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Abstract

Bipartite b-matching, where agents on one side of a
market are matched to one or more agents or items
on the other, is a classical model that is used in
myriad application areas such as healthcare, adver-
tising, education, and general resource allocation.
Traditionally, the primary goal of such models is
to maximize a linear function of the constituent
matches (e.g., linear social welfare maximization)
subject to some constraints. Recent work has stud-
ied a new goal of balancing whole-match diver-
sity and economic efficiency, where the objective is
instead a monotone submodular function over the
matching. Basic versions of this problem are solv-
able in polynomial time. In this work, we prove
that the problem of simultaneously maximizing di-
versity along several features (e.g., country of cit-
izenship, gender, skills) is NP-hard. To address
this problem, we develop the first combinatorial
algorithm that constructs provably-optimal diverse
b-matchings in pseudo-polynomial time. We also
provide a Mixed-Integer Quadratic formulation for
the same problem and show that our method guar-
antees optimal solutions and takes less computation
time for a reviewer assignment application.

1 Introduction
The bipartite matching problem occurs in many applications
such as healthcare, advertising, and general resource alloca-
tion. Weighted bipartite b-matching is a generalization of
this problem where each node on one side of the market can
be matched to many items from the other side, and where
edges may also have associated real-valued weights. Ex-
amples of weighted bipartite b-matching include assigning
children to schools [Drummond et al., 2015; Kurata et al.,
2017], reviewers to manuscripts [Charlin and Zemel, 2013;
Liu et al., 2014], and donor organs to patients [Dickerson and
Sandholm, 2015; Bertsimas et al., 2019].

Ahmed et al. [2017] introduced the notion of diverse bipar-
tite b-matching, where the goal was to simultaneously max-
imize the “efficiency” of an assignment along with its “di-
versity.” For example, a firm might want to hire several

highly-skilled workers, but if that firm also cares about di-
versity it may want to ensure that some of those hires occur
across marginalized categories of employees. They proposed
an objective which combined economic efficiency and diver-
sity demonstrating that, in practice, reducing the efficiency
of a matching by small amounts can often lead to significant
gains in diversity across a matching. However, their formu-
lation was limited to diversity for a single feature. It also
relied on solving a general Mixed-Integer Quadratic Program
(MIQP), which is flexible but computationally intractable.

Figure 1: An illustrative example of single feature diverse matching
(left) versus multi-feature diverse matching (right); here, the match-
ing creates teams with workers from each country and gender.

In this work, we generalize the diverse matching problem
and introduce matchings where each worker has multiple fea-
tures (e.g., country of origin, gender) and our goal is to form
diverse teams with respect to all these features. We found
that the problem with a single feature, studied by Ahmed et
al. [2017], can be reduced to a minimum quadratic cost max-
imum flow formulation and solved in polynomial time by an
existing algorithm [Minoux, 1986]. In contrast, we provide
NP-hardness results for the general case of multiple features.
Our contributions. The paper’s main contributions follow:
• We provide the first pseudo-polynomial time algorithm

for the diverse bipartite b-matching w.r.t. multiple features
problem with class-specific weights.1 The key insight lies
in detecting negative cycles in an auxiliary graph repre-
sentation, which we use to either provide incremental im-
provements to the incumbent diverse matching or prove
that our negative-cycle-detection algorithms have found

1That is, under conditions when the cost of assigning all items
from one category to an item on the other side of the graph is the
same. This holds when, e.g., one is matching academic papers to re-
viewers where each reviewer can specify exactly one field of exper-
tise and the cost of assigning a paper to any of the reviewers within
the same field is the same but differs across fields.
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a globally-optimal matching. We also provide a general
MIQP formulation for this problem.

• We then extend the algorithm to the diverse bipartite b-
matching problems with general edge weights, where edge
weights of nodes within a category can be different.

• Lastly, we demonstrate our algorithm’s applicability to
paper-reviewer matching. Our algorithm takes less time to
converge to an optimal solution than the proposed MIQP
approach (using a state-of-the-art commercial solver).

