadly, two different approaches can be considered in simulating mechanisms beyond analytical
approaches (Sharma & Purwar, 2020). One approach is the numerical approach to solving kinematic
systems. An example of such an approach is Lipson’s simulator, used for the genetic programming
approach in (Lipson, 2005). In most numerical approaches planar mechanisms are solved using
numerical algorithms used for solving systems of non-linear equations (such as Newton-Raphson
or Broyden’s method), these approaches are capable of simulating very complex systems, however,
in many complex systems the solution is not unique and these simulators only produce one of the
possible results (Waldron & Sreenivasan, 1996; Sharma & Purwar, 2020). The other approach to
solving linkage mechanisms is to take a graphical approach and solve planar mechanisms from a
purely kinematic approach. One such simulation approach which focuses purely on kinematics is the
one proposed by Bächer et al. (Bächer et al., 2015). The simulator proposed by Bächer et al.solves
a linkage system iteratively by starting from known values such as the position of the ground joints
and the current position of the actuator arm and solving for any joints that can be solved with the
available information (taking into account initial positions). At every iteration, more joints will be
solved until at the final iteration where all joints are solved. This approach is illustrated in Fig. 3.

5



While these approaches are limited to mechanisms with simple kinematic loops consisting of dyadic
loops, an advantage of using them is that the gradients of simulation can be obtained in a similar
manner which enables gradient-based optimization (e.g., editing existing mechanisms to fit certain
constraints (Bächer et al., 2015)). We adopt the approach of Bächer et al.and discuss the details of
our work in the following sections. For a more in-depth view of simulation methods, readers are
referred to (Sharma & Purwar, 2020).

LINKS: DATASET & METHODOLOGY

Generative Scheme
Topology Generator

Starting Topology (Always The Same)

20

1

N
s
(M0,2,1)

20

1
3

N
s
(M1,3,0)

20

1
3

N
g
(M2)

20

1
3

4 20

1
3

4

N
s
(M3,3,4)

5

N
s
(M4,1,3)

20

1
3

4

5
6

20

1
3

4

5
6

N
s
(M4,5,6)

7

20

1
3

4

5
6

7

Randomly Generated Topology

Pick Random Initial Positions

Simulate

Does The 
Mechanism

Lock?

Yes

No

Add To Dataset

Position Generator

Figure 2: Overview of the process used to generate planar linkage mechanisms. Note that the
initial mechanism used in the topology generator is the simplest 1-DOF mechanism possible. It is
important to mention that for each topology, the position generator is run multiple times to obtain
multiple candidates.

We create a dataset of 100 million planar linkage mechanisms with 8-20 nodes resulting in over 1
billion different coupler curves. This scale of data generation comes with notable challenges. We
implement hardware and software engineering improvements, to create this dataset within a practical
amount of time. In this section, we will describe our dataset features as well as the methodology
used to generate it.

1-DOF OPERATOR FOR PLANAR LINKAGE MECHANISMS

To generate mechanisms with mobility of one there are several approaches. The naive approach
would be to randomly generate graph topologies (i.e., randomly connect a number of joints without
mobility in mind) and measure their mobility and repeat the process until appropriate topologies are
identified. This naive approach is inefficient as the number of all possible topologies is extremely
large for large enough mechanisms. Therefore, an efficient approach must be established to enable
the fast generation of valid mechanisms.

J operator: We propose a simplified and unified single operator to edit existing mechanisms,
named, joint, or J operator. In our approach, rather than focusing on the linkages for operations (in
contrast to T and D operators (Lipson, 2008)), we apply operations on two existing joints instead.
The simple operator that is used to generate new mechanism topologies simply picks two existing
joints within any given mechanism and adds a new joint that has linkages connecting it to the two

6



joints that were selected (See Fig. 2). Assuming the initial mechanism has mobility of 1 (i.e., m =
1), adding two linkages to the system means adding 2 to n in the mobility equation, however, the
operation also adds 3 j1 pairs (i.e., the added joint and the two other joints which just received two
new connections) which essentially retains the mobility of the initial mechanism. Furthermore, since
mobility is maintained in this manner, so long as the initial mechanism has no redundant linkages
and constraints, the resulting mechanisms will also have no redundancies either (since mobility is
maintained). We will denote an operation as N(M t; i; j), where M t is the current mechanism at
iteration t starting at t = 0 with the stated initial configuration and i; j � t + 3 referring to the
index of the nodes in the mechanism, which the operator is applied to. Similar such approaches
have been explored and theorized by many before us and are considered a robust method of building
mechanisms and performing inverse kinematic design (Suh & Radcliffe, 1987).

