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Abstract

This paper presents a data-driven analysis of the structural performance
of 4500 community-designed bicycle frames. We introduce FRAMED – a
parametric dataset of bicycle frames based on bicycles designed by bicycle
practitioners from across the world. To support our data-driven approach,
we also provide a dataset of structural performance values such as weight,
displacements under load, and safety factors for all the bicycle frame de-
signs. Our structural simulations are validated against results from physical
experiments on real bicycle frames. By exploring a diverse design space
of frame design parameters and a set of ten competing design objectives,
we present a data-driven approach to analyze the structural performance of
bicycle frames. Through our analysis, we highlight overall trends in bicy-
cle frame designs created by community members and study several bicycle
frames under different loading conditions. We then undertake a systematic
search for optimal performance and feasibility-predictive Machine Learning
models, applying a state-of-the-art Automated Machine Learning framework.
We demonstrate that the proposed AutoML models outperform commonly
used models such as Neural Networks and XGBoost, which we tune using
Bayesian hyperparameter optimization. This work aims to simultaneously
serve researchers focusing on bicycle design as well as researchers focusing on
the development of data-driven design algorithms, such as surrogate mod-
els and Deep Generative Models. The dataset and code are provided at
http://decode.mit.edu/projects/framed/.
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1. Introduction

The bicycle is one of the most ubiquitous consumer products in our mod-
ern society. Despite this fact, making bicycles accessible to more people has
numerous societal benefits, such as boosting public health [1], mitigating
traffic congestion [2], and reducing emissions [3]. These tantalizing prospects
provide ample motivation to increase accessibility to bicycles and to improve
their performance to raise appeal. With some estimates putting the number
of privately owned bicycles at over 580 million [4], even incremental improve-
ments in bicycle design methodology would undoubtedly have an immense
impact.

One strategy to improve bicycle accessibility and ridership is to harness
data-driven methods to accelerate the design process of customized bicycle
frames, making them cheaper and more performant. Data-driven methods
have shown great promise in accelerating design tasks and enabling design
automation across countless design domains. Data-driven approaches to de-
sign can tap into the immeasurable expertise captured within existing designs
ranging from early-stage design concepts to rough prototypes to products on
the market. Designers can leverage design information implicitly embed-
ded in quality data to accelerate their own design process. In particular,
tools like surrogate models trained on design data can help designers rapidly
evaluate early-stage design concepts without the need for expensive and time-
consuming simulation or physical experimentation. The availability of qual-
ity data is an incredible asset in any design domain, and we aim to introduce
and leverage this data for the bicycle frame design task.

In this paper, we pursue a data-driven approach to bicycle frame design
and optimization. The key contributions of this work are summarized below:

• We introduce a dataset of 4500 bicycle frames adapted from bicycles de-
signed by community members using the BikeCAD software. For each
frame, we provide ten structural performance indicators evaluating the
frame’s performance under three load cases (in-plane, transverse, and
eccentric loading). Indicators consist of seven deflections, two safety
factors, and a weight value and are calculated through Finite Element
Analysis.

• We validate our Finite Element Analysis framework through a mesh
convergence study and verify the accuracy of our simulation results
against physical testing of bicycle frames.
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• We identify optimal surrogate models which predict the performance
and feasibility of frames. Surrogates are selected using an AutoML
framework which automates the selection of algorithms, architectures,
hyperparameters, and instantiations for optimal model performance.
AutoML models achieved a coefficient of determination of 0.605 in
structural performance prediction and an F1 score of 0.915 in feasi-
bility classification.

• We validate our proposed AutoML framework against several common
models (Neural Networks, XGBoost, etc.), which we optimize using
Bayesian hyperparameter tuning. The proposed AutoML models attain
the best coefficient of determination and mean absolute error among
all methods tested in regression and the best F1 score, precision, recall,
accuracy, and ROC AUC in classification.

2. Background

This paper explores the application of data-driven predictive models to bi-
cycle frame design. In this section, we review existing literature on structural
optimization of bicycle frames, emphasizing previous data-driven approaches.
We then introduce key ideas and methods in supervised Machine Learning
and Automated Machine Learning (AutoML)

2.1. Structural Optimization of Bicycles Frames

Structural considerations of a bicycle frame, such as geometry, material,
and size can drastically affect the rider’s experience. Typically, designers
attempt to minimize the weight and cost of the frame, but removing too much
material could increase the likelihood of structural failure, decrease the power
transfer of pedaling into forward acceleration, or amplify the nerve-damaging
effects of vibrations in intense bicycle riding.

Since the inception of bicycles in the 1800s, designers have been steadily
improving upon existing bicycles in search of increasingly optimal designs.
Recent studies [5, 6] have attempted to guide this incremental improvement
through in-depth analysis of what physical features of a bicycle are most in-
fluential to the rider experience. In general, bicycles should be lightweight to
allow fast acceleration and maneuverability, strong enough to resist failure
under heavy loading, and stiff enough to maximize the power transfer of ped-
aling into acceleration. These conflicting objectives are not always intuitive,
nor are they easily maximized.
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Simulation of bicycle frames provides useful insight into how the rider
experience can be improved. In one of the earliest attempts to numerically
simulate bicycle frame loading using Finite Element Analysis (FEA), So-
den et al. [7] represent a bicycle frame as a set of linear beams connected at
a series of nodes to predict the deflections a frame might see under dif-
ferent riding conditions. Since then, with the development of advanced
Computer-Aided Design (CAD) software and exponential growth in compu-
tational power, researchers have been able to represent more complex geome-
tries [8], develop more accurate estimates for stresses in bicycle frames [9],
and perform in-depth analyses of bicycle frame material selection [10].

Several studies have expanded on bicycle frame simulation with data-
driven approaches to structural optimization of bicycles. For example, Cung
& Lee [11] simulate nearly 400 combinations of dimensional parameters for
the four main tubes in the bicycle frame. They use these simulations to fit
a model that determines the significance of each parameter in changing the
structure of the bicycle frame. Cheng et al. [12] use dynamic FEA simulations
to optimize the bicycle frames for weight and impact resistance, with a focus
on tube profiles. The authors simulate 18 designs chosen through a Design
of Experiments and fit a surrogate model using Kriging. Other studies seek
to optimize the bicycle frame by changing bicycle geometry. Lin et al. [13]
create a model that minimizes the deflection that a frame experiences under
various loading conditions by changing the angles at which various tubes
intersect. Covill et al. [14] fit a regression model to capture how influential
parameters affect bicycle frame deflection after simulating loading cases on
82 frames.

