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Abstract

Bayesian Optimization (BO) is a foundational strategy in the field of engineering design optimiza-
tion for efficiently handling black-box functions with many constraints and expensive evaluations.
This paper introduces a fast and accurate BO framework that leverages Pre-trained Transformers
for Bayesian Optimization (PFN4sBO) to address constrained optimization problems in engineer-
ing. Unlike traditional BO methods that rely heavily on Gaussian Processes (GPs), our approach
utilizes Prior-data Fitted Networks (PFNs), a type of pre-trained transformer, to infer constraints
and optimal solutions without requiring any iterative retraining. We demonstrate the effectiveness
of PFN-based BO through a comprehensive benchmark consisting of fifteen test problems, encom-
passing synthetic, structural, and engineering design challenges. Our findings reveal that PFN-based
BO significantly outperforms Constrained Expected Improvement and Penalty-based GP methods by
an order of magnitude in speed while also outperforming them in accuracy in identifying feasible,
optimal solutions. This work showcases the potential of integrating machine learning with optimiza-
tion techniques in solving complex engineering challenges, heralding a significant leap forward for
optimization methodologies, opening up the path to using PFN-based BO to solve other challenging
problems, such as enabling user-guided interactive BO, adaptive experiment design, or multi-objective
design optimization. Additionally, we establish a benchmark for evaluating BO algorithms in engi-
neering design, offering a robust platform for future research and development in the field. This
benchmark framework for evaluating new BO algorithms in engineering design will be published at
https://github.com/rosenyu304/BOEngineeringBenchmark.

Keywords: Bayesian optimization, Engineering design optimization, Machine learning, Surrogate-based
optimization

1 Introduction

Black-box optimization is a prevalent approach
in engineering design optimization, particularly
when dealing with problems where the objec-
tive function or constraints defining the set are

unknown or ambiguous. This method is instru-
mental in navigating complex design spaces by
optimizing solutions without a clear understand-
ing of the underlying functions (Bajaj et al,
2021; Alarie et al, 2021; Tao et al, 2021). Lately,
Bayesian optimization (BO) has emerged as a
widely adopted black-box optimization tool for
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its ability to enable evaluations of functions with
rapid speed. By leveraging probabilistic models
and iteratively selecting points for evaluation, BO
efficiently explores and exploits the design space,
making it the forefront of active sampling for opti-
mization (Eriksson and Poloczek, 2021; Garnett,
2023; Shahriari et al, 2015; Du et al, 2023).

Though BO has emerged as a promising tool
for accelerating the search process, the full realiza-
tion of its potential in engineering design is hin-
dered by the constraint-handling ability of opti-
mization algorithms (Greenhill et al, 2020; Car-
doso et al, 2024). A common challenge in design
involves identifying products that respect all con-
straints in the feasible design space. Particularly in
structural design optimization, constraints such as
cost limitations, regulatory requirements, material
constraints, geometric considerations, manufac-
turing limitations, safety criteria, and ergonomic
factors complicate the exploration of design
landscapes (Gardner et al, 2017; Baptista and
Poloczek, 2018; Mathern et al, 2021). Therefore,
there is an increase in attention on constraint-
handling BO (CBO) algorithms in both engineer-
ing and computer science communities (Eriksson
and Poloczek, 2021; Biswas and Hoyle, 2021; Kam-
rah et al, 2023; Gardner et al, 2014; Ragueneau
et al, 2024; Tran et al, 2022; Ghoreishi and Allaire,
2019; Tran et al, 2019).

BO’s algorithm limitations also come from its
commonly used surrogate: the Gaussian Process
(GP). By modeling a function with the mean
and the kernel (covariance) function, GP suffers
from cubic time complexity O(n3) of n training
points, leading to scalability issues and runtime
concerns (Liu et al, 2020; Gilboa et al, 2013). The
need to repeatedly refit and infer in GP-based
BO exacerbates the computational time demands.
Moreover, the conventional approach for han-
dling constraints in BO, the constrained expected
improvement (CEI) method (Gelbart et al, 2014),
requires a separate GP for each constraint, mak-
ing the time scale with the number of constraints.
Therefore, studies have focused on accelerating
GP-based BO and improving GP’s scalability
GP (Cunningham et al, 2008; Foreman-Mackey
et al, 2017; Klein et al, 2017; Martinez-Cantin,
2018; Pleiss et al, 2020).

To address the runtime limitations, Müller
et al (2023) have proposed a novel zero-training

transformer framework known as Prior-data Fit-
ted Networks for BO (PFNs4BO), which bypasses
the fitting phase by leveraging a pre-trained
model. The center of this framework is the Prior-
data Fitted Network (PFN), a transformer archi-
tecture meta-trained on a vast dataset of synthet-
ically generated priors. This pre-trained nature
enables the PFN to produce posterior predictive
distributions without additional training, offering
a promising solution for BO by speeding up the
optimization process by an order of magnitude.
Although PFNs4BO has demonstrated a substan-
tial speed improvement, its applicability has been
confined to single-objective optimization problems
without constraints.

Despite the computer science and engineer-
ing community’s numerous novel BO algorithms,
there is a scarcity of open-source benchmark
test suites, particularly for constrained engineer-
ing optimization problems. Various studies assess
BO algorithms on distinct problem scenarios,
such as material discovery (Liang et al, 2021) or
chemical engineering experiments (Shields et al,
2021), making it challenging to compare methods
across a broad range of engineering applications.
Common optimization benchmark sets include
COCO (Hansen et al, 2021), special sessions of
competition in optimization at the Congress on
Evolutionary Computation (IEEE CEC) and the
Genetic and Evolutionary Computation Confer-
ence (GECCO), and Pymoo (Blank and Deb,
2020). However, most of these benchmarks con-
sist of synthetic numerical problems that may not
accurately represent the challenges of engineering
design problems (Picard and Schiffmann, 2021).
Of the published engineering design problems,
few have their code publicly available while oth-
ers are not easily interfaced with state-of-the-art
BO libraries, limiting their accessibility and util-
ity (Gandomi et al, 2011; Yang and Hossein Gan-
domi, 2012; Eriksson and Poloczek, 2021; Jetton
et al, 2024). Additionally, most constrained engi-
neering optimization problems in the literature
are tested with Genetic Algorithms (GA) (Gan-
domi et al, 2011; Yang and Hossein Gandomi,
2012), making it difficult for researchers interested
in testing with BO to find relevant studies. Over-
all, this results in a gap in the availability of a
comprehensive engineering benchmark.