2 Related Work
Matching people to form diverse teams leverages the inter-
section of two past areas of research: the role of team diver-
sity in collaborative work and how diversity among groups of
resources is measured and used to form/match teams. Com-
pared to related work, this paper provides a practical, high-
performing method to perform diverse b-matching that can
enable applications like diverse team formation or diverse re-
source allocation. Below we will use the example of diverse
team formation (for example, in project teams within a com-
pany) to provide a concrete example to place prior work in
context; however, our proposed approach is generally appli-
cable to any diverse matching problem.

In the example of forming teams, the traditional ap-
proach is to use weighted bipartite b-matching (WBM) meth-
ods [Basu Roy et al., 2015]. These methods maximize the to-
tal weight of the matching while satisfying some constraints.
However, there are two major issues with these approaches.
First, it assumes that the value provided by a person in a team
is always fixed and independent of who else is in the team.
This assumption may not hold in many cases. A new team
member may provide more added value to the team if she is
added to a smaller team compared to the case if she is added
to a larger team. This property of diminishing marginal util-
ity can be mathematically captured by a family of functions
called submodular functions. Second, existing approaches do
not account for diversity within a team, where teams with
workers from different backgrounds may be desirable. For
example, different types of worker diversity have a direct im-
pact on the success rate of tasks [Ross et al., 2010]. Likewise,
firms with a higher number of employees with higher edu-
cation and diversity in the types of educations have a higher
likelihood of innovating [Østergaard et al., 2011] and increas-
ing revenue for firms [Hunt et al., 2015]. In this paper, we
address both these issues.

Past researchers have generally measured diversity by
defining some notion of coverage—that is, a diverse set is
one that covers the space of available variation. Mathemat-
ically, researchers have done so via the use of submodu-
lar functions, which encode the notion of diminishing re-
turns [Lin and Bilmes, 2012]; that is, as one adds items
to a set that are similar to previous items, one gains less
utility if the existing items in the set already “cover” the
characteristics added by that new item. For example, many
previous diversity metrics used in the information retrieval
or search communities—including Maximum Marginal Rel-
evance (MMR) [Carbonell and Goldstein, 1998] and De-
terminantal Point Processes [Kulesza et al., 2012]—are in-

stances of submodular functions. These functions can model
notions of coverage, representation, and diversity [Ahmed
and Fuge, 2018] and they have been shown to achieve
top results on common automatic document summarization
benchmarks—e.g., at the Document Understanding Confer-
ence [Lin and Bilmes, 2012].

Within matching, our work is closest to that of Ahmed et
al. [2017], which used a supermodular function to propose
a diverse matching optimization method. Other researchers
have also approached similar problems, with diversity either
as an objective or as a constraint. For instance, Gölz and Pro-
caccia [2019] match migrants to localities in a way that max-
imizes the expected number of migrants who find employ-
ment. Benabbou et al. [2018] study the trade-off between
diversity and social welfare for the Singapore housing allo-
cation. They model the problem as an extension of the clas-
sic assignment problem, with additional diversity constraints.
Lian et al. [2018] solve the assignment problem when pref-
erences from one side over the other side are given and both
sides have capacity constraints. They use order weighted av-
erages to propose a polynomial-time algorithm which leads
to high quality and more fair assignments. Agrawal et al.
[2018] show that a simple iterative proportional allocation al-
gorithm can be tuned to produce maximum matching with
high entropy. Finally, Kobren et al. [2019] proposed two
fairness-promoting algorithms for the paper-reviewer match-
ing problem. They demonstrate that their algorithm achieves
higher utility compared to state of the art matching algorithms
that optimize for fairness only. In contrast, our goal is to de-
velop an algorithm for finding the optimal assignment which
maximizes utility as well as diversity along multiple features
as an objective—along with having constraints on workload.

We define a utility function that can be tuned to balance the
diversity and total weight of matching. The diversity function
is inspired by the Herfindahl index [Hirschman, 1964], which
is a statistical measure of concentration and commonly used
in economics. We provide a new algorithm that models the
problem using an auxiliary graph and uses a heuristic im-
provement of the negative cycle detection of Bellman-Ford
by Goldberg and Radzik [1993]2 to find negative cycles and
cancel them on a new graph to obtain an optimal solution for
the original problem.

