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Abstract

Deep generative models are proven to be a useful tool
for automatic design synthesis and design space ex-
ploration. When applied in engineering design, exist-
ing generative models face three challenges: 1) gener-
ated designs lack diversity and do not cover all areas
of the design space, 2) it is difficult to explicitly im-
prove the overall performance or quality of generated
designs, and 3) existing models generally do not gen-
erate novel designs, outside the domain of the train-
ing data. In this paper, we simultaneously address
these challenges by proposing a new Determinantal
Point Processes based loss function for probabilistic
modeling of diversity and quality. With this new
loss function, we develop a variant of the Genera-
tive Adversarial Network, named “Performance Aug-
mented Diverse Generative Adversarial Network” or
PaDGAN, which can generate novel high-quality de-
signs with good coverage of the design space. Using
three synthetic examples and one real-world airfoil
design example, we demonstrate that PaDGAN can
generate diverse and high-quality designs. In compar-
ison to a vanilla Generative Adversarial Network, on
average, it generates samples with 28% higher mean
quality score with larger diversity and without the
mode collapse issue. Unlike typical generative mod-
els that usually generate new designs by interpolating
within the boundary of training data, we show that

PaDGAN expands the design space boundary outside
the training data towards high-quality regions. The
proposed method is broadly applicable to many tasks
including design space exploration, design optimiza-
tion, and creative solution recommendation.

1 INTRODUCTION

A designer wants good design solutions which are cre-
ative and meet the performance requirements. By
manually and iteratively exploring design ideas using
experience and design heuristics, the designers take
the risks of 1) wasting time on unfavorable or even in-
valid design candidates and 2) not exploring as deeply
as they might want to. An ideal design space explo-
ration tool should ensure that, with low cost, one can
dive deep in the design space and explore all feasible
design alternatives.

While recent advances in machine learning assisted
automatic design synthesis and design space explo-
ration are promising, the current methods are still far
from this ideal picture. To model a design space, re-
searchers have used deep generative models like vari-
ational autoencoders (VAEs) [1] and generative ad-
versarial networks (GANs) [2], as they can learn the
distribution of existing designs. The hope is that
by learning an underlying latent space, which can
represent most designs, one can automatically syn-

1

ar
X

iv
:2

00
2.

11
30

4v
3 

 [
cs

.L
G

] 
 2

 J
un

 2
02

0



thesize many new designs from the low-dimensional
latent vectors and design exploration becomes more
efficient due to the reduced dimensionality [3, 4, 5].
However, unlike image generation tasks where these
generative models are commonly applied, engineering
design problems have one or more performance (or
quality) measures. The quality measures how well a
design achieves its intended goals and is defined based
on the specific problem. For example, beam design
problems often define quality based on the compli-
ance value (single-objective) [6] or both compliance
and natural-frequency (multi-objective) [7]. For aero-
dynamic design, quality can be defined as the lift-to-
drag ratio [5] or the inverse of the drag coefficient [8].
Current state-of-the-art generative models have no
mechanism of explicitly promoting high-quality de-
sign generation. One may spend huge effort to train
a generative model, only to find many generated de-
signs are infeasible or do not meet design require-
ments. One way of working around this problem is to
exclude low-quality data while training [8]. However,
such an approach may affect model performance due
to reduced training sample size. This creates a need
to explicitly embed the quality measurement into a
generative model, so that it can learn to generate
high-quality designs by making use of full data and
their quality measurements.

In this work, we focus on addressing the prob-
lem of simultaneously maximizing diversity and qual-
ity of generated designs. Specifically, we develop a
new loss function, based on Determinantal Point Pro-
cesses (DPPs) [9], for generative models to encourage
both high-quality and diverse design synthesis. Us-
ing this loss function, we develop a new variant of
GAN, named PaDGAN. We show that it can gen-
erate high-quality new samples with a good cover-
age of the design space. More importantly, we found
that PaDGAN can expand the existing boundary of
the design space towards high-quality regions, which
indicates its ability of generating novel high-quality
designs.

With the ability of generating high-quality and
diverse designs from a (reduced) latent representa-
tion, the proposed PaDGAN can then be used for
improving the efficiency in design space exploration.
While it is interesting to see how exploring the low-

dimensional latent space of the PaDGAN can accel-
erate exploration or improve the performance of the
optimal solution, we leave that to future work. In
this paper, we focus on the architecture of PaDGAN
and its performance in design synthesis.

2 Background and Related
Work

Our work produces generative models that synthesize
diverse designs from latent representations. There
are primarily two streams of related research: 1) de-
sign synthesis and 2) diversity measurement. Within
these two fields, we provide a brief background on
two techniques we use in this paper — GANs and
DPPs — and their applications in design. Readers
interested in a more comprehensive understanding of
their background are advised to read Kulesza et al.’s
work [9] for DPPs and the chapter on “Deep Gener-
ative Models” in Ref. [10].

2.1 Deep Generative Model-Based
Design Synthesis

To achieve automatic design synthesis, past re-
searchers have used approaches based on shape gram-
mar [11, 12, 13], graph enumeration [14, 15], func-
tional models [16], analogy [17], and constraint pro-
gramming [18, 19]. These methods often need to
encode expert knowledge as either grammar rules,
functional basis, or constraints. In recent years,
data-driven design synthesis has become increasingly
popular. Different from traditional design synthe-
sis methods, data-driven methods do not necessarily
require expert knowledge and can learn to generate
plausible new designs from a database [20, 3, 21, 22,
5].

In the last few years, deep generative models have
gained traction, due to their ability to learn com-
plex feature representations. The family of deep
generative models contains various methods like the
Boltzmann machines, deep belief networks, and dif-
ferentiable generator networks like VAEs and GANs.
VAEs and GANs are the two most commonly used
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deep generative models for solving engineering de-
sign problems. For example, they have been used in
applications like design exploration [23, 3, 4], surro-
gate modeling [24], and material microstructure de-
sign [25, 26].