The focus of our study is to evaluate the
performance of the recently published Prior-data
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Fitted Network (PFN)-based Bayesian Optimiza-
tion (BO) in solving constrained engineering
design optimization problems. We aim to demon-
strate the effectiveness and potential superiority
of general-purpose models that eliminate the need
for fitting at each BO iteration, compared to tra-
ditional GP-based BO using common constraint-
handling approaches. This could expand BO’s
applicability to time-sensitive engineering tasks
such as interactive experiment design assistance or
robotics control optimization. Our contributions
include:

1. A pre-trained transformer-based CBO algo-
rithm: We developed a constrained-handling
PFN-based algorithm utilizing the Constrained
Expected Improvement (CEI) acquisition func-
tion, and which requires only one surrogate
model, solving the objective and constraints
in a single forward pass. PFN-CEI exhibits
superior optimization performance compared
to all other tested methods and is faster than
GP-based CEI.

2. Speed and performance comparison of CBO
methods: We present three constraint-
handling methods and two surrogate modeling
approaches, evaluating their speed and opti-
mization performance. We highlight that using
PFN as the surrogate for CBO can achieve
a ten-fold increase in speed compared
to GP and outperform GP with a superior
anytime performance and feasibility rate.
Additionally, we provide a reflective discussion
on the potential of PFN-based BO as a fast
optimization algorithm.

3. Open-source code and enhanced bench-
mark tools: We present a set of fifteen test
problems for benchmarking BO algorithms,
featuring high-dimensional constrained engi-
neering problems from the literature. To foster
collaborative progress, we make our con-
strained test problem set and corresponding
Python codebase available at https://github.
com/rosenyu304/BOEngineeringBenchmark,
encouraging other researchers to build
upon and advance engineering Bayesian
optimization.

In this work, the background of engineer-
ing design optimization problems, Bayesian opti-
mization with constraint-handling methods, and
PFN’s application on BO are described in Section

2. Section 3 defines the constraint-handling BO
algorithms of interest, the test problem set for
benchmark, and the evaluation methods for CBO
algorithms. The results of algorithm runtime and
optimization performance are presented in Section
4. Finally, Section 5 discusses the overall perfor-
mance of the tested CBO algorithms.

2 Background

In this section, we introduce the common design
optimization problems and methods, detail the
Bayesian optimization algorithm, and highlight
how the PFN-based BO method differs from tra-
ditional BO methods.

2.1 Bayesian Optimization for
Design Optimization Problems

Engineering design optimization problems are
often formulated as one optimization objective
subjected to many inequality constraints. The
mathematical representation of such problems can
be written in this form:

min
x∈Rd

f(x)

s.t gi(x) ≤ 0 , i ∈ [1, G]
(1)

where x is the design variable with dimension d,
f(x) is the objective function, and gi(x) is the
constraint with G as the numbers of constraints.

In general, finding the optimum of an opti-
mization problem is non-trivial. The difficulty
primarily stems from the ambiguity of objec-
tives and constraints, coupled with the complexity
of their evaluation. In engineering design, eval-
uating objective functions and constraints often
involves physical experiments or complex simu-
lations that are time-consuming and expensive.
For instance, based on Ford Motor Company, con-
ducting a car crash simulation may require 36 to
160 hours per experiment (Wang and Shan, 2006).
Researchers must then update their dataset, run
the optimization algorithm—a process that itself
takes time—and repeat this cycle numerous times.
This leads to slow data collection and a dataset
too small for accurate predictions using machine
learning-based surrogate models. Thus, BO, with
its efficiency in data usage and ability to incor-
porate prior knowledge for surrogate-based global

3

https://github.com/rosenyu304/BOEngineeringBenchmark
https://github.com/rosenyu304/BOEngineeringBenchmark


optimization, emerges as an ideal solution for
engineering design optimization tasks.

BO is an active-learning algorithm designed for
black-box optimization that iteratively improves
performance through exploitation and exploration
(Garnett, 2023). This process begins with a rela-
tively small set of initial samples, typically ranging
from 20 to 50 samples, depending on the com-
plexity and dimensions of the problem at hand.
BO employs a probabilistic surrogate model, com-
monly a Gaussian Process, to form a posterior
belief about the design space. Utilizing this pos-
terior, an acquisition function is then applied to
determine the most promising next candidate, the
one that is likely to be the optimum within the
given space. Several acquisition functions com-
monly used in the literature are the probability
of improvement (PI), expected improvement (EI),
entropy search (ES), and upper confidence bound
(UCB) (Garnett, 2015). Algorithm 1 demon-
strates a general framework of the BO algorithm.

Algorithm 1 Bayesian optimization (BO)

Require: x0 initial samples, f(·) the objective
function, Niter the iterations set for the algo-
rithm to run, NextEval an algorithm using:
Model(·) a surrogate and α an acquisition
function for determining the next candidate
for searching

Ensure: The optimal solution xopt
1: function BO(x0,Niter, f(x), α )
2: Provide or perform initial sampling of x0
3: X← x0
4: for Niter iterations do
5: D ← {X, f(X)}
6: xnext ← NextEval(Model(·), D, α)
7: X← X ∪ xnext ▷ Append xnext to X
8: end for
9: return xopt ← argmax(f(X))

10: end function

2.2 Constraint-Handling Bayesian
Optimization (CBO)

Constraint-handling Bayesian optimization
(CBO) has emerged as a key area in design
optimization, addressing engineering limitations
such as cost, ergonomics, safety, and regula-
tory standards. This study focuses on solving

single-objective optimization problems with G
constraints. Two main categories of constraint-
handling approaches are typically employed for
this type of problem: objective transformation
and acquisition function modification.

2.2.1 Objective transformation

One common approach for constraint handling
involves penalizing the objective value of infeasible
data or increasing the objective value of feasible
data through an objective function transforma-
tion. The penalty function (PF) is a widely-used
method that alters the objective values of infeasi-
ble data (Fletcher, 1975) by introducing a penalty
term. Following this transformation, the BO algo-
rithm is applied to the modified unconstrained
optimization problem, aiming to minimize fPF . In
constrained optimization problems, the quadratic
form of the penalty function is often employed, as
illustrated in the following equation:

fPF (x) = f(x) + ρ

G∑
i=1

max(0, gi(x))
2 (2)

Equation (2) shows that, given one objective and
G constraints to be optimized, fPF (x) is the
penalty transformed objective that is calculated
using the objective function f(x), the constraint
functions gi(x), i ∈ [1, G], and ρ is the penalty
factor. The selection of the penalty factor value
varies across different studies. In this paper, we
initialize ρ = 1 and multiply ρ by 1.5 if the algo-
rithm fails to identify an improved optimal value
after five iterations (Jetton et al, 2024). How-
ever, a limitation of this method is its difficulty
in implementation when the constraints cannot be
represented analytically by numerical equations.

2.2.2 Acquisition Function
Modification

As evaluating black-box constraints alongside the
objective function through analytical transforma-
tion can be challenging, one strategy is to treat
constraint functions as feasibility objectives. This
requires surrogate modeling and their inclusion
in the acquisition function calculation. Conse-
quently, the constraint-handling Bayesian opti-
mization (CBO) process employs 1 +G surrogate
models for modeling the objective function with
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G constraints. These surrogate models for con-
straints, known as feasibility models, determine
the probability of feasibility Pfeas as shown in
Equation (3).