3 Preliminaries
In this section, we first define the preliminaries for a diverse
matching problem, where workers are to be matched to teams
and each team wants workers belonging to a diverse set of
features. In our problem, we are given a set of features for the
workers. Let F = {f1, · · · , f|F|} denote the feature set for
the workers. An example of a feature set could be {country
of citizenship, gender}. Each feature fk ∈ F has one of
the values Fk = {fk,1, · · · , fk,|Fk|}. Let |Fk,k′ | denote the
number of workers having value fk,k′ for feature fk. The set
of workers is denoted by X = {x1, . . . , xn}. We wish to

2We used the negative cycle detection algorithm by Goldberg and
Radzik [1993]. Cherkassky et al. [1993] compared the performance
of multiple negative cycle detection algorithms, and the algorithm
by Goldberg and Radzik [1993] was one of the fastest.



form a set of teams {T1, . . . , Tt} of the workers where each
team Ti has a demand of di, specifying the number of workers
that need to be assigned to it. Each worker can be assigned to
exactly one team.

The diversity of an assignment is denoted byD and is equal
to
∑|F|

k=1 λkDk, where Dk shows the diversity w.r.t. feature
fk, and λk ∈ Z+ is a constant. Let ci,k,k′ denote the num-
ber of workers in Ti having value fk,k′ ∈ Fk for feature fk.
Then, Dk =

∑t
i=1

∑|Fk|
k′=1 c

2
i,k,k′ . To facilitate explanation,

we assume throughout this paper that the country of origin is
the 1st feature, therefore, the number of workers assigned to
team Ti from j-th country is denoted by ci,1,j . The cost of as-
signing each worker from j-th country to team Ti is denoted
by ui,j ∈ Z+. We assume all costs are integers. The total
cost of an assignment is TU =

∑t
i=1

∑|F1|
j=1 ui,j · ci,1,j .

Our goal is to minimize the objective function which is
equal to λ · D + λ0 · TU , where λ ∈ Z+|F|, and λ0 ∈ Z+

is a constant. Next, we provide Theorem 1, which shows that
this problem is NP-hard.

Theorem 1. Minimizing the supermodular diversity function
w.r.t multiple features is NP-hard.

Proof. We show a reduction from the 3-COLOR problem
which is as follows: given a graph G = (V,E) with n ver-
tices, does there exist a coloring with n1 vertices of color c1,
n2 vertices of color c2, and n3 vertices of color c3, such that
no two adjacent vertices receive the same color, and all the
vertices are colored?

The reduction is as following: In 3-COLOR, assign a fea-
ture fk to each edge ek = (vk1

, vk2
) ∈ E, and a worker to

each vertex. Let fk,i denote the value of fk for the worker
corresponding to vi ∈ V . Let fk,i = i if i 6= k1, k2. Other-
wise, let fk,i = 0. The goal is to form three teams T1, T2, T3
with demands d1 = n1, d2 = n2, d3 = n3, respectively. We
assume that all the costs of assigning workers to the teams
are zero, therefore the objective function is to minimize the
total diversity. Consider an arbitrary edge ek = (vk1 , vk2). If
the endpoints of ek belong to different teams, fk contributes
n1 + n2 + n3 to the objective function since all the workers
inside a team have different values for fk. Otherwise, it con-
tributes n1 + n2 + n3 − 2 + 22 since workers corresponding
to vk1

, vk2
are the only workers having the same value for fk

inside a team. If the cost of the optimal solution for the di-
verse matching problem is (n1 + n2 + n3) · |E|, there does
not exist a pair of workers in a team where the vertices cor-
responding to them are neighbouring in G. Otherwise if the
cost of the optimal solution is more than (n1 +n2 +n3) · |E|,
the 3-COLOR instance is infeasible.

We are interested in solving this NP-hard problem. We
begin by presenting two different representations of instances
of the problem: one in matrix form (used for expositional
ease), and the other in graph form (used to build our optimal
diverse matching algorithm in Section 4).

Matrix Representation:
An example of matrix representation with three teams and

two countries and two genders is shown in Fig. 2. In this
representation, each column Vj corresponds to a feature set

Figure 2: Matrix representation of three teams and workers from
two countries and two genders. Dummy team T0 accommodates
unassigned workers. Arrows represent a local exchange.