Existing work at the intersection of numerical simulation and data-driven
design for structural optimization of bicycles has shown great potential and
paved the way for data-driven design to improve the rider experience. How-
ever, the existing body of work has a few gaps: The designs considered are
typically selected through some randomized process and are sometimes un-
realistic, their accuracy and generalizability are limited by the number of
bikes simulated, and they are typically constrained to a small set of design
parameters and load cases. Furthermore, studies seldom provide concrete
design tools such as surrogate models, instead offering simple heuristics as
key takeaways from their analysis.

FRAMED drastically expands on this existing research. We simulate over
4500 bicycle frame models, considerably more than previous data-driven de-
sign studies, and release our dataset publicly for other researchers to use.
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These bicycle frame models are slightly modified from a collection of real
bicycle designs, most of which are created by frame builders and enthusi-
asts. Models are parameterized by 37 design variables, constituting a signif-
icantly larger and more complex design space than used in previous studies.
FRAMED also applies state-of-the-art Automated Machine Learning to fit
high-performing surrogates on the dataset, which bicycle designers can use
to estimate the performance of new frames. We introduce AutoML in the
following section.

2.2. Machine Learning and AutoML

Datasets provide unique opportunities to develop Machine Learning-based
surrogate models, which are frequently “trained” to learn the mapping from
designs to performance values using example design-performance pairs. In
this section, we introduce Machine Learning and Automated Machine Learn-
ing. Finally, we conclude the section with a brief overview of engineering
design datasets.

2.2.1. Machine Learning (ML):

We provide a brief overview of Machine Learning, describing key termi-
nology and methods, but refer readers to sources like [15] for a detailed and
structured introduction. Though definitions vary, Machine Learning is typ-
ically described as a subfield of Artificial Intelligence spanning algorithms
that improve automatically without explicit programming through the use
of data. Predicting output variables based on input variables is a classic
Machine Learning problem known as supervised learning. Supervised learn-
ing is typically divided into regression, which is the prediction of continuous
output variables, and classification, which is the prediction of categorical or
discrete variables. In supervised learning, an algorithm (model) gradually
improves its predictive capability by studying example input-output pairs
and adjusting its predictive mechanism when it makes mistakes, a process
known as training.

We typically desire models to be generalizable, i.e. when we query our
model to predict outputs for inputs that it hasn’t previously seen, our model
should maintain its predictive performance. Generalizability is typically lost
when a model overfits, which can occur if the model only learns to accurately
predict outputs for the exact training datapoints or similar data. To ensure
generalizability, many data scientists use a process called cross-validation.
In cross-validation, models are evaluated on subsets of the dataset that are
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withheld from the model during training [15]. Evaluating the predictive
performance of models on validation sets (data unused during training) is
typically a much better reflection of a model’s predictive performance on
unseen data.

2.2.2. Automated Machine Learning (AutoML):

Selecting an optimal supervised learning algorithm and optimal train-
ing parameters (hyperparameters) for the selected model is highly dataset-
dependent and constantly evolves as new methods are introduced. Model
selection is often done through a combination of intuition and trial-and-error,
however, this process is tedious and lacks rigor. A common approach to add
rigor to the hyperparameter selection process involves performing optimiza-
tion over the space of hyperperameters [16]. Since training is often tedious,
optimization approaches like Bayesian Optimization that require relatively
few test samples are typical choices [17]. Recently, a procedure known as
Automated Machine Learning (AutoML) has come to prominence. AutoML
automates not only the selection of hyperparameters but also the selection
of models and model architecture [18]. Many AutoML frameworks begin by
processing the data and may perform automated feature engineering. After
suitably processing the data, AutoML frameworks move on to algorithm se-
lection, typically testing classic methods like Support Vector Machines and
K-Nearest-Neighbors, as well as Neural Networks. After selecting several
viable candidates, AutoML frameworks may go on to optimize one or sev-
eral of the algorithms selected. Typically, this involves optimization of hy-
perparameters, but in the case of Neural Networks, this may also involve
Neural Architecture Search [19]. AutoML lowers the bar of entry for Ma-
chine Learning, making it accessible to those without intuition and training,
and saving practitioners time and money. Furthermore, AutoML frameworks
routinely outperform experienced data scientists in identifying optimal su-
pervised learning models [20].

2.2.3. AutoML in Engineering Design

Machine Learning has been growing in prominence within engineering and
countless researchers have applied ML to design-related problems. Surrogate
modeling is one of the most prevalent applications of Machine Learning in
Engineering Design. For a detailed review of surrogate modeling in design
using non-AutoML approaches, we refer readers to reviews like [21, 22, 23].
While applications in engineering design have typically trailed methodologi-
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cal advancements in Machine Learning by several years, Automated Machine
Learning has thus far seen limited use in engineering design, despite its estab-
lished dominance in other fields. Instead of leveraging AutoML to identify
high-performing algorithms systematically, design practitioners often sim-
ply apply their favorite Machine Learning technique to their problems. Ac-
tive engineering design research disciplines such as materials design [24, 25],
biosystems design [26], structural design [27, 28], and additive manufactur-
ing [29, 30] have seen minimal use of AutoML in practice. Given its ability
to identify optimal ML models with limited user expertise and intuition, Au-
toML is a technique that many design practitioners with limited data science
experience can leverage to great effect.

2.2.4. AutoGluon:

While many AutoML methods are limited to finding a single optimal class
of algorithm as well as the associated hyperparameters to maximize perfor-
mance, several AutoML frameworks have proposed approaches to identify
even better-performing models. One such approach, AutoGluon, proposes
a novel layer-stack ensembling approach, leveraging the known tendency of
ensemble predictors to outperform individual models [31]. AutoGluon also
utilizes k-fold bagging, an extension of cross-validation which allows all of
the available data to be used during training with minimal risk of overfit-
ting. For more details about AutoGluon, we refer the reader to [31]. In
this work, we apply AutoGluon to the bicycle frame structural performance
and feasibility prediction problems. Due to AutoML’s limited use and rela-
tively unproven performance in engineering design applications, we validate
AutoGluon’s performance against models selected through Bayesian hyper-
parameter optimization.