Applications of Deep Generative Models in
Design Synthesis.

Many design applications have huge collections of un-
structured design data (CAD models, images, mi-
crostructures, etc.) with hundreds of features and
multiple functionalities. To learn from these com-
plex datasets, deep generative models have increas-
ingly been employed. For instance, Chen et al. [5, 27]
proposed a BézierGAN model for airfoil parame-
terization and synthesis, and demonstrated signifi-
cantly faster convergence to the optimum when op-
timizing over the latent space. Yang et al. [26]
used a GAN to generate microstructures and per-
formed design optimization over the latent space.
Chen et al. [4] proposed a hierarchical GAN archi-
tecture to synthesize designs with inter-part depen-
dencies. Oh et al. [28] integrated topology optimiza-
tion and generative models to generate designs which
are optimized for engineering performance. These
methods either do not explicitly consider the qual-
ity of generated designs or use a separate optimiza-
tion process to search for high-quality designs. Bur-
nap et al. [29] used a VAE to generate new highly-
rated automotive images, which are aesthetically
pleasing. Shu et al. [8] proposed a GAN-based model
to generate high-quality 3D designs, where they im-
prove the quality of generated samples by retraining
the model on an updated dataset with low perform-
ing designs removed. In contrast, our method im-
proves the quality of generated designs while training
the deep generative model, without retraining or dis-
carding any samples in the training data. Also, to the
best of our knowledge, there is no generative model
that simultaneously encourages diversity and qual-
ity. While the methods we develop in this work are
applicable to most deep generative models, we use
GANs to demonstrate our results and will describe
them next.

Generative Adversarial Networks.

GANs [2] model a game between a generative model
(generator) and a discriminative model (discrimina-
tor). The generative model maps an arbitrary noise
distribution to the data distribution (i.e., the distri-
bution of designs in our scenario), thus can gener-
ate new data; while the discriminative model tries
to perform classification, i.e., to distinguish between
real and generated data. The generator G and the
discriminator D are usually built with deep neural
networks. As D improves its classification ability, G
also improves its ability to generate data that fools
D. Thus, a vanilla GAN (standard GAN with no
bells and whistles) has the following objective func-
tion, which comprises of a discriminator loss term and
a generator loss term:

min
G

max
D

V (D,G) = Ex∼Pdata
[logD(x)]+Ez∼Pz [log(1−D(G(z)))],

(1)
where x is sampled from the data distribution Pdata,
z is sampled from the noise distribution Pz, and G(z)
is the generator distribution. A trained generator
thus can map from a predefined noise distribution to
the distribution of designs. The noise input z is con-
sidered as the latent representation of the data, which
can be used for design synthesis and exploration.

Problems in Using GANs for Design Synthe-
sis.

Learning in GANs can be difficult in practice, which
may be one of the reasons that they are less widely
used in design compared to VAEs. Despite an enor-
mous amount of recent work in the machine learning
community, GANs are notoriously unstable to train,
and it has been observed that they often suffer from
mode collapse [30], in which the generator network
learns how to generate samples from a few modes of
the data distribution but misses many other modes.
For instance, when training on multiple categories
of designs, a GAN model would sometimes generate
designs only for a single category [31]. Recent ap-
proaches [32, 33, 34] tackled mode collapse in one
of two different ways: 1) modifying the learning of
the system to reach a better convergence point; or
2) explicitly enforcing the models to capture diverse
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modes or map back to the true-data distribution. So-
lutions to the mode collapse problem range from de-
signing a reconstructor network in VEEGAN [33] to
matching the similarity matrix of generated samples
with data [35]. In contrast, PaDGAN addresses the
mode collapse problem implicitly by virtue of pro-
moting generation of diverse solutions, which encour-
ages samples to cover different modes, hence allevi-
ating mode collapse.

2.2 Measuring Design Coverage

Massive highly redundant sources of audio, video,
speech, text documents, and sensor data have become
commonplace and are expected to become larger and
more preponderant in the future [36]. This brings
a need to measure diversity of a set of items, such
that redundancy in data can be reduced and ma-
chine learning models can be trained using data with
a smaller sample size and which are not biased in
favor of a few classes. Diversity (also called cover-
age or variety) is a measure of how different a set
of items are from each other. Quantitatively, it is
measured using two predominant ways — submod-
ular functions or DPPs. Submodular functions are
set functions with diminishing marginal gain prop-
erty, which naturally model notions of coverage and
diversity. They achieved among the top results on
common automatic document summarization bench-
marks (e.g., at the Document Understanding Confer-
ence [37]). In design, too, researchers have used sub-
modular functions-based diversity measures to un-
derstand design space exploration using terms like
variety [38, 39, 40]. These functions have helped
designers sift through large sets of ideas by rank-
ing them [41] or selecting a diverse subset [42].
Ahmed et al. [41] compared DPPs [9] with certain
commonly used submodular functions. They con-
cluded that unlike submodular functions, DPPs are
more flexible, since they only need a valid similar-
ity kernel as an input rather than an underlying Eu-
clidean space or clusters. In this paper, we will use
DPPs as a measure of diversity, which we will de-
scribe next.

Determinantal Point Processes.

DPPs, which arise in quantum physics, are proba-
bilistic models that model the likelihood of selecting
a subset of diverse items as the determinant of a ker-
nel matrix. Viewed as joint distributions over the bi-
nary variables corresponding to item selection, DPPs
essentially capture negative correlations and provide
a way to elegantly model the trade-off between often
competing notions of quality and diversity. The intu-
ition behind DPPs is that the determinant of a kernel
matrix roughly corresponds to the volume spanned
by the vectors representing the items. Points that
“cover” the space well should capture a larger volume
of the overall space, and thus have a higher proba-
bility. As shown by Kulesza et al.[43], one of DPPs’
advantages is that computing marginals, computing
certain conditional probabilities, and sampling can all
be done in polynomial time. In this paper, we focus
on another advantage of DPPs, which is the decom-
position of DPP kernels into quality and similarity
terms.