Figure 3: Matrix representation embedding w.r.t country.

vj = {vj,1, · · · , vj,|F|}, where ∀1 ≤ k ≤ |F|, vj,k ∈ Fk.
Each row corresponds to a team. Entry wi,j shows the num-
ber of workers with feature set vj assigned to Ti. We intro-
duce a dummy team T0, and w0,j shows the number of work-
ers with feature set vj who are not assigned to any team.

Matching Representation: In this representation, a bipar-
tite graph G = (X ∪ T , E) is given. The nodes in X cor-
respond to the workers, and are partitioned into |V| subsets
V1, · · · , V|V|, where each subset corresponds to the feature
set for a column in the matrix representation. Each vertex in
T corresponds to one team. The assignment of workers to
teams forms a b-matching, where the degree of node Ti ∈ T
is di, and the degree of node x ∈ X is at most one.

Local Exchange: A local exchange happens when a group
of teams decides to transfer one or more workers between
each other while maintaining the total number of workers in
each of them. The exchange is done in a way that the initial
demands of all the teams are fulfilled. Arrows in Fig. 2 show
a local exchange in a matrix representation.

In this exchange, one worker from V2 is moved from T3
to T1. Two workers from V1 are moved. One is moved from
T1 to T2, and the other one is moved from T2 to T3. The
set of edges of local exchange in a matrix representation is
called a cycle. The source-transitions of a cycle are the cells
without any input edges, and the sink-transitions are the cells
without any output edges. In Fig. 2, the nodes corresponding
to w3,2 and w1,1 are source-transitions nodes, and the nodes
corresponding to w1,2 and w3,1 are sink-transition nodes.

Figure 5 shows the same local exchange operation using
a matching representation. In this figure, the black match-
ing shows the initial assignment, and the dotted red matching
shows the assignment after the exchange operation is done.

Gain of a local exchange: Our goal is to minimize the

Figure 4: Matrix Representation Embedding w.r.t to gender.



Figure 5: Local exchange operation (in matching representation).

objective function f , by doing some local exchanges. To
find out, we first calculate the marginal gain from a given
exchange operation which is the difference between the ob-
jective values before and after a local exchange. In order to
simplify this concept, we use the following definition:

Embedding of Matrix Representation: Consider a given
matrix representation M , it can be embedded into a ma-
trix Mk for a fixed feature fk in the following way: all the
columns in M corresponding to the same value fk,k′ of fk,
are combined into a single column in Mk. For example, em-
bedding of the matrix representation in Figure 2 into M1,M2

w.r.t. the features country and gender are shown in Figures 3
and 4. Since inM1, the number of people assigned from each
country to each team is not changed, ∆(λ0 ·TU+λ1D1) = 0.
Accoridng to M2, ∆(λ2D2) = λ2

(
(c3,2,2−1)2− (c3,2,2)2 +

(c1,2,2 + 1)2 − (c1,2,2)2 + (c1,2,1 − 1)2 − c21,2,1 + (c3,2,1 +

1)2 − c23,2,1
)
.

It can be seen that the contribution of the nodes which are
not source-transition or sink-transition to the gain of a local
exchange is zero (all the nodes in the local exchange in Fig-
ure 3, and the node corresponding to c2,2,1 in M2). If the
net gain, i.e. ∆(λ0 · TU + λ1D1 + λ2D2), is negative, then
the local exchange can be considered beneficial and we can
transfer the workers.

4 Negative-Cycle-Detection-based Algorithms
In this section, we explain our algorithm for finding the opti-
mum assignment. First, we build an auxiliary graph G′. For
each team Ti, there is a switch in G′ with |V| input ports, and
|V| output ports, where |V| is the number of columns in the
matrix representation. Each port is a node in G′, and each
switch is a directed bipartite graph, with edges going from its
input ports (nodes) to its output ports. In Figure 6, each box
is a switch. A dummy team T0 is introduced to accommodate
all unassigned workers in the matching. Inside a switch Ti,
there is a directed edge from each input port to each output
port. If the directed edge is connecting two ports such that
their corresponding combinations of features do not have the
same value for any features, the weight of this edge is equal to
zero. Otherwise, per each feature fk that has the same value,
−2λk is added to the weight of this edge.