One of the most popular objective acquisi-
tion functions, expected improvement (EI, see
Equation (4)), has been adapted for constrained
optimization. Gelbart et al (2014) proposed the
constrained EI (CEI) acquisition function as the
sum of EI and Pfeas for each constraint shown in
Equation (5).

Pfeas = Φ

(
−ĝ(x)
σg(x)

)
(3)

αEI =
(
f∗ − f̂(x)

)
Φ

(
f∗ − f̂(x)

σf(x)

)

+ σf(x)N

(
f∗ − f̂(x)

σf(x)

) (4)

αCEI = αEI

G∏
i=1

Pfeas,i (5)

where Φ is the Gaussian cumulative distribution
function (CDF), ĝ(x) is the mean value of g at
point x, σg(x) is the standard deviation of g(x),
f∗ is the minimum (optimum) observed value up

until the current iteration, f̂(x) is the mean value
of f at point x, σf(x) is the standard devia-
tion of f(x), and N is the Gaussian (Normal)
distribution.

One limitation of CEI is that the combined
probability of feasibility will be close to zero at
the edge of the constraint regions. Therefore, a
modified version of the CEI algorithm has been
proposed to increase the chance of selecting solu-
tions near the constraint boundaries (Bagheri
et al, 2017) :

αCEI+ = αEI

G∏
i=1

min(1, 2Pfeas,i) (6)

2.3 Prior-Data Fitted Network and
its application on Bayesian
Optimization

A Prior-Data Fitted Network (PFN) is a trans-
former framework trained to perform Bayesian
inference (Müller et al, 2021). Unlike conven-
tional surrogate models trained on a single
dataset and must be retrained when new data
is observed, PFN is designed to be trained only
once. After this one-time meta-training, PFN
uses its encoder-only transformer structure dur-
ing inference to compute the posterior predictive
distribution (PPD) p(y|x,D), where x denotes
the input samples, y = f(x) the response, and
D = {(x1, y1), ..., (xk, yk)} the observed dataset.
The samples are passed through a “frozen” model
as it is used at the inference time, meaning its
parameters, weights, and biases are kept fixed.
PFN employs the attention mechanism that con-
ditions on known sample D, similar to how Large
Language Models (LLMs) like ChatGPT are con-
ditioned by text prompts but without position
encoding. This mechanism enables PFN to utilize
the most relevant prior information for new prob-
lems and make predictions for unlabeled samples.

PFNs are trained on a vast and varied dataset
with millions of prior data points during meta-
learning to ‘learn’ the execution of general tasks.
In the context of BO, PFN is trained to mimic GP
and is trained on well-designed prior data inspired
by HEBO Bayesian Optimization solver (Cowen-
Rivers et al, 2022). This prior data incorporates
non-linear input and output warping, enhancing
the robustness of surrogate modeling. Addition-
ally, PFNs extend HEBO by incorporating a well-
engineered GP prior, making them highly effective
at capturing complex data dependencies.

Specifically, the PFNs4BO framework involves
using PFN as a surrogate for approximating PPD
and an acquisition function for getting the next
search point in optimization. At every iteration,
the transformer model simultaneously processes
the known data D = {Xn×d, f(X)n×1} and the
pending search points Xpendingm×d

, where m≫ n,
simultaneously to calculate the acquisition value
for Xpending. This single-pass process is similar to
the fitting phase of GPs and also the “training”
and “testing” of neural networks, yet it involves
no real training or fitting as it is used at inference
time. Furthermore, PFN’s capability to perform
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posterior prediction on large size of Xpen makes
it highly effective for exploring the search space
even without an acquisition function optimizer.
The output posterior predictive distribution is
then fed into an acquisition function to determine
the next search point with the maximum acquisi-
tion value. Algorithm 2 emphasizes the differences
between GP-based BO and PFN-based BO. GP-
based BO requires refitting at every iteration and
the use of an acquisition function optimizer, while
PFN-based BO does not require either of these.

There are also limitations to PFNs. The
current released PFN model on the PFNs4BO
GitHub repository1 can only take data up to 18
design variables. To accommodate design prob-
lems with higher dimensions, retraining is needed
to generate a larger PFN, and the training time
is less than 24 hours on a cluster node with eight
RTX 2080 Ti GPUs (Müller et al, 2023). Addition-
ally, the PFNs4BO framework can only do a single
objective optimization problem with three acqui-
sition functions: EI, PF, and UCB. The current
framework does not have any capability to handle
constraints. In this study, we address this gap and
add a constraint-handling acquisition function by
exploiting PFN’s transformer nature to pass and
solve data in parallel.

Algorithm 2 Surrogate modeling and acquisition
function
Require: Model(·) that returns a posterior dis-

tribution of the input data D, α an acquisition
function, X search space

Ensure: xnext the next search point
1: function NextEval(Model(·), D, α )
2: if Model is GP then
3: GP(D) ← Fitting GP with D
4: xnext ← argmax

x̂∈X
α(x̂,GP(D))

5: ▷ optimizing α
6: end if
7:

8: if Model is PFN then
9: xnext ← argmax

x̂∈X
α(x̂,PFNθ(·|D))

10: end if
11: return xnext
12: end function

1https://github.com/automl/PFNs4BO/

3 PFN-based CBO
Frameworks

Here we propose three PFN-based CBO frame-
works with three different constrain-handling
approaches: PFN-Pen (PFN with penalty func-
tion), PFN-CEI (PFN with constrained EI), and
PFN-CEI+ (PFN with modified constrained EI).
Figure 1 visualizes the difference between GP-
based and PFN-based BO.

3.1 PFN-Pen

Using the penalty transform method discussed in
Section 2.2.1, PFN-Pen performs Bayesian opti-
mization on the transformed objective fPF (X)
and outputs the posterior for acquisition func-
tion αEI . For calculating fPF (X), we initialize the
penalty factor ρ = 1 and multiply ρ by 1.5 when
the algorithm fails to identify an improved optimal
value after five iterations (Jetton et al, 2023).

αEI(PFNθ(·|{X, fPF (X)}) (7)

3.2 PFN-CEI

To implement CEI constraint-handling method
stated in Section 2.2.2, the calculation of αEI and
Pfeas of each constraint function are required. In
contrast to the GP-based approach, which requires
a separate GP for each objective and constraint,
a PFN can solve for the acquisition values for αEI

and Pfeas in one forward pass using a single sur-
rogate. Leveraging the transformer architecture of
PFN, which supports batch processing, we develop
a method to simultaneously solve objectives and
constraints with a single model. Figure 1’s (b) and
(d) highlight the differences between GP-CEI and
PFN-CEI.