Ensuring simple kinematic loops: Our operator also ensures that the resultant mechanism always
has simple kinematic loops. Our operator is a dyadic operator, where every operation of our operator
creates a simple kinematic loop between the new joint and the two existing joints. Therefore, as long
as the initial mechanism consists only of simple kinematic loops, any resulting mechanism will also
have only simple kinematic loops. This is useful for our simulations, as we use graphical solvers
which require simple kinematic loops. The proposed operator could be used in systems with more
degrees of freedom as well and would retain the mobility of the existing mechanism. Additionally,
this approach could easily be extended to 3D linkage systems (with universal joints) as well with the
operator now operating on three joints to maintain the original mobility.

Initialization: Finally, it is important to discuss the initialization of the sequential generator.
The mechanism used at the start of the sequential generator will be the simplest possible 1-DOF
mechanism—a single actuator comprising of a ground joint and a linkage, which is the actuator
arm (See Fig. 2). Besides the actuator arm, our initialization mechanism also consists of a floating
ground joint which is fixed in space (See Fig. 2). We start from this point as this is the simplest
possible 1-DOF mechanism and therefore any generated mechanism from this point on will not be
biased by an initial mechanism as no simpler mechanism is possible and future mechanisms will
only be generated based on the order by which the operator is applied.

GRAPHICAL SIMULATOR

We adopt the solver proposed by Bächer et al. (Bächer et al., 2015). In the approach, the authors
take any given mechanism with simple kinematic loops and rather than performing a dyadic decom-
position (Sharma & Purwar, 2020) to identify four-bar loops, take an iterative approach to find the
solutions by modeling mechanisms as graphs. Starting from joints with known positions (actuator
arm and fixed joints), they solve for any joint which has two known neighbors (i.e., two joints with
currently known positions that have linkages connecting to the node we are trying to solve). They
then repeat this iterative scheme until all joints have known positions. In doing this a path to the so-
lution of all joints is found which can be used to find solutions at different positions of the actuator.
Note that the solver will fail if the mechanism is made up of complex kinematic loops.

When generating a large dataset, once a topology is generated using our dyadic operator, many
candidates of initial positions have to be evaluated to find joint positions which do not lead to locking
mechanisms. Furthermore, for each mechanism topology, many candidates are needed to capture
the output space for any given topology. This means that the same mechanism topology will have
to be simulated thousands of times. Re-initializing the solver every time and finding the path to the
solution is not efficient. We overcome this issue, by using the following approach. Once the path to
the solution is known, we employ this path to solve different variations of the same topology without
any more neighborhood searches. This significantly improves the speed of simulations compared to
performing searches for every candidate.

The solution paths also allow effective gradient-based optimization, which we do not discuss in this
paper for brevity. For details on how the path to the solution is identified see Fig. 3. We have cre-
ated an interactive website based on the aforementioned solvers (http://decode.mit.edu/
links) which allows users to generate their own mechanism topologies, edit mechanisms, and
simulate the results in real-time. Our hope is that practitioners with little computational experience
can also use the website to design and simulate new mechanisms.

7



Figure 3: Here we illustrate the path the solver takes to find the solution. At first, the solver starts
with the known joints (i.e., fixed and actuated joints) and at every step nodes with two known neigh-
bors can be found, in this mechanism illustrated, the path to the solution has 3 steps. The numbers
of the joints indicate the order in which the solution is found and the arrows indicate which two
neighboring joints are needed to solve the given joint. Known nodes are highlighted in green.

MECHANISM REPRESENTATION

In our approach, we model mechanism topologies as undirected graphs, in which each joint (regard-
less of type) is considered a “node” and each linkage is considered an “edge”. This representation
is inspired by the solver, where graph-based walks can be used to solve planar linkage mechanisms
exactly. To complete the definition of the graphs, each of the nodes will have features that include
their type (fixed, simple, actuated) and initial positions. Each graph is represented by an n � n
adjacency matrix A, who’s (i; j) entry is zero if nodes i and j are not connected and one if they
are connected. Finally, each mechanism is also represented by a feature matrix which in our repre-
sentation is an n � 3 matrix. Each row of this matrix includes the features of each node. The first
element of each row indicates the type of the node (i.e., 1 for simple node, 0 for fixed node, and
2 for actuated nodes), and the two other elements in each row are set to be the initial positions of
the nodes at time zero (which can be used to determine the length of linkages between the joints).
We believe graph-based representation can provide a unified approach for representing all kinds of
kinematic systems with different types of components and relations.