2.3. Datasets in Engineering Design

Advancements in applied Machine Learning are enabled by the datasets
and problems to which they are applied. Though data-driven automation is
extremely desirable in design, high-quality design datasets are particularly
difficult to come by. While computer vision datasets with millions of images
are relatively common, design datasets with even thousands of entries are few
and far between. We briefly mention several noteworthy engineering design
datasets here but refer readers to the more detailed review in [32]. In par-
ticular, we focus on design datasets with associated engineering performance
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data. The UIUC Airfoil Database is a dataset of nearly 1600 real airfoil de-
signs and is extended by Chen et al. [33] to include aerodynamic lift and drag
performance values. Wang et al. [34] introduce a microstructure dataset with
associated tensor stiffness values. Wollstadt et al. [35] introduce a dataset of
10,000 car hood topologies with associated structural performance data. In
addition to the aforementioned datasets, numerous microstructure, topology
optimization, and molecular design datasets often include associated material
or chemical property values and are frequently used in structural, material,
and biochemical design problems [36, 37].

3. Methodology

In this section, we discuss the various methodology decisions behind the
dataset including design parameterization, modeling, analysis of geometric
feasibility, load cases, material selection, and meshing.

3.1. Parameterization and Modeling

In generating our dataset, we utilize models from BIKED [38], a dataset
comprised of 4500 individually designed bicycle models sourced from hun-
dreds of designers who use the BIKECAD software. The BIKED dataset
contains over 1300 design parameters, roughly 200 of which we identify as
being directly related to the bicycle frame. To reduce the design space and
ensure that 3D models can be reliably built from these design parameters,
we make several key simplifications to these bicycle frame models:

1. We only consider the “diamond” bicycle frame topology, such as the
frame shown in Figure 1.

2. We assume all tubes have a uniform cross-section along their length
and are straight

3. We do not consider rounded junctions or fillets at the intersections of
tubes

These simplifications allow us to reduce the design space to 37 parame-
ters from the original 200 frame-related parameters in BIKED. Most of these
parameters are taken directly from BIKED, while a few are calculated de-
terministically by combining multiple BIKED design parameters. These 37
parameters can roughly be broken down into several groups, such as tube
diameters, tube thicknesses, and dimensions of the high-level frame geom-
etry. Additionally, we maintain two parameters from BIKED which serve
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Figure 1: Side-by-side comparison of bicycle from BIKED, annotated frame, and 3D model
from FRAMED.

as boolean flags indicating whether or not the frame has chain stay or seat
stay bridges (bridges are crosspieces between the stays that add support).
Finally, we use a single material parameter, which is discussed in more de-
tail below in Section 3.4. A summary of the parameter types is included
in Table 1. A side-by-side comparison of an original BIKED bicycle model,
the same BIKED model with the frame isolated, and the corresponding 3D
model generated based on this BIKED model is shown in Figure 1.

Table 1: Summary of parameters used to represent the bicycle frame design space.

Parameter Type Data Type Count
Frame Geometry Relations Continuous 18
Tube Outer Diameters Continuous 9
Tube Thicknesses Continuous 7
Frame Material Categorical 1
Seat/Chain Stay Bridge Flags Boolean 2
Total 37

One of the key limitations acknowledged by BIKED’s authors is the
limited diversity present in certain design parameters, largely due to pe-
culiarities stemming from the BikeCAD software from which designs were
sourced. BikeCAD has no 3D modeling feature or inbuilt simulation capabil-
ities, so many parameters adding “depth” to the model are largely irrelevant
in BikeCAD designs. This issue is especially pronounced in the tube thick-
nesses, with over 99% of all models having the same tube thickness values.
To promote diversity in our dataset, we manually override the seven tube
thickness parameters with randomly sampled thicknesses. We sample a 7D
vector from a Sobol sequence, then logarithmically scale these vectors in an
element-wise fashion to a range of 0.5-10 mm. The resulting bike models’

9



Figure 2: Different views of example bicycle frame model.

seven tube thickness values randomly lie between 0.5 and 10 mm, with a bias
towards thinner tubes.

To automate the generation of 3D models to simulate, we create an adap-
tive 3D template model. This model uses a set of predefined equations to
deterministically calculate key dimensions based on our 37-parameter design
representation. The model then leverages the inbuilt constraint-resolution
functionality of SolidWorks to build a final 3D model for each frame. Fig-
ure 2 shows several views of a road bike frame model build with this method.

3.2. Geometric Feasibility

Our 37-variable parameterization makes for a diverse design space but
also introduces possibilities for infeasible combinations of parameters. To
avoid geometrically infeasible models, we implement a list of geometric “checks.”
A few of these checks are listed below:

• Tube thicknesses, diameters, and lengths must be positive

• Seat stays and chain stays must intersect with the seat tube and bottom
bracket respectively.

• Head tube and seat tube angles are between 0 and 180 degrees.

We find that 222 of BIKED’s 4512 models fail these explicit feasibility
checks. Despite these checks, 172 bicycle models still fail to build correctly
when the parameters are fed into the adaptive 3D frame model, possibly due
to geometric infeasibilities. Hence, 4118 models are found to be geometrically
valid.
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3.3. Load Cases and Simulation Setup

We seek to develop a concise set of tests that effectively evaluate a wide va-
riety of structural considerations of the bicycle frame. We follow the method-
ology proposed in Vanwelleghem et al. [6] to evaluate in-plane, transverse,
and eccentric stiffness. The authors propose three load cases to evaluate bi-
cycle frames. Though Vanwelleghem et al. focus only on stiffness and don’t
specify load magnitudes in their methodology, we require loads to roughly
estimate maximum stresses and safety factors. Soden et al. [7] study forces
applied to the bicycle during actual ridership in several road racing condi-
tions (starting, climbing, braking, etc.) and find a maximum pedal force of
1447 N across these conditions. We select loading magnitudes based on these
findings and illustrate our load cases in Figure 3. Based on these studies and
domain knowledge, we introduce three load cases that are applied to every
bicycle frame. These cases are defined as follows:

1. In-Plane Stiffness: We apply 2000 N upwards to the dropouts and
2000 N downwards to the bottom bracket while holding the head tube
fixed. We measure vertical and lateral displacements at the bottom
bracket and dropouts as well as the safety factor. This load case cor-
responds to a ‘normal riding’ scenario, where large in-plane forces may
be caused by uneven riding surfaces.