αCEI(PFNθ(·|{X, f(X)})) (8)

3.3 PFN-CEI+

This method adds the modified CEI+ thresh-
old mentioned in Section 2.2.2 to the PFN-CEI
algorithm to handle constraint boundaries.

αCEI+(PFNθ(·|{X, f(X)})) (9)

6
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4 Experiments

This section describes our constrained opti-
mization problems, on which constrain-handling
Bayesian Optimization algorithms are tested, and
the evaluation metrics.

4.1 CBO Algorithms

In this study, we focus on benchmarking the per-
formance of three proposed PFN-based CBO algo-
rithms as highlighted in Section 3 with the cur-
rent state-of-the-art GP-based BO using BoTorch
library (Balandat et al, 2020), an open-source
Bayesian optimization tool based on PyTorch. To
make a fair comparison between algorithms using
two different surrogates, we implement the same
constraint-handling methods on GP and formulate
three GP-based CBO algorithms: GP-Pen, GP-
CEI, and GP-CEI+. A detailed visualization of all
six CBO algorithms tested in this study is detailed
in Figure 1.

4.2 Test Problems

This study incorporates a diverse set of con-
strained test problems gathered from the litera-
ture of structural optimization algorithms (Gan-
domi et al, 2011; Koziel and Yang, 2011; Yang
and Hossein Gandomi, 2012; Jetton et al, 2023).
With a focus on benchmarking the algorithm’s
ability to solve engineering problems, we gather
six numerical test problems and nine engineering
design optimization problems with both continu-
ous and discrete value optimization. These fifteen
problems are detailed in Figure 2 and Appendix
A.

4.3 Algorithm Tests

The goal of the algorithm test is to provide a
fair and comprehensive comparison of the state-
of-the-art optimization methods. In this research,
the optimization goal is to minimize the objective
function for the test problems. The initial sam-
plings for all test problems are performed with
Latin Hypercube Sampling. Each test problem
includes fifty sets of initial samples that are ran-
domly selected, with each initial set representing
a separate experimental trial. In each individual
experimental trial, all six algorithms begin the
optimization process with the same set of initial

samples. Furthermore, each algorithm is run for
200 iterations of optimization and timed for the
run time for each experimental trial. The opti-
mal searched value and the total run time of the
fifty trials for each test problem are then evaluated
with our ranking procedure.

All algorithms are run on the same com-
puter to ensure the speed comparison is fair. The
CPU is Intel® Core™ i9-13900K Processor with
24 cores, and the RAM has 128GB. The sys-
tem is GNU/Linux 6.5.0-15-generic x86 64 with
Ubuntu 22.04.3 LTS as the operating system.
While transformer models gain significantly from
GPU-acceleration and parallelization, we use only
CPUs for a fair comparison with other methods.

4.4 Evaluation metrics

4.4.1 Feasibility Ratio

We define the optimization solution as the mini-
mal value found by each method during optimiza-
tion. However, for the BO algorithms utilized in
this study, there is no guarantee of convergence
to a feasible solution that respects all constraints.
Therefore, the feasibility of the solution generated
by each method is utilized as a metric for method
evaluations. We define our constraint-handling
performance evaluation methods as:

Feasibility ratio =
# trials with feasible solution

Total # trials = 50
(10)

4.4.2 Statistical Ranking

A statistical ranking evaluation is used to eval-
uate the performance of our BO algorithms. We
analyze two features of each BO method: the min-
imization result, and the algorithm run time for
performing 200 iterations of the BO search. The
ranking approach we used is widely used for rank-
ing machine learning algorithms (Ismail Fawaz
et al, 2019).

The ranking process first has the BO meth-
ods ranked based on their performance for each
problem, with the best-performing method receiv-
ing the lowest rank. The Friedman ranking test is
then applied to the ranks to reject identical meth-
ods with a threshold p-value set at 0.05. Next,
for the hypothesis testing, Wilcoxon significance
analysis and Holm’s adjustment are performed to
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Fig. 1 (a) GP-Pen; (b)GP-CEI/CEI+: Given an objective and G constraints, GP-CEI will need G + 1 GPs to perform
one search iteration for BO. Each GP will be fit and updated in every iteration; (c) PFN-Pen; (d) PFN-CEI/CEI+: Only
one PFN is needed for optimizing an objective and G constraints, and no fitting of PFN will happen during BO since it is
a pre-trained model. PFN’s transformer nature allows the EI of the objective and Pfeas of the constraints to be solved in
parallel in one pass.

compare the algorithms pairwise. Based on the
adjusted p-values, this statistical approach distin-
guishes the methods that are significantly different
from each other. For details about the ranking
process, see the original paper that uses this rank-
ing method for evaluating PFN’s classification
performance (Picard and Ahmed, 2024).

4.4.3 Fixed-budget Analysis

Hansen et al (2022) presented the concept of
fixed-budget evaluations, a technique for compar-
ing the efficiency of optimization algorithms by
allotting specific computational resources for their
execution. Our investigation employs two distinct
fixed-budget analysis methodologies:

1. Fixed-iteration approach: The performance of
each optimization algorithm is evaluated after
a pre-determined number of 200 iterations.

2. Fixed-runtime approach: The performance out-
comes of the algorithms are compared within
an identical CPU time frame. In this study, the
runtime budget is set to be the time required
for the fastest method to execute 200 iterations.

5 Results

5.1 Feasibility Ratio Performance

The feasibility ratio quantifies the capability of
identifying a useful solution within the con-
strained space after a fixed number of iterations.
Table 1 presents the feasibility scores for each
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Fig. 2 Overview of the details of the 15 benchmark problems. The non-feasible regions are shaded in the numerical
problems. The Ackley problem is experimented with optimization in 2D, 6D, and 10D, resulting in 17 experimental trials.

method across the test problems. For most test
problems, all methods successfully find a fea-
sible solution. Yet, not all algorithms can find
a feasible solution for the Ackley function (2D,
6D, 10D), GKXWC2, and the Heat Exchanger
problem every time. In these more challenging
problems, we note that algorithms employing CEI
for constraint handling exhibit a higher feasibil-
ity ratio than those utilizing a penalty function.
For instance, in the Ackley 10D problem, GP-Pen
achieves 32% feasible results, while GP-CEI and
GP-CEI+ reach 86% and 78% feasibility rates,
respectively. This trend is even more evident in the
Heat Exchanger example. The feasibility ratio for
GP-based methods increases from 2% to approxi-
mately 80% with the implementation of CEI, and
for PFN-based methods, it rises from 40% to 100%
when switching from the penalty transform to
CEI.

The feasibility ratio analysis also reveals that
the simplest method, GP-Pen exhibits the lowest
feasibility rate, as expected. For high-dimensional
problems, such as Ackley10D, PFN-based con-
strained BO methods demonstrate a higher feasi-
bility rate than GP-based methods overall.