The reason behind assigning these weights to the edges is
to make sure in a local exchange, considering a fixed fea-
ture fk, the nodes which are not a source-transition or a sink-
transition w.r.t. Mk, have zero contribution to ∆(Dk).

For each pair of teams Ti1 and Ti2 where i1 6= i2, and for
each feature combination vj , there is a directed edge from
output port Oi1

j of switch Ti1 to the input port Ii2j of switch
Ti2 , and weight of this edge captures the difference in the

Figure 6: A local Exchange in graph representation.

objective function when in the matrix representation a person
in column Vj (with feature set vj) is moved from Ti1 to Ti,2.

Each cycle in this graph is corresponding to a cycle in a
matrix representation and local exchanges along them have
the same gain. Figure 6 shows a cycle which is corresponding
to the cycles in Figures 2 and 5.

After constructing the auxiliary graph, we run Algorithm 1.
Algorithm 1 moves workers from one team to another if it
detects a negative cycle.

Algorithm 1: Find optimal diverse b-matching
Input : Directed weighted graph G′, initial feasible

b-matching Q which satisfies team demands.
Output: Optimal diverse b-matching
while ∃ a negative cycle C ∈ G′ do

// Perform a local exchange operation along C;
for e ∈ C do

// Assume edge e is from output port Oi1
j of team

Ti1 to input port Ii2j of another team Ti2 ;
// Move one worker with feature set
vj = {f1,k′1 , · · · , f|F|,k′|F|} from team Ti1 to
team Ti2 :
∀k ∈ {1, · · · , |F|}:
ci1,k,k′k− = 1, ci2,k,k′k+ = 1;

Update weight of edges of G′ w.r.t to the new
values of ci1,k,k′k , and ci2,k,k′k ;

Algorithm 1 takes as input an initial feasible solution Q
as input. To find Q, we first find a feasible solution, which
satisfies all the demand constraints. In order to find an initial
feasible solution, in each iteration, consider the first subset of
workers in the the bipartite graph G (Vj) with at least one un-
assigned worker, and the first team (Ti) such that the number
of workers assigned to it is less than its demand (In the first
iteration, we start with V1, T1, and all the workers are un-
assigned). Assign un-assigned workers from Vj to Ti, until
either demand of Ti is fully satisfied, in this case, move to the
next team (i = i+1), or all the workers from Vj are assigned,
then let j = j+ 1. Repeat this procedure until all the demand
constraints are satisfied. Time complexity of this procedure
is O(|V|+ t).

In Algorithm 1, any negative cycle detection algorithm can
be used to detect negative cycles in G′. We use a heuris-
tic improvement of Bellman-Ford proposed by Goldberg and
Radzik [Goldberg and Radzik, 1993] in our experiments.



Figure 7: Maximal cycle decomposition

5 Proof of Optimality
In this section, we prove that Algorithm 1 gives the optimum
solution for diverse bipartite b-matching problem.

Assume after the algorithm ends, the final assignment is a
local optimum P , and the optimum solution is P ∗. Consider
the matching representations of P and P ∗. The symmetric
difference of P and P ∗ (P ⊕ P ∗) can be decomposed into a
set of alternating cycles and paths of even length. The reason
that the length of alternating paths is even is that size of both
of the matchings is equal: |P | = |P ∗| =

∑t
i=1 di.

Each local exchange along an alternating cycle corre-
sponds to a cycle in the matrix representation. A local ex-
change along an alternating path corresponds to a cycle in a
matrix representation which includes vertices from row T0.