2. Transverse Stiffness: We apply 500 N laterally to the bottom bracket
while holding the head tube fixed and preventing lateral deflection at
the dropouts. We measure lateral displacement at the bottom bracket.
Though transverse loading is relatively small during normal cycling,
deflection can still be significant and contribute to reduced power effi-
ciency.

3. Eccentric Stiffness: We apply a 2000 N downwards force and 140 Nm
moment to the bottom bracket (representing a 2000 N force applied
at an offset of 7 cm from the bottom bracket). We measure vertical
and angular displacement of the bottom bracket as well as the safety
factor. This load case roughly captures an acceleration-from-stationary
scenario where the rider applies their entire body weight (or more if
they are pulling up on the handlebars) to a single pedal.

Six displacements and one rotation are measured across the three loading
cases, which can be used to find various directional and rotational stiffnesses
of the frame. Additionally, safety factors are measured for Simulations 1 and
3. Finally, we also measure the weight of the frame model. We note that these

11



Figure 3: Diagrams of the three simulations designed to test frames during in-plane,
transverse, and eccentric load cases.

forces may not cover extreme use cases. For example, De Lorenzo et al. [5]
study forces on a bicycle during “aggressive off-road cycling”, including a
2.5 m jump and find a maximum rear wheel loading of 4000 N .

3.4. Material Properties

BIKED provides a categorical “material” parameter consisting of one of
six material classes. The breakdown of bicycle frames by material in the
original dataset is shown in Figure 4. Three of these (steel, aluminum, and
titanium) are isotropic1 while carbon and bamboo are anisotropic. Since
anisotropic materials are difficult to simulate without additional information
about material orientation, we replace bamboo and carbon fiber, as well as
the unspecified “other” category with aluminum. BIKED does not specify
the alloy of steel, aluminum, and titanium used in bicycle models. There-
fore, we select material properties of steel, aluminum, and titanium that are
generally characteristic of common bicycle tube alloys. We select steel prop-

1We acknowledge that manufacturing processes, including those used for bicycle frame
tubing, can introduce anisotropic properties in a material. Modeling anisotropic behav-
ior was deemed to be outside of the scope of this work, and we acknowledge that this
simplification may cause minor inaccuracies.
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erties common for a heat-treated chrome-molybdenum steel such as AISI
4130 Steel, which is fairly representative of the steels used in bicycle fabrica-
tion. We select aluminum and titanium properties of 6061-T6 aluminum and
Ti-6Al-4V, respectively, which are two of the most commonly used alloys in
the industry. These properties are summarized in Table 2.

Figure 4: Breakdown of bikes by material in original BIKED data.

.

Table 2: Selected material properties for steel, aluminum, and titanium used in simulation

Material Steel Aluminum Titanium
Elastic Modulus (GPa) 205 69 105
Poisson’s Ratio 0.285 0.330 0.310
Shear Modulus (GPa) 80 26 41
Density (kg/m3) 7850 2700 4429
Tensile Strength (MPa) 731 310 1050
Yield Strength (MPa) 460 275 827

3.5. Mesh Resolution

In numerical simulations, mesh resolution is an essential parameter that
balances the tradeoff between computational cost and simulation fidelity.
Since this work simulates thousands of models, appropriately balancing com-
putational cost and fidelity is essential. To study this balance, we randomly
select five bicycle frame models to test in each of our three simulation se-
tups. For each study, we test a logarithmic sweep of mesh resolutions with
minimum cell size ranging from 0.01 mm to 1.28 mm. Meshes are generated
using SolidWorks’ “Blended curvature-based mesh.” In each test, the maxi-
mum cell size was set to 100 times the minimum cell size, and the cell growth
ratio between adjacent cells was set to 1.3. We examined convergence across
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mesh resolutions for each of our ten parameters of interest and documented
two sample plots in Figure 5.

Figure 5: Convergence study calculating two quantities of interest at different mesh reso-
lutions across five different bicycle frame models. Mesh resolution is shown on horizontal
axes and is measured in meters. The selected mesh resolution of 0.03 mm is indicated on
the plots.

Although displacement values stabilize at fine mesh resolution, we ob-
serve in our studies that safety factors do not perfectly stabilize at even the
finest of mesh resolutions tested. Qualitative analysis of simulation results
indicates that the safety factors are reflecting extreme local stress concen-
trations at the junctions of the tubes. Thus, the low safety factors at finer
resolutions can likely be attributed to the imperfect modeling of the bicycle
frame, particularly the infinite curvature at the tube junctions in the model.
As such, we caution users of the dataset to expect some error in reported
stress and safety factor values.

In general, displacement values are stable for mesh resolutions between
0.16 mm and 0.32 mm. Above 0.64 mm, displacement values are relatively
unstable and simulations occasionally fail to converge. Displacement val-
ues are also relatively unstable for mesh resolutions between 0.04 mm and
0.16 mm. We hypothesize that this range of mesh resolutions critically im-
pacts fidelity since tube thicknesses may be as small as 0.5 mm and an
accurate simulation should place several cells spanning the thickness of any
key geometry. Below 0.04 mm, displacements are fairly stable.

We select a mesh resolution of 0.03mm for our simulations to attain a
reasonably precise estimate of displacements while avoiding the extreme cost
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brought about by finer meshing.

4. Validation

To demonstrate that our frame model and meshing setup yield meaning-
ful simulation results, we validate against existing published data. Validation
using physical testing is usually a costly and time-consuming method but is
often the most rigorous. Fortunately, many existing studies have published
results of physical experimentation on bicycle frames. Few of these, however,
publish enough details on parametric data about the bikes they test for us
to construct an accurate 3D bicycle frame model for simulation. We select
a 1996 study by Damon Rinard [39] which physically tested over 70 bicycle
frames for transverse deflection of the front and rear triangles. From their
study, we select three frames for which we were able to find sufficient para-
metric data to approximate the 3D frame models: the DeRosa SLX, Casati
Gold Line, and Holland SL/SP. Much of the parametric data comes from [40],
which also provides estimates for frame mass. We mimic Rinard’s loading
and measurement setup and compare simulated deflection values with re-
ported values as well as frame model mass with reported frame mass. These
results are presented in Table 3.