For the purposes of modeling real data, the
most relevant construction of DPPs is through L-
ensembles [44]. An L-ensemble defines a DPP via
a positive semi-definite matrix L indexed by the ele-
ments of a subset S. The kernel matrix L defines a
global measure of similarity between pairs of items,
so that more similar items are less likely to co-occur.
The probability of a set S occurring under a DPP is
calculated as:

PL(S) =
det(LS)

det(L+ I)
, (2)

where LS ≡ [Lij ]ij∈S denotes the restriction of L to
the entries indexed by elements of S, I is an N ×N
identity matrix, and N is the total number of items.
For any set size, the most probable subset under a
DPP will have the maximum likelihood over PL(S) or
(equivalently) the highest determinant (the denomi-
nator can be ignored for maximizing determinant of
a fixed set size). Similar to sub-modular functions,
one of the main applications of DPP is extractive
document summarization, where it provided state-
of-the-art results. In Section 3, we show how the
decomposition of DPP kernels can be used to design
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a DPP-based loss function, which promotes quality
and diversity of generated samples in a generative
model.

2.3 Comparison with State-of-the-Art
and Our Contributions

The work closest to ours is the GDPP method [35] by
Elfeki et al.. The authors devised an objective term
that encourages the GAN to synthesize data with di-
versity similar to the training data. PaDGAN differs
from their method in three aspects. First, PaDGAN
is stable against scaling of data while on validat-
ing GDPP for multiple test problems, we found that
their method does not work for problems with train-
ing data at different scales. Second, while PaDGAN
aims to maximize the diversity of generated samples,
GDPP aims to achieve a similar diversity value as the
training data. By avoiding the goal of mimicking the
diversity of the training data, PaDGAN will gener-
ate diverse samples even when the original training
dataset is biased in favor of a few modes, while GDPP
is designed to mimic the bias in generated samples.
Finally, in our work, we also maximize the sample
quality while the GDPP method mimics the quality
of training data. This feature of PaDGAN is helpful
for design exploration as it can help discover novel
high-quality designs (demonstrated in Section 5.2).

The scientific contributions and novelty of this
work are as follows:

1. We propose a novel design synthesis method
that simultaneously encourage synthesis of di-
verse and high-performance designs.

2. We find that PaDGAN can expand the de-
sign space boundary towards high-quality re-
gions that it had not seen from existing data.

3. We propose a way to control the trade-off be-
tween quality and diversity in DPPs. Our
method extends past work on decomposing a
DPP kernel by providing a way to tune the rel-
ative importance of quality over diversity.

4. We provide easy-to-verify test cases and metrics
to validate any generative models, whose goal

is to maximize sample quality and/or coverage
over a dataset with multiple modes.

3 Methodology

Built on a standard GAN architecture, PaDGAN in-
troduces a performance augmented DPP loss which
measures the diversity and quality of a batch of gen-
erated designs during training. The overall model
architecture of PaDGAN is shown in Fig. 1. In this
section, we begin by describing how to decompose a
DPP kernel, then proceed on how to create a DPP
loss which augments high performing designs, and fi-
nally provide a method to balance diversity and qual-
ity using a quality dial. We also add a note on im-
proving training stability at the end.

3.1 Decomposition of a DPP kernel in
to quality and diversity

DPP kernels can be decomposed into quality and di-
versity parts [9]. The (i, j)th entry of a positive semi-
definite DPP kernel L can be expressed as:

Lij = qi φ(i)T φ(j) qj . (3)

We can think of qi ∈ R+ as a scalar value mea-
suring the quality (or performance) of an item i, and
φ(i)T φ(j) as a signed measure of similarity between
items i and j. This decomposition enforces L to be
positive semidefinite and allows us to independently
model quality and diversity, and then combine them
into a unified model. Suppose we select a subset S of
samples, then this decomposition allows us to write
the probability of this subset S as the square of the
volume spanned by qiφi for i ∈ S using the equation
below:

PL(S) ∝
∏
i∈S

(qi
2) det(KS), (4)

where KS is the similarity matrix of S.
The first term increases with the quality of the se-

lected items, and the second term increases with the
diversity of the selected items. As item i’s quality qi
increases, so do the probabilities of sets containing
item i. As two items i and j become more similar,
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Figure 1: Architecture of PaDGAN.

Figure 2: Visualization of volume in 2-D space, where
qi represent the quality of an item and θi shows how
similar they are. Comparing the leftmost figure to
the central figure, we observe that the similarity is
same but the quality magnitude increases, leading to
a higher volume. From the central figure to the right-
most figure, we observe that the quality magnitude
is the same, but the similarity increases, leading to a
lower volume (or diversity) encompassed by the two
vectors.

φi
Tφj increases and the probabilities of sets contain-

ing both i and j decrease. From a geometric intuition,
the determinant of LY is equal to the squared volume
of the parallelepiped spanned by the vectors qiφi for
i ∈ Y . We show an illustration of this intuition in
Fig. 2. The magnitude of the vector representing
item i is qi, and its direction is φi. It shows how
DPPs decomposed into quality and diversity natu-
rally balance the two objectives of high-quality and
high diversity.

When selecting a subset S of items, without the di-

versity term, we would choose high-quality items, but
we would tend to choose similar high-quality items
over and over. Without the quality term, we would
get a very diverse set, but we might fail to include
the most important items in S, focusing instead on
low-quality outliers. By combining the two models,
we can achieve a more balanced result. The key in-
tuition of PaDGAN is that if we can find a way to
add the term from Eq. (4) to the objective function
of any generative model, then while training it will
be encouraged to generate high probability subsets,
which will be both diverse and high-quality. In the
next section, we define such a loss function.