5.2 Optimization Performance at
Fixed-iteration

Figure 3 displays the distribution of optimal and
feasible solutions for each method across 17 prob-
lems of 200 iterations. Our analysis begins with
the optimization performance of six CBO algo-
rithms in different categories of optimization prob-
lems. For numerical problems such as Ackley 6D
and 10D, GP-CEI+ is 60% and 68% better than
PFN-CEI in optimization performance. However,
note that these represent only the feasible samples,
and Table 2 shows that GP-CEI+ only generates
78% feasible samples, while PFN-CEI generates
94% feasible samples for Ackley 10D. The Keane
Bump 18D problem is known to be challenging
for GP-based methods (Eriksson and Poloczek,
2021), where the PFN-based methods surpass the
GP-based methods by 10%.

For the nine engineering problems, PFN-based
methods consistently rank highest compared to
GP-based methods. The median solutions from
the PFN-CEI method dominate all engineering
problems, exhibiting performance two to three
times better than that of GP-CEI or GP-CEI+.

5.3 Optimization Performance at
Fixed-Runtime

Figure 4 illustrates the convergence plot for each
problem, highlighting the optimal value at a fixed
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Table 1 Feasible Rate of different CBO methods.

Test case GP-Pen GP-CEI GP-CEI+ PFN-Pen PFN-CEI PFN-CEI+

JLH1 100% 100% 100% 100% 100% 100%
JLH2 100% 100% 100% 100% 100% 100%
GKXWC1 100% 100% 100% 100% 100% 100%
GKXWC2 92% 100% 100% 100% 100% 100%
Ackley 2D 98% 100% 100% 100% 100% 100%
Ackley 6D 100% 98% 98% 100% 100% 100%
Ackley 10D 32% 86% 78% 92% 94% 92%
Three Truss 100% 100% 100% 100% 100% 100%
Reinforced Concrete Beam 94% 100% 100% 100% 100% 100%
Compression Spring 100% 100% 100% 100% 100% 100%
Pressure Vessel 100% 100% 100% 100% 100% 100%
Welded Beam 100% 100% 100% 100% 100% 100%
Speed Reducer 100% 100% 100% 100% 100% 100%
Heat Exchanger 2% 80% 82% 40% 100% 100%
Cantilever Beam 100% 100% 100% 100% 100% 100%
Car 100% 100% 100% 100% 100% 100%
Keane Bump 18D 100% 100% 100% 100% 100% 100%

time constraint marked by the completion of
200 iterations by PFN-Pen, the fastest approach.
Upon the completion of PFN-Pen, a compara-
tive analysis of performance outcomes reveals that
PFN-CEI outperforms the others in 10 of the
problems, while PFN-Pen leads in 6 cases, and
PFN-CEI+ prevails in 1 case. PFN-based strate-
gies consistently exhibit superior anytime per-
formance throughout the operational timeframe
defined by the termination of PFN-Pen.

Additionally, the convergence plot shows the
advantage of PFN-based BO in limited runtime
search, where GP-based BO sometimes cannot
find feasible solutions. Specifically, for the Ackley
6D and 10D problems, although GP-based CEI
methods outperform PFN-based methods after
two hundred iterations, the GP-based method is
unable to find any constrained optimal solution
within the given runtime limit. Even more evident,
in the Compression Spring and Heat Exchanger
problems, the PFN-based method outperforms in
optimization, while GP-CEIs fail to find a feasi-
ble solution in the given time budget and perform
worse than PFN-CEI at the fixed iteration.

5.4 Speed Performance

In addition to the convergence plot in Figure 4,
Figure 5 illustrates the Paerto trade-off between

time and performance for each test problem. In
both Figures, algorithms using the penalty func-
tion are always faster than those utilizing CEI.
PFN-Pen leads in speed on the Pareto front in all
seventeen benchmark problems, completing two
hundred iterations in 17.8 seconds on average.
On the other hand, GP-Pen requires 36.5 seconds
since GP is affected by the problems’ expanding
dimensions.

The speed disadvantage of GP’s approach
becomes more evident when comparing CEI meth-
ods for constraint handling. GP-CEI and GP-
CEI+ need 647.9 and 590.8 seconds on average to
perform two hundred iterations of search, with a
maximum of 6588.9 seconds (1.77 hours) for run-
ning the Heat Exchanger problem. In contrast,
PFN-CEI and PFN-CEI+ only need 55.8 seconds
on average to finish an experiment, showing that
they are 10 times faster than the GP-based CEI
methods.

Moreover, CEI algorithm speeds drop as G
goes from 1 to 11, with GP-based methods taking
430 times longer because of the feasibility cal-
culations for each constraint. Due to the PFN’s
capability to solve both objectives and constraints
in a single forward pass, PFN-based CEI methods’
speeds only drop by a factor of 13, demonstrating
the dominance of PFN-based methods in speed.
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5.5 Overall Rank

Figure 6 shows the critical difference plot from
the statistical ranking of the six different CBO
approaches. The performance result shows that
two PFN-based methods, PFN-CEI and PFN-
Pen, outperform the traditional GP-based meth-
ods for the optimization performance rank. Sur-
prisingly, applying CEI+ onto PFNs does not help
improve the performance as it does for GP-CEI+.
Furthermore, the time results show that the two
methods using the penalty transform require the
least time, with the PFN-Pen being the fastest
method. The GP-CEI and GP-CEI+ methods are
the slowest as expected.

6 Discussion

6.1 Recommendations for
Constrained Bayesian
Optimization Methods

Overall, the results show that using PFN as BO’s
surrogate outperforms GP in speed and opti-
mization performance. Notably, PFN algorithms,
already 10 times faster than GP, could further
increase their speed through parallelization, as we
tested all our models only on CPU. Considering
the optimization performance, PFN-CEI has the
top rank in optimization performance, followed by
PFN-Pen. Though PFN-Pen has a faster speed for
doing 200 iterations, PFN-CEI converges faster, as
shown in Figure 4. Therefore, we recommend using
PFN-CEI for overall performance and could do an
early stop before 200 iterations if the user wants
to perform optimization with a limited runtime
budget.

6.2 Potentials of Pre-trained
Transformers-based BO

From the convergence plot and fixed-runtime anal-
ysis, it is evident that pre-trained-model-based
BO is effective in rapidly assessing optimization
problems and providing feasible solutions when
GPs are unable to do so. Observing PFN’s capa-
bility for rapid optimization through the trans-
former’s ability to solve multiple functions in par-
allel in a single forward pass, we want to emphasize
the potential of using pre-trained models for BO
and its applications. Experimental optimization

or user-guided BO (Jetton et al, 2024), which
requires human input to the engineering optimiza-
tion framework, will be time-sensitive as users
must wait for BO to indicate the next poten-
tial optimum. Fast BO enables users to receive
immediate feedback, enhancing the efficiency of
the workflow. Conversely, BO for hyperparame-
ter tuning has been shown to take an extended
period to identify the best hyperparameters for
large models in image classification or language
modeling (Cho et al, 2020). Transformer-based
BO could potentially unlock the possibilities of
fast hyperparameter optimization.