Table 3: Physical validation study demonstrates modest error in FEA simulation results.

DeRosa SLX Casati Gold Line Holland SL/SP
Front Rear Model Front Rear Model Front Rear Model
Defl. Defl. Mass Defl. Defl. Mass Defl. Defl. Mass

Actual 0.40 0.15 1.966 0.44 0.15 1.966 0.38 0.13 1.962
Simulated 0.297 0.116 1.69 0.3028 0.124 1.80 0.26 0.107 1.77
Error 26% 23% 14% 31% 17% 8% 32% 18% 10%

The comparison shows that our simulations have similar trends of de-
flection and mass as Rinard’s studies. However, some discrepancy is often
expected between simulation and real-world testing and we find that our
simulations tend to underestimate the front and rear deflections compared
to Rinard’s reported values. There are several potential explanations for the
difference, a few of which we discuss here. First, the discrepancy in mass
can largely be explained by the fact that our model does not include the
frame’s fork while the experimental values do, explaining the underestima-
tion of mass values. Second, we suspect that measured deflections in Rinard’s
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studies fail to eliminate deflection caused by the compliance of their clamp-
ing scheme. This likely explains why the simulated values for front and rear
deflection consistently show similar errors across all three bikes tested. Since
the moment on the clamping mechanism is roughly the same for each test
(the distances from the clamp to the front and rear ends of the bicycle do
not vary much from bike to bike), compliance in the clamp would contribute
roughly the same error. For these reasons, we are optimistic that our simula-
tions are even closer to real-world behavior than this validation study would
indicate. In future work, we plan to conduct our own physical validation to
more accurately validate our simulation results. Nonetheless, given certain
simplifications made in modeling (ignoring fillets, approximating material
properties with the values for typical alloys, etc.), we consider these error
values to be acceptable.

5. Dataset Analysis

5.1. Exploring the Performance Space

Through our simulations, we captured ten structural performance values
for each of the 4118 geometrically valid bicycle frames. Using a minimum
Factor of Safety (FoS) threshold of 1.0, we can immediately identify bicycles
that fail under reasonable load cases. 3419 of 4118 frames simulated fail
under at least one of the loading cases, a reminder of the difficult balance of
parameters and the complexity of the bicycle design problem. Designers may
often not anticipate that a particular bicycle design is structurally deficient
until physically testing the frame. To make for easier visualization, we explore
the design space with a subset of five of the ten performance values: Dropout
displacement during in-plane loading, bottom bracket displacement during
transverse loading, bottom bracket rotation during eccentric loading, safety
factor during in-plane loading, and weight. Figure 6 shows a visualization
of this subset, with Kernel Density Estimate plots over each performance
parameter and scatterplots over each pair of performance parameters. Note
that we take absolute values of deflection values (Simulation 1 deflections can
be positive or negative). Additionally, points and histograms are organized
based on bicycle frame model validity. In this case, we take a frame model
to be valid if both safety factor values measured (one not shown) are greater
than 1. Additionally, we label three bicycle frames on these plots to analyze in
the following section. Based on these plots, we can make several observations.
For example, looking at these histograms, we see that valid bicycle frames
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tend to have much smaller deflections than invalid frames. We can also
see that the two distributions over mass align very closely. Based on the
scatterplots, we can also observe some correlations between objectives. For
example, heavier models tend to have deflections with smaller magnitudes.

Figure 6: Plot showing: 1) Kernel Density Estimate plots (diagonal plots). 2) Scatterplots
over each pair of performance parameters (off-diagonal plots). 3) Classification of bicycle
frame models into feasible and infeasible models. 4) Three example frames that we discuss
as case studies.
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(a) Example frame 1 (Valid) (b) Example frame 2 (Invalid) (c) Example frame 3 (Valid)

Figure 7: Highlighted example frames, showing the frame with the highest vertical deflec-
tion (left), the frame with the highest safety factor (middle), and the lightest valid frame
(right).

5.2. Case Studies

Here, we examine three sample frames to provide potential users with
some intuition about the dataset. We demonstrate a ‘typical’ bike, but also
examine some outliers in the data, such as artistic bikes or bikes designed
for children. Three frames are shown in Figure 7 (corresponding to the
bikes indicated in Figure 6) and are discussed below. We recommend that
users be aware of the broad variety of use cases, bike styles, and user groups
represented in the data and refer to [38] for more details.

5.2.1. Frame 1:

This road bike frame was randomly selected from the valid bikes. Though
it contains some eccentricities such as an unconventionally thick seat tube and
chain stay bridge fused with the bottom bracket, it exemplifies a relatively
‘well-designed,’ albeit fairly typical frame. Weighing in at 2.84 kg, its safety
factors are 1.3 and 1.1 in Simulations 1 and 3 respectively. The frame’s
deflections are rather moderate across all load cases.

5.2.2. Frame 2:

This frame was manually selected as the heaviest frame in the dataset,
weighing 22.83 kg. This highly unconventional frame is nearly three meters
long and, judging by the original design in BIKED, appears to have been
designed as an ‘artistic’ piece, rather than a functional bike. It was designed
to support massive wheels with a diameter of 1.75 m extending far above
the rider’s head. Despite its heavy steel frame, this bike undergoes extreme
stress and deflections during simulation and has a safety factor of less than
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0.1. Unconventional frames like this raise the diversity of the dataset and
often stand out as outliers in the performance space, but require users to be
cognizant of the varied use cases represented in the data.

5.2.3. Frame 3:

This frame was identified as the lightest valid frame in the dataset at
1.6 kg. Not only is the frame structurally valid, but it also boasts safety
factors of 2.42 and 2.99 in Simulations 1 and 3 and some of the smallest
deflections in the dataset. While the frame utilizes lightweight titanium and
features thin wide tubes that effectively use their higher second moment of
area to minimize bending stress and deflection, its most notable feature is
its size. This bike is extremely compact and may have been designed for
children. We caution users interested in performing direct optimization of
structural performance: Appropriate constraints are essential, as ‘optimality’
can be trivially attained by letting the dimensions of the frame approach zero,
as this example illustrates.