DATASET GENERATION APPROACH

To generate a very large mechanism of planar linkages, we take a random sampling approach. This
is analogous to stochastically searching within the design space. The J operator enables us to create
mechanisms consisting only of simple kinematic loops. Besides the topology, initial positions are
also needed to simulate a mechanism as different initial positions can lead to completely different
shapes of coupler paths. Therefore, we separate our generation process into two distinct steps. The
first step is to generate valid 1-DOF topologies. The next step is to come up with different initial
positions for each of the topologies such that the resulting mechanisms are not locking (valid). An
overview of our approach is illustrated in Fig. 2.

GENERATING VALID TOPOLOGIES

In order to create valid topologies, we make a slight modification to our single operator. Note that
if the operation is applied to two ground nodes (i.e., add a node connected to two existing ground

8



joints) the generated joint will be effectively a fixed ground joint. In practice, however, this reduces
the probability of ground joints appearing. This is because only two nodes at the start will be ground
nodes, and, with large mechanisms, the odds of randomly selecting both nodes (which is what is
needed to add a new ground node) will be slim. As a result, we modified our operator into two
separate entities which allow us to control the probability associated with nodes being fixed. To
do this we break down, the original operator N(M t; i; j) into Ns(M t; i; j); fi; jg 6� F ixedJoints
and Ng(M t), where Ng simply adds a fixed node and Ns does not operate on two fixed joints
simultaneously. During the topology generation process, we simply associate probabilities to each of
the two operators. In our dataset generation process, we set the probabilities such that the likelihood
of Ng is one-third of the probability of Ns (See Fig. 2).

Now that the basic scheme of mechanism generation is described, we list the basic rules utilized
during mechanism topology creation:

� The number of nodes in any mechanism topology will be sampled from a uniform distribu-
tion ranging from 8 to 20 nodes. n � U(6; 15).

� The assumption will be made that the actuator arm will always be the linkage present in the
initial configuration before any operations are applied.

� Once the number of joints, n, is selected, the generated mechanism shall not be reducible to
a mechanism with fewer joints. Thus, the kinematics of the mechanisms topologies that are
generated will rely on solving the positions of all nodes, and the final joint (in the solution
path) will not be determined without all other joints having been solved (i.e., the solution
path of the graphical solver to the final joint must go through all joints). The reason this rule
is imposed for topology generation is that this allows for uniform coverage of the design
space for mechanisms with 8-20 nodes, this is due to the fact that, if a mechanism with
15 nodes was separable into two separate mechanisms of smaller size, the mechanism in
question would be practically representative of the mechanisms with smaller size rather
than representing the space of mechanisms with more complexity and larger size.

� The final joint in the solution path shall not be connected to any fixed joint. This rule is im-
posed to prevent complex mechanisms with high numbers of joints from producing simple
paths such as arcs (which is what a linkage connected to one fixed joint will always result
in). Because the focus of our work is on generating mechanisms with path synthesis in
mind, having a complex mechanism that ends up producing arcs is not desirable. Further-
more, mechanisms with many nodes produce many shapes (one trace per node is simulated)
and many of the nodes within a larger and more complex mechanism are already producing
arcs to begin with, which means that this rule does not come with the loss of generality.

To ensure all of the above rules are met, besides the operator effectively maintaining mobility of one
and avoiding redundancies, we employ some simple heuristics when applying operators during the
generation process.

FINDING VALID INITIAL POSITIONS

Once different topologies are generated we must find appropriate initial positions for the joints to
complete the definition of mechanisms and simulate each mechanism to obtain the paths generated
by each mechanism. For our dataset, we set some basic rules for what is a valid mechanism with
respect to initial positions:

� Bounding box: All initial positions of mechanisms must fit within 1x1 space. During the
random position selection, positions are sampled from a uniform distribution ranging from
0 to 1 in both the x and y directions. x0 � U(0; 1); y0 � U(0; 1).