While, the authors used this decomposition to find
quality and similarity terms from a known kernel, we
reverse this procedure to create the kernel L for a
sample of points generated by PaDGAN from known
inter-sample similarity values and quality. Note that
in a DPP model, the quality or performance of an
item is a scalar value, like compliance, displacement,
drag-coefficient, etc. The quality can be estimated
using an external model (like a physics-based simu-
lator) or by finding the distance of current perfor-
mance of a design from a target performance. For
multi-dimensional cases, quality can be derived by
taking the norm of multiple dimensions. The simi-
larity terms φ(i)Tφ(j) can be derived using any sim-
ilarity kernel, which we represent using k(xi,xj) =
φ(i)Tφ(j) and ‖φ(i)‖= ‖φ(j)‖= 1. Here xi is a vec-
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tor representation of a design.

3.2 Performance Augmented DPP
Loss

Our performance augmented DPP loss models diver-
sity and quality simultaneously and gives a lower loss
to sets of designs which are both high-quality and di-
verse. Specifically, we construct a kernel matrix LB
for a generated batch B based on Eq. (3), where for
each entry we have

LB(i, j) = k(xi,xj) (q(xi)q(xj))
γ0 , (5)

where xi,xj ∈ B, q(x) is the quality function at x,
k(xi,xj) is the similarity kernel between xi and xj .
We add γ0 term as a dial to control the weight of
quality, which is further explained in Section 3.3.

The performance augmented DPP loss is expressed
as

LPaD(G) = − 1

|B|
log det(LB) = − 1

|B|

|B|∑
i=1

, log λi

(6)
where λi is the i-th eigenvalue of LB . By adding this
loss to the vanilla GAN’s objective from Eq. (1), the
problem becomes:

min
G

max
D

V (D,G) + γ1LPaD(G), (7)

where γ1 controls the weight of LPaD(G). To update
any weight θiG in the generator in terms of LPaD(G),
we descend its gradient based on the chain rule:

∂LPaD(G)

∂θiG
=

|B|∑
j=1

(
∂LPaD(G)

∂q(xj)

dq(xj)

dxj
+
∂LPaD(G)

∂xj

)
∂xj
∂θiG

,

(8)
where xj = G(zj).

To train this model, Equation (8) indicates a need
for dq(x)/dx, which is the gradient of the quality
function. In practice, this gradient is accessible when
the quality is evaluated through any performance es-
timator that is differentiable, like adjoint-based solver
methods. If the gradient of a performance estima-
tor is not available, one can either use numerical dif-
ferentiation or approximate the quality function us-
ing a differentiable surrogate model (e.g., a neural

network-based surrogate model). In our experiments
in Section 5.2, we use a neural network-based surro-
gate model. We will explore the possibility of using
an automatic differentiation enabled simulator (e.g.,
an adjoint solver) as the performance estimator in
future studies.

3.3 Introducing a quality dial for DPP
kernels

Note that we modified the original objective to intro-
duce γ0 as a parameter. We found that traditional
DPP decomposition does not allow us to change the
importance of quality versus diversity within a given
kernel. This means that if we fix the quality scores
and similarity scores, the trade-off between the two
cannot be controlled. A näıve way to increase the im-
portance of quality would be to multiply the quality
scores by a large constant and expect it to increase its
importance relative to diversity. However, with care-
ful observation one would realize that this approach
would not work. Using the geometric interpretation
of the DPPs, this would be equivalent to scaling all
lengths by the same factor, which will not affect the
volumes relative value. As quality and diversity ob-
jectives are multiplied together to get the probability
of the set (Eq. (4)), to change the relative importance,
we need to adjust the dynamic range of the quality
scores. We do this by using an exponent to change
the distribution of quality. When γ0 = 0, all qual-
ity scores collapse to one and the resultant PaDGAN
model only generates diverse designs. In contrast, for
large values of γ0, the highest quality scores have the
largest probability mass and PaDGAN only generates
the highest quality designs, ignoring diversity. This
method of balancing diversity and quality provides
more flexibility to PaDGAN and in general, can be
used for many applications of DPPs.

3.4 Improving PaDGAN stability

Stabilization of GAN learning remains an open prob-
lem and in this section, we provide a heuristic method
to improve GAN stability, when using a surrogate
model for evaluating quality. Note that in Eq. (8),
the quality gradient is used in the back propagation
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step. If the quality gradients are not accurate, the
generator learning can go astray. This is not a prob-
lem when the quality estimator is a simulator that
can reasonably evaluate (even with low-fidelity) any
design in the design space, irrespective of the de-
signs being invalid or unrealistic. However, it cre-
ates problems when we use a surrogate model. A
surrogate model is normally trained only on realistic
designs and hence may perform unreliably on unre-
alistic ones. In the initial stages of training, a GAN
model will not always generate realistic designs dur-
ing training. This makes it difficult for the surrogate
model to correctly guide the generator’s update and
may cause stability issues. To avoid this problem, we
propose two small modifications to PaDGAN:

1. Realisticity weighted quality. Specifically, we
weight the predicted quality at x by the prob-
ability of x being the real design (predicted by
the discriminator):

q(x) = D(x)q′(x)

where q′(x) is the predicted quality (by a sur-
rogate model for example), and D(x) is the dis-
criminator’s output at x.

2. An escalating schedule for setting γ1 (the weight
of DPP loss). A GAN is more likely to generate
unrealistic designs in its early stage of training.
Thus, we initialize γ1 at 0 and increase it during
training, so that PaDGAN focuses on learning
to generate realistic designs at the early stage,
and takes quality into consideration later when
the generator can produce more realistic designs.
The schedule is set as:

γ1 = γ′1

(
t

T

)p
where γ′1 is the value of γ1 at the end of training,
t is the current training step, T is the total num-
ber of training steps, and p is a factor controlling
the steepness of the escalation.