6. Predicting Structural Performance using Surrogate Models

Given a new bicycle design concept, a designer might like to quickly gauge
its structural performance, without building a costly and time-consuming
prototype. Instead of creating a digital model and running numerical simu-
lations, which are typically tedious, designers can leverage surrogate models
to estimate performance in fractions of a second. In this section, we demon-
strate that FRAMED can be used to train algorithms to rapidly and accu-
rately predict performance and feasibility for previously unseen bicycle frame
designs.

6.1. Selecting a Model using Automated Machine Learning (AutoML)

FRAMED provides 4118 design-performance pairs, each mapping a 37-
dimensional parameter vector to a 10-dimensional performance vector. We
seek to train a surrogate model on these pairs which can then be queried to
predict performance vectors for new bikes. Though this task constitutes a
standard supervised regression problem, selecting an optimal surrogate model
and optimal training parameters for the selected model is highly dataset-
dependent and constantly evolves as new methods are introduced. We ap-
ply a state-of-the-art Automated Machine-Learning (AutoML) process [31],
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which methodically tests Machine Learning algorithms and training param-
eters to identify a high-performing surrogate. To ensure that a candidate
surrogate model generalizes to datapoints from outside the dataset, surro-
gates are evaluated on subsets of the dataset that are withheld from the
model during training, a method known as cross-validation. The highest-
performing regression model was found to be a weighted ensemble of several
of the individual regressors tested. This final regressor’s predictive perfor-
mance on several performance metrics is visualized in Figure 8 by plotting
predicted performance values against the simulated (ground truth) values
for both the training and validation data. All ten plots are included in the
Appendix.

Figure 8: Regression performance of AutoML model on select performance parameters.

6.2. Validating the AutoML Selection using Bayesian Hyperparameter Opti-
mization

Though AutoML has established itself in many classic Machine Learning
problems, it has rarely been applied to design problems. As such, we vali-
date the model selected by AutoML against several supervised regression sta-
ples: Neural Networks, XGBoost [41], K-Neighbors, and Decision Trees. For
each regression algorithm, we identify optimal model architecture and train-
ing parameters (hyperparameters) using Bayesian Optimization [42], testing
roughly 200 hyperparameter configurations. For each hyperparameter con-
figuration, we test 50 instantiations of the model (10x 5-fold cross-validation
splits), resulting in a total of approximately 10,000 training runs. We ini-
tialize our Bayesian Optimization using an initial sampling approach based
on Generalized Subset Designs (GSD) [43]. Details on the hyperparameter
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ranges, initial sampling density, optimal hyperparameters, and training pro-
cedure are included in the Appendix. As shown in Table 4, the Weighted
Ensembles Regressor from AutoML was found to significantly outperform
optimal Decision Trees, K-Neighbors, and Neural Network models identi-
fied through Bayesian Optimization, whose (optimal) parameters are docu-
mented in the appendix. The AutoML ensemble achieved a higher Coefficient
of Determination (R2), lower Mean Squared Error (MSE), and lower Mean
Absolute Error (MAE) than Decision Trees or K-Nearest Neighbors. It also
significantly outperformed XGBoost in MAE and performed very similarly
in R2 and MSE.

Table 4: Performance of best regressors discovered through Bayesian hyperparameter
optimization compared to Weighted Ensembles Regressor from AutoML.

Metric Decision Tree K-Nearest Neighbors XGBoost Neural Network AutoML
Coefficient of Determination (R2) 0.440 0.306 0.595 0.545 0.605
Mean Squared Error (MSE) 1.156 1.270 0.978 1.031 0.995
Mean Absolute Error (MAE) 0.297 0.412 0.208 0.263 0.182

6.3. Predicting and Validating Geometric Validity

We can also leverage FRAMED’s data on design validity to train super-
vised classifiers that identify if a given bicycle design candidate is geometri-
cally valid. While such a classifier may be less valuable to seasoned bicycle
designers, it is particularly useful in training generative methods, such as
Deep Generative Machine Learning Models [32]. These generative models
must be evaluated for geometric validity and may conceivably be guided
during training to achieve geometric validity, which would require querying a
surrogate during the training loop [44]. As such, we follow a similar approach
to the regression problem, using AutoML to train a high-performing classi-
fier, which achieved an F1 score of 0.915 and overall accuracy of 0.998. We
then validated the classifier’s performance using Bayesian Hyperparameter
Tuning, just as we did for the regression models. We test 5 common classifi-
cation algorithms: Neural Networks, XGBoost, K-Neighbors, Support Vector
Machines, and Decision Trees. Classifiers are evaluated using F1 score, ac-
curacy, precision, recall, and area under the curve of the Receiver Operating
Characteristic (AUC). These results are included in Table 5, while the de-
tails of the validation study are included in the Appendix. The Weighted
Ensembles Classifier identified through AutoML significantly outperformed
every other surrogate in every metric.
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Table 5: Performance of best classifiers discovered through Bayesian hyperparameter op-
timization compared to Weighted Ensembles Classifier from AutoML

Metric Decision Tree K-Nearest Neighbors XGBoost Neural Network Support Vector Machine AutoML.
F1 Score 0.750 0.736 0.722 0.736 0.620 0.915
Precision 0.900 0.883 0.867 0.883 0.889 0.977
Recall 0.643 0.631 0.619 0.631 0.476 0.860
Accuracy 0.960 0.958 0.956 0.958 0.946 0.991
ROC AUC 0.817 0.844 0.936 0.892 0.924 0.998

6.4. Discussion

AutoGluon ensembles were found to significantly outperform single mod-
els in both classification and regression in almost every metric. This signifi-
cant performance gap is best explained by the known performance advantages
of Machine Learning ensembles in many settings. However, while ensembles
are typically implemented as a collection of identical models, often through
methods like bagging, AutoGluon further capitalizes on the power of ensem-
bles by not only encompassing many different models into an ensemble but
constructing a multi-layer ensemble. This effectively allows different types
of models to build on each other’s strengths at different levels of the pre-
diction process, while simultaneously improving on the weaknesses of the
base learners. Due to the marked performance improvements of AutoML
on the FRAMED dataset, we see little reason for practitioners to use base
learners unless they have special requirements, such as a need for gradient
information.