� Infeasibility: A mechanism is considered valid if the actuator arm can make a full rotation
without the mechanism locking. Although in many cases researchers have focused on the
path traces, even when the full rotation of an actuation arm was not possible and looked
at rocking actuators or specific functions being imposed by actuators, we take the most
generalizable path with the least assumptions to generate mechanisms which allow for a
full rotation of the actuator arm without restriction.

9



� Translation invariance: The actuator arm is always placed at the center of the 1x1 domain
meaning the first ground joint is always located at (0:5; 0:5). We impose this rule as a form
of standardization with respect to translation in space. This is to say that by doing this we
ensure the same mechanisms translated in space cannot exist within our dataset.

� Scale invariance: The length of the actuator arm is set to be a fixed length of 0.05. Similar
to the previous rule, this also imposes a standardization with respect to scale. By setting
the actuator arm to be of the same length, we impose scale in-variance within the data.

� Rotation invariance: The actuator arm is always set to be horizontal at the initial position
which standardizes the dataset with respect to rotation. In turn, making the dataset rotation
invariant, and an actuator invariant (Note that the same mechanism at a different actua-
tor position can have different positions which can be taken as initial positions without
changing the underlying kinematics, and by setting the actuator to always be horizontal the
dataset will be invariant to this matter).

� Position Variety: Each topology must be represented with five different initial positions.
This means there will be five variants of any mechanism topology within our dataset. This
is valuable as this will provide a more complete picture of the output space of any given
mechanism topology, compared to only having one valid configuration for each topology.

Similar to the case of topology generation, these rules are imposed using some simple heuristic al-
gorithms. It is important to note, however, that the primary difficulty with initial position selection
in comparison to topology generation comes with the second rule. Once random positions are deter-
mined with respect to the other rules, these positions must be evaluated by simulating the mechanism
through an entire rotation of the actuator and if a mechanism is locking, the process will have to be
repeated and the simulation time is wasted. Despite the improvements in the simulation discussed
before, this remains the most time-consuming part of the task and the primary bottleneck in gen-
erating large datasets. In the following section, we will discuss how we cope with this and other
challenges.

CHALLENGES IN LARGE KINEMATIC DATASET GENERATION

In this section, we will briefly describe the challenges in generating a large dataset and our solutions
to address these challenges.

SCALE OF INFEASIBILITIES

As discussed before, the scale of our dataset is significantly larger than any existing public dataset,
thus the number of mechanisms that must be generated for such a dataset is extremely vast. This
would only be possible if finding new mechanisms was a speedy enough task to make generating
such a large dataset of mechanisms possible. The primary issue in generating new mechanisms
randomly comes from the scale of infeasibility. As mentioned before, the first difficulty comes from
finding mechanism topologies that are 1-DOF and do not include any complex loops. The number
of different topologies (assuming order matters) with “n” being sample nodes and “m” being ground
nodes, with one actuator node is in the order of O(2n(n+m)). Given that most of these topologies
would not be valid for our purposes, the task would become quickly impractical. We overcome this
by using our topology generation based on a single dyadic operator which facilitates the generation
of topologies that are guaranteed to meet our criterion (Note that it can be proven that the dyadic
operator is capable of producing all possible 1-DOF mechanisms without complex kinematic rules).
In this way, the first aspect of infeasibility has been overcome.

We sample initial positions from a uniform distribution, meaning the space of possible values for po-
sitions is continuous, therefore, there are infinite possibilities for positions. What is more concerning
is the fact that there are no simple approaches such as the dyadic operator which can overcome this
issue easily, therefore we have no choice but to sample randomly every time until valid positions are
found. Furthermore, the more complex the mechanisms get (i.e., the more joints there will be) the
harder it becomes to not produce locking mechanisms, as only one slight change in position within
the system can result in a locking mechanism. We show this difficulty empirically by taking random
topologies of different sizes and measuring how many random samples are needed before a good
initial position is found. As expected, on average, the larger the mechanism, the more difficult the

10



Number of Nodes

Figure 4: Average number of random samples needed to find a valid solution for mechanisms of
different sizes. The figure shows that as the number of joints increases, it becomes increasingly
difficult to find a valid mechanism, with � 99% samples wasted for mechanisms with more than 10
nodes. On average, more than 500 simulations are needed for each feasible design.

task is, and the more random sampling required before a solution is found (See Fig. 4). Additionally,
we found that the infeasibility increases with size in a non-linear and exponential way.