We can also consider the uncertainty of the quality
estimation and put a lower weight on the quality score
when the uncertainty is high. However, we only con-
sider the above two modifications in this paper and

leave others to future work. Note that these modifi-
cations are only needed if one is using a performance
estimator (e.g., a surrogate model) which gives unre-
liable quality predictions for unrealistic designs.

4 EXPERIMENT

So far, we have shown how the mathematical com-
ponents of PaDGAN will encourage it to generate
high-quality and diverse samples. In this section,
we will describe experiments, which can help us val-
idate our claims. These experiments are carefully
designed such that the outcome of any generative
models can be verified easily. This section introduces
the experimental settings for each example. To show
the merit of modeling quality and diversity simulta-
neously, we compare the PaDGAN with alternative
models where those two attributes are modeled sep-
arately. In the following sections, we show that for
three multi-modal synthetic problems, PaDGAN out-
performs all other methods by achieving both high-
quality and high diversity. Finally, after showing
that the claims hold on three test cases, we apply
PaDGAN on a real-world airfoil synthesis problem.
We find that PaDGAN can discover new regions of
high-quality designs, which are outside the design do-
main over which it was trained.

4.1 Data and Quality Measure

Synthetic example I.

The purpose of creating 2D synthetic examples is
to test the performance of PaDGAN given known
ground truth and visualize the results in terms of
diversity and quality. These examples are analogical
to any 2D design problem, where designs are repre-
sented by two variables. In this synthetic example
I, we generate a ring-shaped dataset, with data uni-
formly distributed between two origin-centered cir-
cles of 0.25 and 0.5 in radius, respectively (Fig. 3).
We use a density function of an unnormalized Gaus-
sian mixture as the quality function:

q(x) =

K∑
k=1

exp

(
− (x− µk)T (x− µk)

2σ2

)
, (9)
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where µk is the mode of the k-th mixture compo-
nent and σ is the standard deviation. The centers
µ1, ..., µK are evenly spaced around a circle centered
at the origin and with a radius of 0.4. We set K = 6
and σ ≈ 0.1. Hence, there are six peaks of quality and
points are evenly spread between two concentric cir-
cles in the training data. Ideally, by simultaneously
maximizing diversity and quality, we expect gener-
ating more samples near the six local optima (i.e.,
modes) of the quality function, and those samples
should be spread out and evenly distributed among
all six mixture components.

Synthetic example II.

The data in this example are nine clusters placed on
a 3 × 3 grid (Fig. 3). Similar to synthetic example
I, we use Eq. (9) as the quality function. Here we
set K = 4 and σ ≈ 0.16. Four out of nine clusters
(modes) of the data overlap with local optima of the
quality function. We expect that if both diversity and
quality are considered, the generator should produce
most samples in all the four high-quality clusters and
few samples in other clusters (instead of generating
most samples from a single high-quality cluster).

Synthetic example III.

This example is the same as example I, except that
data is bounded within two origin-centered circles
of 0.325 and 0.375 in radius, respectively (Fig. 3).
The purpose of decreasing the coverage of data is
to demonstrate PaDGAN’s capability of extrapo-
lating in the high-quality regions (i.e., expanding
the boundary of existing design space towards high-
quality regions).

Airfoil example.

An airfoil is the cross-sectional shape of a wing or a
propeller/rotor/turbine blade. In this example, we
use the UIUC airfoil database1 as our data source.
It provides the geometries of nearly 1,600 real-world
airfoil designs. Each design is represented by discrete

1http://m-selig.ae.illinois.edu/ads/coord_database.

html

Figure 3: Data and quality functions in synthetic ex-
amples. The green dots in the top plots represent
data and the contours represent quality functions.

2D coordinates along their upper and lower surfaces.
We preprocessed and augmented the dataset based on
Ref. [5] to generate a dataset of 38,802 airfoils. The
lift to drag ratio CL/CD is a common objective in
aerodynamic design optimization problems. Thus we
used CL/CD as the performance measure, which can
be computed using XFOIL software [45]. To provide
the gradient of the quality function for Eq. (8), we
trained a neural network-based surrogate model on
all 38,802 airfoils to approximate the quality. Note
that for all the examples, we scaled the quality scores
between 0 and 1. We show a subset of 100 randomly
chosen example airfoils from the training data in the
left plot of Fig. 10.

4.2 Model Configuration and Training

To demonstrate the effectiveness of the PaDGAN, we
compare it with the following three models:

1. GAN: a vanilla GAN with the objective of
Eq. (1).

2. GAND: PaDGAN with γ0 = 0 in Eq. (5), i.e.,
which only optimizes for diversity and ignores
the quality.

3. GANQ: a vanilla GAN which ignores diversity
and only optimizes for quality using the following
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Figure 4: Results on synthetic example I. The leftmost plot show training data (green dots) and quality
functions (contour plots). The rest of the plots show the density of samples generated by different models.
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Figure 5: Results on synthetic example II. The leftmost plot show training data (green dots) and quality
functions (contour plots). The rest of the plots show the density of samples generated by different models.
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Figure 6: Results on synthetic example III. The leftmost plot show training data (green dots) and quality
functions (contour plots). The remaining plots in the top row show the density of samples generated by
different models. We observe that GAN and GAND generate samples similar to the data, while GANQ
suffers with mode collapse and only generates samples for two clusters. PaDGAN generates more samples
in the high quality region, ignoring the low-quality areas of the training data. Plots in the bottom row
show only the generated samples (blue dots) which are “outside” the region of training data (indicated by
two green circles). We observe that PaDGAN generates unseen data in the high-quality areas while other
methods either do not explore outside the domain or generate low-quality samples.
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additional term LQ(G) = − 1
|B|
∑|B|
i=1 q(xi). The

training objective is then set to:

min
G

max
D

V (D,G) + γ2LQ(G)

where γ2 controls the weight of the quality ob-
jective.