If AutoML’s dominance on FRAMED is remotely indicative of its perfor-
mance on other design prediction problems, it presents a huge opportunity
for the design field. At the moment, surrogate predictive models in engineer-
ing design are almost always implemented using individual models instead of
ensembles [21]. The marked performance gap between the AutoML ensemble
models and individuals indicates that significantly better surrogate models
may be possible in many design applications. Not only do AutoML models
have the potential to identify significantly stronger predictive models, but
they also require no tuning, making them trivial to train. We highly en-
courage data-driven design researchers to leverage the power of Automated
Machine Learning in their future supervised prediction problems.
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7. Limitations

FRAMED is the first dataset that provides both parametric and perfor-
mance values for a large set of community-designed bicycle frames. However,
it has a few limitations, which we discuss below. FRAMED inherits BIKED’s
challenges with limited diversity in certain design parameters. We attempt
to mitigate this by resampling these parameters. This resampling process
makes FRAMED less suitable for studies about the existing bicycle design
space and more suitable for surrogate models aiming to capture a wider por-
tion of the design space.

FRAMED’s considerably larger and more comprehensive design space
expands significantly on previous data-driven studies of bicycle frame design.
Nonetheless, FRAMED’s design space is still far more restricted than the
real-world bicycle design space. For example, the design space only considers
bikes with a conventional diamond frame and excludes other bicycle frame
configurations, such as bicycles with rear suspension mechanisms. It also
excludes bicycle designs with non-cylindrical tubes and bicycles made from
materials other than the three we support. We hope to expand FRAMED in
future work to include more types of geometries.

Though we validate FRAMED’s results, we acknowledge potential in-
accuracy in the simulations, especially reported stresses and safety factors.
Further validation against physical bicycle frames with better-known sizing
and parameters would help resolve this uncertainty. We also acknowledge
that our frame modeling has a few assumptions. For example, we do not
model curvature at the junctions of tubes since automating the parametriza-
tion and CAD model generation of these curves and fillets would be too
complex.

8. Future Work

A natural extension of FRAMED would be to perform constrained opti-
mization using the surrogate models as performance predictors to identify a
structurally optimal bicycle design. Physically fabricating and testing this
design would be highly insightful.

This research also has applications outside of bicycle design in the broader
community of data-driven research. One of FRAMED’s core contributions is
the introduction of a dataset of 4500 bicycle frame designs as well as associ-
ated structural performance values for these designs. FRAMED is therefore
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well-positioned to support advancements in AI-based design tools such as
performance-aware generative methods. Advanced AI-based design frame-
works, such as Deep Generative Models (DGMs) have shown promising ini-
tial results on a variety of design problems. FRAMED is particularly well
positioned to accelerate DGM development since not only do DGMs lack
quality data and benchmark problems, most current DGMs do not account
for design performance at all [32].

Another potential extension of this work is the incorporation of multi-
modal data, such as 3D models, sketches, or images. Models trained on
multimodal design data typically achieve higher performance and may be
more generalizable across design representations. We plan to seek out op-
portunities to augment the dataset with different data modalities.

9. Ethics, Privacy, Accessibility, and Dataset Maintainance

The primary goal of FRAMED is to provide a dataset and tools for bi-
cycle designers and data scientists alike. To this end, we publicly release
all data and code developed. We also assert that the dataset does not dis-
close any sensitive or personal information. Bicycle frame models cannot be
traced back to an individual creator. The data was adapted from the origi-
nal BIKED dataset with the consent of the authors. BIKED’s authors assert
similar ethics and privacy considerations in the collection of their original
data [38].

We also anticipate that researchers using FRAMED to train Deep Gen-
erative Models may simulate generated bicycle frames using our simulation
framework to measure ground truth performance for generated designs. For
example, in our recent work [44] we simulate 10,000 frames generated using
Deep Generative Models trained on a previous version of the dataset. The
performance and feasibility values for these generated frames make for ex-
cellent auxiliary regression and classification data, which we release along
with corresponding trained models. As other researchers generate and sim-
ulate designs using our framework, we plan to curate any publicly released
simulation results into this auxiliary dataset.

10. Conclusion

This study presents a data-driven approach to bicycle frame design, anal-
ysis, and performance prediction. We develop a dataset of 4500 individually-
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designed bicycle frames, simulate each in three loading conditions, and ex-
tract ten performance parameters of interest. We perform several validation
studies on our data, such as comparing simulation results to physical exper-
imental results on real bicycle frames and demonstrating convergence at the
selected mesh resolution. Through our analysis, we highlight general themes
across bicycle designs in the dataset and study a selection of frames in greater
detail. Finally, we apply state-of-the-art Automated Machine Learning (Au-
toML) methods to design optimal surrogate models to predict frame perfor-
mance and geometric validity. We validate the quality of these surrogates by
comparing them to benchmark surrogates identified through Bayesian hy-
perparameter optimization. Through our dataset and analysis, we aim to
provide a resource for the bicycle design community, in particular, to indi-
rectly increase accessibility to custom bicycles and positively impact bicycle
ridership. We simultaneously aim to support researchers in developing data-
driven design methods like AI-based Generative Models.
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12. Appendix

12.1. Regression Performance of AutoML Framework

We document the full regression performance over all ten performance ob-
jectives of the Weighted Ensembles Regressor identified through Automated
Machine Learning (AutoML) in Figure 9.

Figure 9: Regression performance of the optimal regressor selected through AutoML

12.2. Bayesian Hyperparameter Optimization of Regression Surrogates

This section documents the specifics of the Bayesian Hyperparameter
Tuning process carried out on popular classes of regressors (Decision Trees,
K-Nearest Neighbors, XGBoost, and Neural Networks). All models are ini-
tialized 50 times on ten 5-fold cross-validation splits. Bayesian Optimization
is run for 100 iterations. 100 Instantiations of the optimal configuration of
hyperparameters are tested to identify a top-performing individual model.
All hyperparameters considered during the tuning process are listed, along
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with their datatypes. Ranges for integral and continuous parameters are
shown and all categories are listed for categorical values. Gridpoint resolu-
tion for initial sampling is indicated in the table and Generalized Subspace
Reduction factor is noted in the caption (otherwise full factorial is used).
Finally, we provide the optimal value identified.