Before proving Thm. 2, we need the following definitions:
Maximal Cycle: A cycle y in a matrix representation M

is maximal if its source-transitions (nodes with zero incoming
edges) and sink-transitions (nodes with zero outgoing edges)
are source-transition and sink-transition w.r.t all the edges
in M as well. For example, consider Figure 7. Let’s call
the green cycle yg , the red cycle yr, and the blue cycle yb.
The yg has two source-transitions w1,1, w0,3, and it has two
sink-transitions w0,1, w1,3. Since there are no edges going
out of w1,3, w0,1, and no edges going into w0,3, w1,1, yg is
a maximal cycle. Cycles yr, yb are maximal cycles as well.
Therefore, {yg ∪ yb ∪ yr} gives a maximal cycle decomposi-
tion for M . However, if we consider embedding of M w.r.t
gender (M2), then yr is not a maximal cycle anymore, and
{yg, yr ∪ yb} gives a maximal cycle decomposition w.r.t M2

and M1(embedding w.r.t countries). A cycle is called all-
maximal cycle if it is maximal w.r.t all the matrix representa-
tions M1, · · · ,M|F|. In this example, {yg, yr ∪ yb} gives an
all-maximal cycle decomposition.

Lemma 1. The set of all the edges of P ⊕P ∗ can be decom-
posed into a set of all-maximal cycles.

Proof. Consider an arbitrary decomposition of the edges of
P ⊕ P ∗ in the matrix representation into a set of cycles
{y1, · · · , y`}. If there exists a cycle in P ⊕ P ∗ without any
source-transitions and sink-transitions, it means the gain of
this cycle is zero and it could be discarded. If there exists any
cycle yp which is not all-maximal, then there exists another
cycle yq which makes yp not to be maximal w.r.t some fea-
tures. For example in Figure 7, yr is not maximal because of
yb. In this case, union yp and yq , and make yp ∪ yq a sin-
gle cycle in the decomposition. At the end, all the edges in
P ⊕ P ∗ will be decomposed into a set of all-maximal cycles.
Let’s call the set of all-maximal cycles {y′1, · · · , y′`′}.

Theorem 2. Algorithm 1 finds the global optimum for the
diverse b-matching problem.

Proof. Let f(P ) show the value of the objective function for
the assignment P . f(P ∗)− f(P ) < 0 therefore:

f(P
∗
)− f(P ) = gain(y

′
1,1) + gain(y

′
2,2) + · · ·+ gain(y

′
`′,`′ ) < 0

Where y′k (1 ≤ k ≤ `′) is the kth cycle in the maximal
cycle decomposition, and y′k,k is applying the local exchange
of the cycle y′k at step k. The initial step is the assignment P .
Since f(P ∗) − f(P ) < 0, there must be a maximal cycle y′g
such that gain(y′g,g) < 0. We wish to show gain(y′g,1) < 0,
which implies starting from the initial assignment P , a local
exchange can be done with a negative gain, and P is not a
local optimum which is a contradiction.

Let D(y′g,g), U(y′g,g) denote respectively the change in the
diversity, and the change in the utility when applying a local
exchange y′g in step g. LetDfk(y′g,g) denote the change in the
diversity w.r.t the feature fk, when applying y′g,g . Therefore:

gain(y′g,g) =
∑
k∈|F|

Dfk(y′g,g) + U(y′g,g)

Lemma 2 shows if Dfk(y′g,g) < 0, then Dfk(y′g,1) < 0. As
a result, D(y′g,g) < 0 implies D(y′g,1) < 0. It is easy to see
that U(y′g,g) = U(y′g,1). Therefore, gain(y′g,g) < 0 implies
gain(y′g,1) < 0, and the proof is complete.

Lemma 2. If Dfk(y′g,g) < 0, then Dfk(y′g,1) < 0.

Proof. Consider y′g,g embedded into Mk. There are four
types of vertices in y′g,g:
• Vertices in the form of w0,j where 1 ≤ j ≤ |V|. These

vertices have contribution zero to both Dfk(y′g,g) and
Dfk(y′g,1).
• Vertices that are not sink-transition or source-transition,

i.e. w2,2 in Figure 2, w.r.t Mk. It could be seen that con-
tribution of these nodes to bothDfk(y′g,g) andDfk(y′g,1)
is zero.
• Sink-transitions: Consider an arbitrary sink-transition v

in y′g,g . Assume the value of this node at the beginning
of step g is vg . The contribution of v to Dfk(y′g,g) is
λk
(
(vg + 1)2 − v2g

)
> 0. Since v is a sink-transition,

vg ≥ v1. Therefore, λk
(
(vg + 1)2 − v2g

)
≥ λk

(
(v1 +

1)2 − v21
)
.