6.3 Understanding the Complexity
of Test Problems

One metric for comprehending the intricacy of
the constrained test problems is to evaluate the
feasible ratio of the six methods for each prob-
lem. Multi-modal numerical problems like Ackley,
and problems with relatively small constrained
areas, such as GKXWC2, are particularly chal-
lenging since not all methods have a 100% fea-
sible ratio. With higher feasibility ratios in most
engineering test cases, BO proves effective for con-
strained engineering design problem-solving. The
Heat Exchanger problem, however, demonstrates
the lowest overall feasibility among all problems
with the longest runtime due to the exclusive pres-
ence of independent variables in the constraints
and not in the objective function, making it the
most complex engineering problem.

An alternative metric for evaluating prob-
lems is the variance in results across methods, as
shown in Figure 3. The choice of BO method is
particularly vital for numerical problems, where
results vary greatly, especially in cases like JHL2,
GKXWC1, GKXWC2, and Ackley, due to their
complexity. Engineering problems such as Pres-
sure Vessel and Speed Reducer also have large
variances in their results, underscoring the impor-
tance of method selection.

6.4 Limitations

This study provides insights into the application
of PFN as black-box surrogates for BO while
also acknowledging several inherent limitations.
Firstly, the PFN-based methods employed in this
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Fig. 3 Box plots comparing the optimal value of each method for each experiment.

research do not utilize acquisition function opti-
mizers that are commonly implemented in BO
algorithms. Theoretically, the absence of an acqui-
sition optimizer could potentially accelerate the
algorithm but suppress the optimization perfor-
mance. While PFN-based BO still had the overall
best performance, adding acquisition functions to
them could further enhance their performance in
multi-modal problems such as Ackley. Therefore,

further evaluations of PFN-based BO utilizing
standard acquisition optimization approaches are
required.

Additionally, while PFNs show promise in
addressing our nine engineering design problems
through BO, this limited scope may not capture
the full complexity and diversity encountered in
practical engineering situations. We hope that our
research will encourage other scholars to adopt
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Fig. 4 Convergence plots comparing the optimal value of each method for each experiment at a fixed runtime budget. The
runtime budget is set to be when PFN-Pen, the fastest method, finishes running 200 iterations. The minimum value of all
methods at this fixed time budget is sorted and shown in each plot, with the value at the top being the best performance.
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Fig. 5 Pareto plots demonstrating the trade-off between performance and total execution time (log-scale) for each method
and test problem. D is the objective dimension, and G is the number of constraints. The average Pareto rank of each method
over seventeen experiment trials is [GP-Pen, GP-CEI, GP-CEI+, PFN-Pen, PFN-CEI, PFN-CEI+] = [2.118, 2.353, 2.353,
1, 1.353, 1.765], where the smaller rank, the better, and rank 1 is the best. In problems with more than one constraint,
PFN-based methods are 10 times faster than the GP-based CEI methods.
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Fig. 6 Critical difference rank plot of overall results. A
smaller rank indicates a better result. Regarding optimiza-
tion performance, two PFN-based methods (PFN-CEI and
PFN-Pen) lead. For time performance, PFN-Pen dominates
as the fastest method, while the GP-based CEI ranks last.

PFN-based BO for their engineering design tasks
and to evaluate novel algorithms using our bench-
mark problem sets. We also aim to expand the
benchmark problem based on community input,
providing a standardized test bed for research in
constrained BO methods.

Lastly, our evaluation metrics were limited
to runtime speed and optimization performance
in fixed iterations. Future studies should explore
additional aspects of Bayesian optimization, such
as the convergence rate of iterations and scalabil-
ity.

6.5 Future Work

Our work in this paper lays the groundwork
for several promising paths for future research.
Firstly, we aim to expand our constrained PFN-
based BO methods to multi-objective or active
sampling PFN by introducing additional acquisi-
tion functions or modifying the PFN structure.
Furthermore, we plan to benchmark our approach
against more constraint BO methods such as Scal-
able Constrained Bayesian Optimization (SCBO)
(Eriksson and Poloczek, 2021), as our current
comparison is limited to CEI. This will involve
a detailed comparison of PFN with other CBO
methods using active sampling strategies or BO
methods that employ neural networks instead of
Gaussian Processes. Given the rapid computa-
tion speed of PFN, we foresee the potential for
solving high-dimensionality problems with PFN
models using strategies such as bootstrapping and
aggregation. This expansion not only enhances

the versatility of our approach but also opens up
new possibilities for tackling complex optimization
challenges in multidisciplinary optimization.

7 Conclusions

This research evaluates a novel approach for
constraint-handling Bayesian optimization (CBO)
by utilizing prior-data fitted networks (PFN)
to remove the need for re-fitting the Gaussian
Process (GP) for every searching iteration. Our
comprehensive analysis is supported by bench-
marking the methods on the 17 constrained
optimization experiments, ranging from numeri-
cal synthesized test cases to engineering design
problems. By using three constraint-handling
approaches, penalty function PF, constrained
expected improvement CEI, and modified con-
strained expected improvement CEI+, and two
different surrogates, we evaluate six different CBO
algorithms: GP-Pen, GP-CEI, GP-CEI+, PFN-
Pen, PFN-CEI, PFN-CEI. The results show that
across the optimization problems, the PFN-based
approach has dominated both performance and
speed. PFN-CEI has the best optimization perfor-
mance, followed by PFN-Pen and GP-CEI+, with
exceptional performance in engineering problems.
With the unique transformer architecture and
pre-trained nature, PFN-based BO shows its capa-
bility to accelerate the BO process by an order
of magnitude compared to GP-based Bayesian
optimization.
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Appendix A Benchmark
Problems

A.1 JLH1

This numerical problem is a two-dimensional
“sphere” problem featuring a single optimum and
a continuous inequality constraint as detailed
in (Jetton et al, 2023). The domain of interest for
both x1 and x2 is [0, 1].

f(x) = x2
1 + x2

2

g(x) = x1 + x2 + 0.5 ≤ 0

A.2 JLH2

This numerical problem features a is two-
dimensional objective with local optimum used
in multiple research (Jetton et al, 2024; Gardner
et al, 2014). The continuous inequality constraint
is proposed by (Jetton et al, 2024). The domain
of interest is x1 ∈ [−5, 0] and x2 ∈ [−5, 5].

f(x) = cos(2x1)cos(x2) + sin(x1)
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g(x) =
1

4
(x1 + 5)2 +

1

100
x2
2 − 1 ≤ 0

A.3 GKXWC1

The objective function of this question is identi-
cal to JHL2. However, the unique discontinuous
inequality constraint is created by (Gardner et al,
2014). The domain of interest for both x1 and x2

is [0, 6].