To find similarity between designs, we use a RBF
kernel with a bandwidth of 1.0 when constructing
LB in Eq. (5), i.e., k(xi,xj) = exp(−0.5‖xi − xj‖2).
This gives a value between 0 to 1, with a higher value
for more similar designs. In synthetic examples, we
set γ0 = 2 and γ1 = 0.5 for PaDGAN and γ2 = 10
for GANQ (these settings were chosen based on a
few initial trials and domain knowledge). The gen-
erators and discriminators are fully connected neural
networks. In the airfoil example, we set γ0 = 2 and
γ1 = 0.2 for PaDGAN. We used a residual neural
network (ResNet) [46] as the surrogate model and a
BézierGAN [5, 27] to generate airfoils. For simplic-
ity, we refer to the BézierGAN as a vanilla GAN and
the BézierGAN with loss LPaD as a PaDGAN in the
airfoil example in the rest of the paper. Detailed net-
work architecture and hyperparameter settings can
be found in our open-source code 2.

4.3 Evaluation

We use the diversity score and the quality score of
generated samples to measure the performance of
generative models. The diversity score is expressed
as the mean log determinant of the similarity matrix:

sdiv =
1

n

n∑
i=0

log det(LSi
), (10)

where n is the number of times diversity is evaluated,
Si ⊆ Y is a random subset of Y (the set of generated
samples), and LSi

is the similarity matrix of Si with
entries LSi(j, k) = k(xj ,xk) for each xj ,xk ∈ Si.
The quality score is computed by taking the average
quality of generated samples:

sqa =
1

|Y |

|Y |∑
i=0

q(xi), (11)

2Link to code will be added if the paper is accepted.

where xi ∈ Y is a randomly generated design.
For synthetic examples, we define the overall score,

to measure the overall performance by combining
measures for diversity and quality of generated sam-
ples:

soverall = −
∑
k

mk

|Y |
log

(
mk

|Y |

)
, (12)

where mk is the number of generated samples within
the one-sigma interval of the k-th mixture component
of the quality function. The overall score is affected
by both the amount of high-quality samples and the
spread of those samples. The highest score occurs
when there are the same number of generated sam-
ples within the one-sigma interval of each mixture
component and no samples are outside those inter-
vals.

In the experiments, we set |Y |= 1000, |Si|= 10,
and n = 1000. To take into consideration the stochas-
ticity of the model training, for each type of model
(PaDGAN, GAN, GAND, and GANQ), we train
them ten times for each experimental setting, and re-
port the performance statistics for all those ten mod-
els (Figs. 7, 8, and 12). We report and discuss the
results in the next section.

5 Results and Discussion

In this section, we compare the performance of
PaDGAN to its alternatives (i.e., GAN, GAND, and
GANQ) and discuss the implication of these results.

5.1 Synthetic Examples

Figures 4, 5, and 6 show the density plots of gener-
ated samples for each model, which represents their
generative distribution. Ideally, when we sample de-
signs from the generator, we want these designs to
have a good coverage over real-world designs (i.e., the
training data) and most of them should have high-
quality. In Fig. 4, the generative distribution learned
by a vanilla GAN fails to cover the entire training
data (non-uniform contours). However, in both ex-
amples, the generative distribution of GAND has a
good coverage of the training data due to its diversity
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objective. This shows that the diversity objective by
itself is capable of avoiding mode collapse. By replac-
ing the diversity objective with a quality objective,
GANQ only generates samples near one of the op-
tima of the quality functions, ignoring the others. In
practice, this will give many high-quality samples but
they all look very similar to each other. In contrast,
the generative distribution of PaDGAN exhibits has
a higher density near high-quality regions and also
good coverage of the design space.

Figure 6 shows that both GAND and PaDGAN
expands the boundary of training data. Particu-
larly, PaDGAN expands the boundary towards high-
quality regions. If these samples represent designs,
it basically indicates that PaDGAN can expand the
boundary of existing designs. We will further demon-
strate this with a real design problem later. This
promising result shows that by diversifying gener-
ated samples, PaDGAN is capable of expanding the
design space towards the direction of high-quality re-
gions. Note that this is not only filling the “holes”
of the design space by interpolation, but also extrap-
olation on the right direction. It is not surprising
that the generator knows which direction to expand
since it receives from the performance estimator the
information of quality gradients.
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Figure 7: Scores for synthetic example I. The red
horizontal line denotes the diversity/quality score of
the training data. The box plots show the statistics
of ten models for each method.

Figures 7, 8, and 9 show the statistics of ten trained
models for each method. Both figures tell that GAND

has the best performance in the diversity score and
the worst performance in the quality score. GANQ

generates the highest quality samples, but has the

GAN GAND GANQPaDGAN
250

200

150

100

Diversity score

GAN GAND GANQPaDGAN

0.5

0.6

0.7

0.8

0.9

1.0
Quality score

GAN GAND GANQPaDGAN
0.00

0.25

0.50

0.75

1.00

1.25
Overall score

Figure 8: Scores for synthetic example II. The red
horizontal line denotes the diversity/quality score of
the training data. The box plots show the statistics
of ten models for each method.
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Figure 9: Scores for synthetic example III. The red
horizontal line denotes the diversity/quality score of
the training data. The box plots show the statistics
of ten models for each method.

lowest diversity scores, showing that all the samples
very similar to each other. PaDGAN has the highest
overall score in both examples, which shows that it
generates high-quality samples that spread over dif-
ferent optima. The lowest variance indicates a con-
sistent performance over multiple runs of PaDGAN
training.