Low fidelity evaluations for infeasibility detection: In our dataset generation, we found that
on average, for the entire dataset, we required evaluation of more than 500 random positions for
each candidate. This means for a dataset of this scale the number of evaluations quickly becomes
infeasible. To be able to produce such a dataset, we must optimize the simulation, and the random
generation process in some way. We discuss details on scaling simulations and dealing with the
high computational costs later. However, we do implement some basic heuristics to improve the
efficiency of random sampling. To ensure mechanisms are not locking over the entire revolution
of the actuator arm we must simulate the mechanism over a large number of actuator positions,
however, this is costly as many simulations must be performed, therefore, when sampling randomly
we only evaluate the mechanism on 50 separate equally spaced positions of the actuator rather than
the 200 we use for a more smooth simulation of the mechanisms. Once valid positions are found
for the 50-point simulation, we perform the more refined simulation of 200 points to verify that the
mechanism is not locking, and if the mechanism fails in the high fidelity simulation we continue
random sampling. The logic behind this move is that most mechanisms that do not lock in the low
fidelity simulation are likely to be valid in the high fidelity simulation as well. Therefore, by doing
this, we reduce the cost of each evaluation by four times and significantly improve the time required
to find valid positions for a given topology.

COMPUTATIONAL COST OF SIMULATIONS

For the generation of a dataset of this size, we must scale and improve our simulation approach. To
do this, we take two primary steps. The first step comes in the simulation algorithm itself. Since
we are simulating the same topology many times, we set up our simulator such that the path to the
solution is obtained only once and the path of simulation is used to make a vectorized version of the
simulations function (Note that the simulation algorithm itself is not vectorizable in general but for
a specific topology the path to the solution is known and therefore a vectorized solver specific to a
given topology can be found). Obtaining a vectorized version of the function comes at a negligible
computational cost as the same function is used many times for many different actuator positions
and different initial positions.

11



Despite these improvements, the process of performing this many simulations is still slow, and gen-
erating such a large dataset can require weeks. To overcome these limitations and make the process
of generating a dataset of such size practical, we parallelize the entire process of generating mecha-
nisms. Using the supercomputing resources provided by MIT SuperCloud and Lincoln Laboratory
Supercomputing Center, we are able to run up to 640 threads simultaneously on 8 computing nodes
each providing 80 threads. By scaling more than 100 times, what could be achieved in a week, can
be achieved in hours and what requires months becomes a matter of days. To demonstrate the effec-
tiveness of this approach, we provide experimental data for the time required to simulate 100,000 (10
experiments for 10,000 mechanisms) random mechanisms with single thread non-vectorized solver,
single thread vectorized solver, and the parallelized and vectorized approach (on 80 threads, for con-
sistency in experiments only one computing node was utilized for this experiment). The results of
the average time over 10 experiments are provided in Table. 1. As shown, parallelizing the process
hugely increases the efficiency of generating a very large dataset of mechanisms. This means that
we are able to produce our dataset and expand it in the future with great efficiency.

Table 1: Experimental results on time taken to simulate 10,000 mechanisms averaged over 10 ex-
periments. Values after � indicate standard deviation.

Method Time Elapsed(s)
Single Thread Non-Vectorized Solver 454.864 � 7.071

Single Thread Vectorized Solver 10.994 � 0.2910
Parallelized Approach(80 Threads) 0.5557 � 0.0729

Parallelized On A Single V100 GPU 0.1823 � 0.0261

DATASET CURATION & PROCESSING

Un-Curated Paths Curated Paths

Figure 5: Random subsets of normalized shape before (left) and after (right) reducing arcs and
circles. Without curation, the majority of paths are circles and arcs on the left side, which introduces
a huge bias in the data towards such shapes.

Once the dataset is produced and all of the mechanisms are simulated, the total number of curves
produced by our dataset is over a billion paths. Besides providing the raw simulation data with
each mechanism, we provide a dataset of paths produced by all mechanisms with the index of their
corresponding mechanism and the index of the joint within the mechanism in question. Furthermore,
we provide a simplified algorithm that can reduce any mechanism down to only the joints needed to
produce the needed motion for any of the curves within the dataset. To allow for easier processing
and analysis of these paths, we come up with a normalization scheme for paths as well to standardize
the paths dataset. In our approach, we remove scale, orientation, as well as the translation in paths.

12