f(x) = cos(2x1)cos(x2) + sin(x1)

g(x) = cos(x1)cos(x2)− sin(x1)sin(x2)− 0.5 ≤ 0

A.4 GKXWC2

This numerical problem is two-dimensional, fea-
turing a multiple optimum and a discontinuous
inequality constraint with a tiny feasible area pro-
posed by (Gardner et al, 2014). The domain of
interest for both x1 and x2 is [0, 6].

f(x) = sin(x1) + y

g(x) = sin(x1)sin(x2) + 0.95 ≤ 0

A.5 Ackley Function

Ackley function is a popular scalable numer-
ical test case for optimization. It has many
local minimums with the global optimal at x =
[0, 0, · · · ]n for a n−dimensional problem. We con-
sider the domain of interest to be [−5, 10]n with
n = 2, 6, 10. The constraints formulation is taken
from (Eriksson and Poloczek, 2021). The large
number of local minimum, multi-modal nature,
and small feasible region makes this problem
challenging.

f(x) = −20 exp

−0.2
√√√√1

d

d∑
i=1

x2
i


− exp

(
1

d

d∑
i=1

cos(2πxi)

)
+ 20 + exp (1)

g1(x) =

d∑
i=1

xi ≤ 0

g2(x) = ∥x∥2 − 5 ≤ 0

A.6 Three Truss

The objective of this problem is to minimize the
volume of the three-bar truss while each truss
is constrained by the stress acting on it. The
given information are length (L) is 100cm, pres-
sure (P ) is 2kN/cm2, and stress (σ) is 2kN/cm2.
The domain of interest for both x1 and x2 is
[0, 1]. The formulation is taken from (Yang and
Hossein Gandomi, 2012).

f(x) = (2
√
2x1 + x2)L

g1(x) =
(
√
2x1 + x2)P√
2x2

1 + 2x1x2

− σ

g2(x) =
x2P√

2x2
1 + 2x1x2

− σ

g3(x) =
P

x1 +
√
2x2

− σ

A.7 Reinforced Concrete Beam

This 3D problem describes a beam supported at
two end points spaced by 30 ft subjected to a live
load and a dead load. The optimization objec-
tive is to minimize the cost while satisfying the
constraints imposed by the loads and the safety
requirement from ACI 318-77 code. This problem
is representative of discrete value optimization.
The cross-sectional area of the reinforcing bar (As)
and the width of the concrete beam (b) are dis-
crete while the depth of the concrete beam (h) is
continuous. The domain of interest for each objec-
tive variable is: As ∈ [0.2, 15] and h ∈ [5, 10]. As
for b, it is the integers in [28, 40]. The formulation
below is taken from (Gandomi et al, 2011).

f(x) = 29.4As + 0.6bh

g1(x) =
h

b
− 4 ≤ 0

g2(x) = 180 +
7.35A2

s

b
−Ash ≤ 0

A.8 Compression Spring

This optimal spring design problem has many vari-
ations in the literature. Here we pick the helical
compression spring design optimization problem
proposed by (Gandomi et al, 2011). The goal is
to minimize the spring volume. The optimization
variables are: the number of spring coils (N), the
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winding coil diameter (D), and the wire diame-
ter (d). The domain of interest for each objective
variable is d ∈ [0.05, 1], D ∈ [0.25, 1.3], and N ∈
[1.5, 2].

f(x) = (N + 2)Dd2

g1(x) = 1− D3N

71785d4
≤ 0

g2(x) =
4D2 −Dd

12566(Dd3 − d4)
+

1

5108d2
− 1 ≤ 0

g3(x) = 1− 140.45d

D2N
≤ 0

g4(x) =
D + d

1.5
− 1 ≤ 0

A.9 Pressure Vessel

The optimization of a cylindrical pressure ves-
sel with both ends capped is to minimize the
cost while meeting the ASME constraints on boil-
ers and pressure vessels. The objective (cost) is
defined with four optimization variables (thickness
of the cylindrical skin (Ts), thickness of the spher-
ical head (Th), the inner radius (R), and length
of the cylindrical segment of the vessel (L)). The
domain of interest for both Ts and Th is 0.0625T ,
where T is a random integer value from 1 ∼ 99. For
both R and L, the domain of interest is [10, 200].
The problem is originally proposed by (Sandgren,
1990) and the formulation is taken from (Gandomi
et al, 2011).

f(x) = 0.6224TsRL+ 1.7781ThRR

+3.1661TsTsL+ 19.84TsTsR

g1(x) = −Ts + 0.0193R ≤ 0

g2(x) = −Th + 0.00954R ≤ 0

g3(x) = πR2L− 4/3πR3 + 1296000 ≤ 0

g4(x) = L− 240 ≤ 0

A.10 Welded Beam

The welded beam is designed to minimize the
manufacturing cost. The five constraints are
imposed on the shear stress, bending stress in the
beam, geometry, buckling load on the beam, and
deflection of the beam. The optimization variables
are the thickness of the weld (h), the length of the
welded joint (l), the width of the beam (t), and the

thickness of the beam (b). The domain of interest
is h ∈ [0.125, 10], l ∈ [0.1, 15], t ∈ [0.1, 10], and b ∈
[0.1, 10]. Details about the problem formulation
can be found in (Gandomi et al, 2011).

f(x) = 1.10471h2l + 0.04811tb(14 + l)

τ(x) =

√
τ ′(x)2 + τ ′′(x)2 + lτ ′(x)τ ′′(x)√

0.25(l2 + (h+ t)2)

τ ′(x) =
6000√
2hl

τ ′′(x) =
6000(14 + 0.5l)

√
0.25(l2 + (h+ t)2)

2(0.707hl( l2

12 + 0.25(h+ t)2))

σ(x) =
504000

t2b

Pc(x) = 64746(1− 0.0282346t)tb3

δ(x) =
2.1952

t3b
g1(x) = τ(x)− 13600

g2(x) = σ(x)− 30000

g3(x) = b− h

g4(x) = Pc − 6000

g5(x) = 0.25− δ(x)

A.11 Speed Reducer

The speed reducer design is one of the most
famous benchmark problems in structural engi-
neering. The objective is to minimize the weight
of the speed reducer while considering the dimen-
sions of the inner bearings and shafts. The domain
of interest is b ∈ [2.6, 3.6],m ∈ [0.7, 0.8], z ∈
[17, 28], L1 and L2 ∈ [7.3, 8.3], d1 ∈ [2.9, 3.9], and
d2 ∈ [5, 5.5]. The problem originated from (Golin-
ski, 1973) and the formulation is taken from (Yang
and Hossein Gandomi, 2012).

f(x) = 0.7854bm2(3.3333z2 + 14.9334z

−43.0934)− 1.508b(d21 + d22) + 7.4777(d31 + d32)