• Source-transitions: Consider an arbitrary source-
transition v in y′g,g . The contribution of v to Dfk(y′g,g)

is λk
(
(vg − 1)2 − v2g

)
. Since v is a source-transition

v1 ≥ vg , and therefore λk
(
(vg − 1)2 − v2g

)
≥ λk

(
(v1 −

1)2 − v21
)
.

At the end, contribution of all the vertices to Dfk(y′g,1) is
upper bounded by their contribution to Dfk(y′g,g). Therefore
if Dfk(y′g,g) < 0, then Dfk(y′g,1) < 0.

Theorem 3. The running time of the algorithm is O((λmax ·
|F| · n2 + λ0U) · |V|2 · t2(|V| + t)), where U is the max-
imum cost of an initial feasible b-matching and λmax =
max{λ1, · · · , λ|F|}.

In order to prove this theorem, first we show the following
lemmas hold.



Lemma 3. The number of iterations of our algorithm is at
most (λmax · |F| · n2 + λ0U).

Proof. The initial state of the algorithm is a feasible b-
matching with cost at most U . Diversity of any matching
is at most λmax · |F| · n2. At each iteration, we find a neg-
ative weight cycle and since all the weights are integers, its
weight can be at most −1. Therefore, the objective function
decreases by at least 1 at each step, and since the value of the
objective function is always positive, the number of iterations
is at most (λmax · |F| · n2 + λ0U).

Lemma 4. The complexity of each iteration of the algorithm
is O(|V|2 · t2(|V|+ t)).

Proof. At each iteration, we use a negative cycle detection
algorithm with running time O(|V | · |E|) (where |V | is the
number of nodes in the auxiliary graph and |E| is the number
of edges). The number of nodes in the graph is 2|V| · (t+ 1),
since there are t+1 switches in the graph and each switch has
exactly 2|V| ports and each port is a node in the graph. The
number of edges incident on each port is |V| + t. Therefore,
the total number of edges is O(|V| · t(|V| + t)). Hence, the
complexity of each iteration is O(|V|2 · t2(|V|+ t)).

Combining Lemma 3 with Lemma 4, and considering
O(|V|+ t) time complexity for finding an initial feasible so-
lution, yields Theorem 3.

6 Diverse Weighted Bipartite b-Matching
In this section, we extend our algorithm to solve the case
where the cost of assigning workers from the same country
to a team can be different. First, in each switch we put input
and output ports for each worker. Inside each switch, there
is a complete bipartite graph from input ports to the output
ports. Consider an edge between an input port to an output
port corresponding to workers xi and xj . Per each feature fk
where xi, xj have the same values for fk, −2λk is added to
the weight of the edge between xi, xj .

Consider an edge from output port xi1k of switch Ti1 to in-
put port xi2k of switch Ti2 , where xk ∈ Vj . The weight of this
edge is equal to the change in the objective function by mov-
ing one worker from Vj out of Ti1 , and adding that worker to
Ti2 . The proof of the following theorem is similar to Thm. 3.

Theorem 4. The running time of the algorithm for general
weights isO((λmax · |F| · n2 + λ0U) · n2 · t2(n+ t)), where
U is the maximum cost of any feasible b-matching.

7 Experimental Validation & Discussion
To demonstrate the efficacy of the proposed method, we apply
it to a dataset of reviewer paper matching. First, we find the
optimal solution for multi-feature reviewer paper matching
and compare it to the single feature diverse matching method.
We also provide the MIQP formulation of the same problem
based on literature and show how our algorithm is faster to
the Gurobi based MIQP solver.

For the reviewer assignment problem, where each reviewer
has multiple features, we want to match each paper with re-
viewers who are not only from different expertise areas (clus-
ters), but also belong to different genders. We use the multi-
aspect review assignment evaluation dataset [Karimzadehgan
and Zhai, 2009], a benchmark dataset from UIUC. It contains
73 papers accepted by SIGIR 2007, and 189 prospective re-
viewers who had published in the main information retrieval
conferences. The dataset provides 25 major topics and for
each paper in the set, an expert provided 25-dimensional la-
bel on that paper based on a set of defined topics. Similarly
for the 189 reviewers, a 25-dimensional expertise representa-
tion is provided.