5.2 Airfoil Example

We synthesized 100 airfoil designs from a vanilla
GAN and 100 from a PaDGAN, computed their qual-
ity (CL/CD values) using XFOIL3, and used the t-
Distributed Stochastic Neighbor Embedding (t-SNE)
to map these designs onto the same two-dimensional
space, as shown in Fig. 10. The quality is indicated by
the shades of plotted designs, where dark shaded air-

3We set CL/CD = 0 when the simulation fails.
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High-quality 
novel 

designs

Novel 
designs

Figure 10: To compare the distribution of real and synthetic airfoils, we map airfoil designs sampled randomly
from training data, vanilla GAN, and PaDGAN through t-SNE into the same 2D space (shown in (a)). Plots
(b)-(d) visualizes the airfoil geometries, where the shades represent quality (i.e., CL/CD). The dots in (c)
and (d) represent training data. We label the convex hull of the sampled training data in Plots (a), (c), and
(d), which roughly indicates the boundary of the original design space.

foils are of higher quality. We also show 100 designs
from the training data in the left most figure to rep-
resent the original design space. Both the GAN and
the PaDGAN generate realistic airfoil designs. We
observe that the vanilla GAN (middle figure) gener-
ates a few airfoils that fill in the gaps of the train-

ing data (i.e., interpolation). However, PaDGAN
discovers new high-quality designs, which are out-
side the boundary of the training data. We mark
these regions in by ellipses in the leftmost part of
Fig. 10. This shows that the diversity promoting part
of PaDGAN encourages it to discover new unseen de-
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Figure 11: The distribution of quality (CL/CD) for
training data, vanilla GAN, and PaDGAN.
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Figure 12: Scores for the airfoil example. The red
horizontal line denotes the diversity/quality score of
the training data. The box plots show the statistics
of ten models for each method.

sign areas while the quality promoting part helps it
find areas where high-quality designs are found, as
is also demonstrated by synthetic example III. In fu-
ture work, we will explore if PaDGAN can be used
as a tool to assist in design discovery by generating
novel high-quality designs for more complex design
domains.

We show the quality (i.e., CL/CD) distributions of
training data and generated designs by vanilla GAN
and PaDGAN in Fig. 11. We observe that the qual-
ity distribution of data has two modes (large num-
ber of samples) — one near 0 and one near 70. The
vanilla GAN’s quality distribution mimics these two
modes but has a larger probability mass near 0. Com-
paring with both the training data and the vanilla
GAN, PaDGAN’s quality distribution has a larger

mass over the higher-quality region. This shows that
PaDGAN generates most samples which are of sig-
nificantly higher quality than the training data.

Figure 12 shows the statistics of quality and di-
versity scores over ten runs of model training. The
PaDGAN’s diversity score is always higher than the
training data’s (shown by a red horizontal line),
whereas the vanilla GAN almost always has a lower
diversity score than the data. The quality score of
the PaDGAN has a higher mean and lower variance
than the vanilla GAN. These results demonstrate the
effectiveness of PaDGAN as a design exploration tool.

To show the evaluation scores in Figs. 7-9 and
Fig. 12 more clearly, we list the means and 95% con-
fidential intervals of all scores in Appendix A.

6 CONCLUSION and FU-
TURE WORK

In this paper, we proposed a new loss function for
generative models based on Determinantal Point Pro-
cesses. With this loss function, we developed a new
GAN model, named PaDGAN. To the best of au-
thors’ knowledge, this is the first GAN model that
can simultaneously encourage the generation of di-
verse and high-quality designs. We use both synthetic
and real-world examples to demonstrate the effective-
ness of PaDGAN and show that by diversifying gener-
ated samples, PaDGAN expands the existing bound-
ary of the design space towards high-quality regions.
This model is particularly useful when we want to
thoroughly explore different high-quality design al-
ternatives or discover novel solutions. For example,
when performing design optimization, one may accel-
erate the search for global optimal solutions by sam-
pling start points from the proposed model. Also,
this method can be a tool in the early conceptual de-
sign stage to aid the creative process. It can generate
new designs which are learnt from previous genera-
tions of designs, while introducing novelty and tak-
ing into account the desired quality metrics. The
resultant designs can be used as inspirations to steer
designers in exploring novel designs. Although we
demonstrated the effectiveness of our method via a
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GAN-based model, the proposed framework also gen-
eralizes to other generative models like variational
autoencoders and can be used for various design syn-
thesis problems.

Note that by trying to mimic the training data,
PaDGAN captures design constraints implicitly. For
instance, in Fig.6 (Example III), it captures the inner
and outer ring of the training data and generates the
majority of the points inside the two circular rings.
However, we still observe a few points outside the
rings, as we do not explicitly define this as a con-
straint boundary. To explicitly capture design con-
straints, one can train a differentiable classifier (e.g.,
a neural network-based classifier) which predicts con-
straint satisfaction and use it as a second discrimina-
tor. However, this approach of explicitly capturing
the constraints is outside the scope of this work.

While we developed this method for design applica-
tions, it can generalize to many other domains, where
quality and coverage over a domain are needed. For
example, in molecule discovery, our model can be
integrated with the generative model developed by
Gómez-Bombarelli et al. [47], who combined a gen-
erative model with the search over latent space to
generate new molecules. In 3D shape synthesis, our
model can be trained on large datasets like ShapeNet
and used as a recommender system within CAD soft-
ware. The loss function we develop can also be inte-
grated with human face synthesis methods, to gener-
ate new human faces, which are high quality (depend-
ing on any criteria like beauty) and from different
groups (regions, race, gender, age etc.). Overall, the
method provides a new direction of research, where
generative models focus on the unbiased generation
of high-quality items.
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2016. “Improving design grammar development
and application through network-based analysis
of transition graphs”. Design Science, 2.

[13] Shea, K., Aish, R., and Gourtovaia, M., 2005.
“Towards integrated performance-driven genera-
tive design tools”. Automation in Construction,
14(2), pp. 253–264.