+0.7854(L1d
2
1 + L2d

2
2))

g1(x) =
27

bm2z
− 1 ≤ 0

g2(x) =
397.5

bm2z2
− 1 ≤ 0

g3(x) =
1.93L3

1

mzd41
− 1 ≤ 0
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g4(x) =
1.93L3

2

mzd42
− 1 ≤ 0

g5(x) =

√(
745L1

mz

)2
+ 1.69× 106

110d31
− 1 ≤ 0

g6(x) =

√(
745L2

mz

)2
+ 157.5× 106

85d32
− 1 ≤ 0

g7(x) =
mz

40
− 1 ≤ 0

g8(x) =
5m

B − 1
− 1 ≤ 0

g9(x) =
b

12m
− 1 ≤ 0

A.12 Heat Exchanger Design

The heat exchanger design is known for its
six complicated binding constraints. Though the
objective is simple, satisfying all linear (g1 ∼ g3)
and nonlinear constraints (g4 ∼ g6) make it a
difficult constrained optimization problem. The
domain of interest is x1 ∈ [102, 104], x2∼3 ∈
[103, 104], and x4∼8 ∈ [10, 103]. Details of the
problem formulation can be found here (Yang and
Hossein Gandomi, 2012).

f(x) = x1 + x2 + x3

g1(x) = 0.0025(x4 + x6)− 1 ≤ 0

g2(x) = 0.0025(x5 + x7 − x4)− 1 ≤ 0

g3(x) = 0.01(x8 − x5)− 1

g4(x) = 833.33252x4 + 100x1 − x1x6

−83333.333 ≤ 0

g5(x) = 1250x5 + x2x4 − x2x7 − 125x4 ≤ 0

g6(x) = x3x5 − 2500x5 − x3x8 + 1250000 ≤ 0

A.13 Cantilever Stepped Beam

This problem is originally proposed to mini-
mize the volume of the stepped cantilever beam
by (Thanedar and Vanderplaats, 1995). In this
10D problem, we optimize a five-stepped can-
tilever beam with variable width xi and height
xi+5 of each step. The constant used are total
length L = 100, Young’s modulus E = 2 ×
107GPa, and force applied on the end of the beam
P = 50000N . The domain of interest for x1∼5 is
[1, 5] and for x6∼10 is [30, 65]. Details of the eleven
constraints formulation can be found in (Yang

and Hossein Gandomi, 2012; Koziel and Yang,
2011).

f(x) =

5∑
i=1

xixi+5li

g1(x) =
600P

x5x2
10

− 14000 ≤ 0

g2(x) =
6P (l1 + l2)

x4x2
9

− 14000 ≤ 0

g3(x) =
6P (l1 + l2 + l3)

x3x2
8

− 14000 ≤ 0

g4(x) =
6P (l1 + l2 + l3 + l4)

x2x2
7

− 14000 ≤ 0

g5(x) =
6P (l1 + l2 + l3 + l4 + l5)

x1x2
6

− 14000 ≤ 0

g6(x) =
Pl3

3E

(
1

l5
+

7

l4
+

19

l3
+

37

l2
+

61

l1

)
− 2.7 ≤ 0

g7(x) =
x10

x5
− 20 ≤ 0

g8(x) =
x9

x4
− 20 ≤ 0

g9(x) =
x8

x3
− 20 ≤ 0

g10(x) =
x7

x2
− 20 ≤ 0

g11(x) =
x6

x1
− 20 ≤ 0

A.14 Car Side Impact Design

The goal of this test case is to minimize the car
weight while meeting the compatibility require-
ments for the car crash test. Eleven variables
are used to describe the requirements imposed
on the design, materials, and reinforcement of B-
Pillar, floor side, cross members, door beam, door
beltline, roof rail, barrier height, and impact posi-
tion during the side impact test. This problem
is originally proposed by (Gu et al, 2001) and
the formulation is taken from (Gandomi et al,
2011). The domain for this test case is x1,3∼7 ∈
[0.5, 1.5], x2 ∈ [0.45, 1.35], x8∼9 ∈ [0.192, 0.345],
and x10∼11 ∈ [−20, 0].

f(x) = 1.98 + 4.90x1 + 6.67x2 + 6.98x3+

4.01x4 + 1.78x5 + 2.73x7
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g1(x) = 1.16− 0.3717x2x4 − 0.00931x2x10−
0.484x3x9 + 0.01343x6x10 − 1 ≤ 0

g2(x) = 0.261− 0.0159x1x2 − 0.188x1x8

−0.019x2x7 + 0.0144x3x5 + 0.0008757x5x10

+0.08045x6x9 + 0.00139x8x11 + 0.00001575x10x11

−0.9 ≤ 0

g3(x) = 0.214 + 0.00817x5 − 0.131x1x8 − 0.0704x1x9

+0.03099x2x6 − 0.018x2x7 + 0.0208x3x8 + 0.121x3x9

−0.00364x5x6 + 0.0007715x5x10 − 0.0005354x6x10

+0.00121x8x11 − 0.9 ≤ 0

g4(x) = 0.74− 0.061x2 − 0.163x3x8 + 0.001232x3x10

−0.166x7x9 + 0.227x2x2 − 0.9 ≤ 0

g5(x) = 28.98 + 3.818x3 − 4.2x1x2 + 0.0207x5x10+

6.63x6x9 − 7.7x7x8 + 0.32x9x10 − 32 ≤ 0

g6(x) = 33.86 + 2.95x3 + 0.1792x10 − 5.057x1x2

−11.0x2x8 − 0.0215x5x10 − 9.98x7x8 + 22.0x8x9

−32 ≤ 0

g7(x) = 46.36− 9.9x2 − 12.9x1x8 + 0.1107x3x10

−32 ≤ 0

g8(x) = 4.72− 0.5x4 − 0.19x2x3

−0.0122x4x10 + 0.009325x6x10 + 0.000191x2
11

−4 ≤ 0

g9(x) = 10.58− 0.674x1x2 − 1.95x2x8

+0.02054x3x10 − 0.0198x4x10 + 0.028x6x10

−9.9 ≤ 0

g10(x) = 16.45− 0.489x3x7 − 0.843x5x6

+0.0432x9x10 − 0.0556x9x11 − 0.000786x2
11

−15.7 ≤ 0

A.15 Keane Bump

The Keane Bump benchmark is a scalable opti-
mization test case proposed by Keane (Keane,
1994) and it’s known to be challenging for GP-
based BO methods. The goal is to perform min-
imization over the domain [0, 10]d. Here we use
d = 18 since this is the maximum dimension
that can be passed into the model used for
PFNs4BO (Müller et al, 2023).

f(x) = −

∣∣∣∣∣∣
∑d

i=1 cos
4(xi)− 2

∏d
i=1 cos

2(xi)√∑d
i=1 ix

2
i

∣∣∣∣∣∣

g1(x) = 0.75−
d∏

i=1

xi ≤ 0

g2(x) =

d∑
i=1

xi − 7.5d ≤ 0
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