To compare our method (Algorithm 1) with a baseline,
we formulate a multi-feature MIQP variant of our problem,
which is an extension of the single-feature formulation pro-
vided in [Ahmed et al., 2017] and is given by:

minλ0

t∑
i=1

|F1|∑
j=1

ui,j · ci,1,j +

|F|∑
k=1

λk

t∑
i=1

|Fk|∑
k′=1

c2i,k,k′

|F|∑
k=1

|Fk|∑
k′=1

ci,k,k′ = di,∀1 ≤ i ≤ t

t∑
i=0

ci,k,k′ = |Fk,k′ |, 1 ≤ k ≤ |F|, 1 ≤ k′ ≤ |Fk|

To set up the graph for our method, we first cluster the review-
ers into 5 clusters based on their topic vectors using spectral
clustering. To calculate the relevance of each cluster for any
paper, we take the average cosine similarity of label vectors of
reviewers in that cluster and the paper. We set the constraints
such that each paper matches with exactly 4 reviewers, and no
reviewer is allocated more than 1 paper. To increase dataset
size, we double the number of reviewers by creating a copy of
each reviewer. As the original dataset lacks gender informa-
tion, we added a new feature to each reviewer in this dataset
by randomly adding one of two gender labels (Male or Fe-
male) to each reviewer. We set λ0 = λ1 = λ2 = 1 for our
experiments.

We run the negative cycle detection algorithm, and the
MIQP solver using Gurobi to find the optimum solution. On
converging to the optimal solution, we find that all 73 papers
receive two male reviewers and two female reviewers, which
shows that the method was capable of balancing gender diver-
sity. All papers receive reviewers from four different clusters
too. If we only optimize for cluster diversity, it is possible
that the gender ratio for individual paper gets skewed. When
we run the same model with λg = 0 (no weight to gender
diversity), we find that out of 73 papers, 12 papers receive
all four reviewers of the same gender and 41 papers receive
three reviewers of the same gender. Hence, only 27.3% teams
of reviewers are gender balanced. However, one should note
that when we do not keep gender as an objective, the resultant
allocation is random and different skewness can be observed
in different runs based on the initial solution.

Finally, we compare the timing performance of our algo-
rithm with MIQP by changing the number of papers that need



to be reviewed on a Dell XPS 13 laptop with i7 processor.
For MIQP, we set a maximum run time of four hours (14400
seconds) for Gurobi solver, at which we report the current
best MIQP solution. Table 1 shows that for all cases with the
number of papers greater than 13, MIQP does not converge
within four hours, while our method finds the optimum so-
lution in lesser time. Interestingly, MIQP current solutions
are found to be the same as the optimum solution found by
our method, which shows that for this application, MIQP was
able to search the solution but it was not able to prove that
the solution is optimum. In contrast, our method finds the
solution faster as well as guarantees that it is optimum.

# Papers # Reviewers MIQP Time (s) Our Method Time (s)

03 378 24.68 0.18
13 378 3979.90 14.84
23 378 14400.00 122.96
33 378 14400.00 400.56
43 378 14400.00 825.95
53 378 14400.00 2837.15
63 378 14400.00 5453.58
73 378 14400.00 11040.55

Table 1: Comparison of MIQP and our method for UIUC reviewer
dataset with each paper needing 4 reviewers.

8 Conclusion & Future Research
In this paper, we proposed the first pseudo-polynomial time
algorithms for multi-feature diverse weighted bipartite b-
matching—a problem that we also showed is NP-hard. We
propose an algorithm that not only guarantees an optimal so-
lution but also converges faster than a proposed approach us-
ing a black-box industrial MIQP solver. We demonstrated
our results on a dataset for paper reviewer matching. Future
work could explore the extension of this method to online di-
verse matching [Dickerson et al., 2019], where vertices arrive
sequentially and must match immediately; this has direct ap-
plication in advertising, where one could balance notions of
reach, frequency, and immediate monetary return. Exploring
connections to fairness in machine learning [Grgić-Hlača et
al., 2018] and hiring [Schumann et al., 2019] by way of di-
versity are also of immediate interest.
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