[14] Herber, D. R., Guo, T., and Allison, J. T.,
2017. “Enumeration of architectures with per-
fect matchings”. Journal of Mechanical Design,
139(5).

[15] Kamesh, V. V., Mallikarjuna Rao, K., Rao, S.,
and Balaji, A., 2017. “Topological synthesis
of epicyclic gear trains using vertex incidence
polynomial”. Journal of Mechanical Design,
139(6).

[16] Bryant, C. R., Stone, R. B., McAdams, D. A.,
Kurtoglu, T., Campbell, M. I., et al., 2005.
“Concept generation from the functional basis of
design”. In ICED 05: 15th International Confer-
ence on Engineering Design: Engineering Design
and the Global Economy, Engineers Australia,
p. 1702.

[17] Chakrabarti, A., Shea, K., Stone, R., Cagan,
J., Campbell, M., Hernandez, N. V., and Wood,
K. L., 2011. “Computer-based design synthesis
research: an overview”. Journal of Computing
and Information Science in Engineering, 11(2).

[18] Wyatt, D. F., Wynn, D. C., Jarrett, J. P.,
and Clarkson, P. J., 2012. “Supporting product
architecture design using computational design
synthesis with network structure constraints”.
Research in Engineering Design, 23(1), pp. 17–
52.

[19] Wijkniet, J., and Hofman, T., 2018. “Mod-
ified computational design synthesis using
simulation-based evaluation and constraint con-
sistency for vehicle powertrain systems”. IEEE
Transactions on Vehicular Technology, 67(9),
pp. 8065–8076.

[20] Chen, X., Diez, M., Kandasamy, M., Zhang, Z.,
Campana, E. F., and Stern, F., 2015. “High-
fidelity global optimization of shape design by
dimensionality reduction, metamodels and de-
terministic particle swarm”. Engineering Opti-
mization, 47(4), pp. 473–494.

[21] D’Agostino, D., Serani, A., Campana, E. F.,
and Diez, M., 2017. “Nonlinear methods for
design-space dimensionality reduction in shape
optimization”. In International Workshop on
Machine Learning, Optimization, and Big Data,
Springer, pp. 121–132.

[22] D’Agostino, D., Serani, A., Campana, E. F., and
Diez, M., 2018. “Deep autoencoder for off-line
design-space dimensionality reduction in shape
optimization”. In 2018 AIAA/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials
Conference, p. 1648.

[23] Burnap, A., Liu, Y., Pan, Y., Lee, H., Gonza-
lez, R., and Papalambros, P. Y., 2016. “Esti-
mating and exploring the product form design
space using deep generative models”. In ASME
2016 International Design Engineering Techni-
cal Conferences and Computers and Information
in Engineering Conference, American Society of
Mechanical Engineers Digital Collection.

[24] Cunningham, J. D., Simpson, T. W., and
Tucker, C. S., 2019. “An investigation of surro-
gate models for efficient performance-based de-
coding of 3d point clouds”. Journal of Mechan-
ical Design, 141(12).

[25] Cang, R., Vipradas, A., and Ren, Y., 2017.
“Scalable microstructure reconstruction with
multi-scale pattern preservation”. In ASME
2017 International Design Engineering Techni-
cal Conferences and Computers and Information
in Engineering Conference, American Society of
Mechanical Engineers Digital Collection.

[26] Yang, Z., Li, X., Catherine Brinson, L., Choud-
hary, A. N., Chen, W., and Agrawal, A., 2018.
“Microstructural materials design via deep ad-
versarial learning methodology”. Journal of Me-
chanical Design, 140(11).

16



[27] Chen, W., and Fuge, M., 2018. “Béziergan: Au-
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Appendix A: Table of Evaluation
Metrics

We list the means and 95% confidence intervals of all
evaluation scores (Figs. 7-9 and Fig. 12) in Table 1.
It shows that PaDGAN received best overall score for
all cases, and atleast the second best score for both
diversity and quality in all four examples.
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Table 1: Diversity and Quality Scores for all experiments. The best score for each example is marked by ∗

symbol and the second best scores by ∗∗ symbol.

Model Diversity Score Quality Score Overall Score

E
x
am

p
le

I GAN −69.0885± 27.4357 0.5826± 0.0620 1.0678± 0.2938∗∗

GAND −53.6183± 0.3601∗ 0.4672± 0.0162 0.9060± 0.0414
GANQ −152.1945± 77.5582 0.9131± 0.1065∗ 0.5913± 0.5875
PaDGAN −57.2489± 1.16202∗∗ 0.6955± 0.0269∗∗ 1.4897± 0.0624∗

E
x
am

p
le

II GAN −68.2451± 3.9807 0.5004± 0.0447 0.9752± 0.0531∗∗

GAND −61.8685± 0.7375∗ 0.4811± 0.0239 0.9473± 0.0269
GANQ −197.0243± 119.0978 0.9914± 0.0280∗ 0.4261± 0.8780
PaDGAN −65.5501± 1.53222∗∗ 0.7176± 0.0344∗∗ 1.2117± 0.0320∗

E
x
a
m

p
le

II
I GAN −93.1237± 67.4991 0.6219± 0.0847 0.9019± 0.8333

GAND −63.5478± 0.4637∗ 0.5560± 0.0152 1.0811± 0.0468∗∗

GANQ −150.3896± 65.4173 0.8492± 0.1219∗ 0.6356± 0.6366
PaDGAN −63.9063± 1.76832∗∗ 0.6968± 0.0248∗∗ 1.4993± 0.0624∗

A
ir

fo
il GAN −22.0326± 1.4982∗∗ 56.1703± 66.4480∗∗ N/A

PaDGAN −12.5455± 4.8970∗ 76.0670± 43.9802∗ N/A
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