Table 6: Decision Tree Regression Hyperparameter Selection (Reduction=5)

Hyperparameter Datatype Values/[Min, Max] Log Scaling Gridpoint Count Best Value
Maximum Tree Depth Integer [2, 10] FALSE 5 7
Splitting Strategy Categorical [’best’, ’random’] FALSE N/A best
Split Quality Criterion Categorical [’squared error’, ’friedman mse’, ’absolute error’] FALSE N/A absolute error
Min. Samples to Split Internal Node Integer [2, 20] TRUE 3 5
Min. Samples to Split Leaf Node Integer [1, 20] TRUE 3 11
Features Considered During Split Integer [1, 39] TRUE 3 32

Table 7: K-Nearest-Neighbors Regression Hyperparameter Selection

Hyperparameter Datatype Values/[Min, Max] Log Scaling Gridpoint Count Best Value
Number of Neighbors Integer [1, 1000] TRUE 10 70
Neighbor Weighting Categorical [’uniform’, ’distance’] FALSE N/A distance
Distance Metric Categorical [’euclidean’, ’manhattan’, ’chebyshev’] FALSE N/A euclidean

Table 8: XGBoost Regression Hyperparameter Selection (Reduction=5)

Hyperparameter Datatype Values/[Min, Max] Log Scaling Gridpoint Count Best Value
Maximum Tree Depth Integer [2, 8] FALSE 3 6
L2 Weight Regularization (lambda) Continuous [0.1, 100] TRUE 3 72.41212
Learning Rate (eta) Continuous [0.0, 1.0] FALSE 3 0.275542
Minimum Split Loss (gamma) Continuous [0, 1] FALSE 3 0.059818
Minimum Child Weight Continuous [0.5, 10] TRUE 3 4.819113
Early Stopping Patience Integer [1, 100] TRUE 3 8

Table 9: Neural Network Regression Hyperparameter Selection (Reduction=5)

Hyperparameter Datatype Values/[Min, Max] Log Scaling Gridpoint Count Best Value
Batch Size Integer [32, 1024] TRUE 2 135
Early Stopping Patience Integer [1, 100] TRUE 2 44
Dropout Rate Continuous [0.0, 1.0] FALSE 2 0.578647
Learning Rate Continuous [1e-05, 0.1] TRUE 2 7.20E-05
Number of Layers Integer [1, 6] FALSE 3 1
Include Batchnormalization Categorical [False, True] FALSE N/A FALSE
Activation Function Categorical [’ReLU’, ’Leaky ReLU’] FALSE N/A ReLU
Layer Size Integer [4, 100] TRUE 3 92
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12.3. Bayesian Hyperparameter Optimization of Classification Surrogates

Bayesian hyperparameter optimization of classification surrogates is per-
formed and documented in the same way as regression surrogates. Classifier
types tested are: Decision Trees, K-Nearest Neighbors, XGBoost, Neural
Networks, and Support Vector Machines. Results are documented below

Table 10: Decision Tree Classification Hyperparameter Selection (Reduction=5)

Hyperparameter Datatype Values/[Min, Max] Log Scaling Gridpoint Count Best Value
Maximum Tree Depth Integer [2, 10] FALSE 5 7
Splitting Strategy Categorical [’best’, ’random’] FALSE N/A best
Split Quality Criterion Categorical [’gini’, ’entropy’] FALSE N/A gini
Min. Samples to Split Internal Node Integer [2, 20] TRUE 3 9
Min. Samples to Split Leaf Node Integer [1, 20] TRUE 3 3
Features Considered During Split Integer [1, 39] TRUE 3 36
Feasible Sample Weight Categorical [’balanced’, None] FALSE N/A None

Table 11: K-Nearest-Neighbors Classification Hyperparameter Selection

Hyperparameter Datatype Values/[Min, Max] Log Scaling Gridpoint Count Best Value
Number of Neighbors Integer [1, 1000] TRUE 10 3
Neighbor Weighting Categorical [’uniform’, ’distance’] FALSE N/A distance
Distance Metric Categorical [’euclidean’, ’manhattan’, ’chebyshev’] FALSE N/A euclidean

Table 12: XGBoost Classification Hyperparameter Selection (Reduction=5)

Hyperparameter Datatype Values/[Min, Max] Log Scaling Gridpoint Count Best Value
Maximum Tree Depth Integer [2, 8] FALSE 3 2
L2 Weight Regularization (lambda) Continuous [0.1, 100] TRUE 3 0.37363
Learning Rate (eta) Continuous [0.0, 1.0] FALSE 3 0.688255
Minimum Split Loss (gamma) Continuous [0, 1] FALSE 3 0.695424
Minimum Child Weight Continuous [0.5, 10] TRUE 3 0.694833
Early Stopping Patience Integer [1, 100] TRUE 3 33

Table 13: Neural Network Classification Hyperparameter Selection (Reduction=5)

Hyperparameter Datatype Values/[Min, Max] Log Scaling Gridpoint Count Best Value
Batch Size Integer [32, 1024] TRUE 2 775
Early Stopping Patience Integer [1, 100] TRUE 2 100
Dropout Rate Continuous [0.0, 1.0] FALSE 2 0.70054
Learning Rate Continuous [1e-05, 1.0] TRUE 2 0.015856
Number of Layers Integer [1, 6] FALSE 2 3
Include Batchnormalization Categorical [False, True] FALSE N/A TRUE
Activation Function Categorical [’ReLU’, ’Leaky ReLU’] FALSE N/A ReLU
Layer Size Integer [4, 100] TRUE 2 18
Feasible Sample Weight Continuous [0.01, 100.0] TRUE 2 0.447665
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Table 14: Support Vector Machine Classification Hyperparameter Selection

Hyperparameter Datatype Values/[Min, Max] Log Scaling Gridpoint Count Best Value
SVM Kernel Categorical [’linear’, ’rbf’, ’sigmoid’] FALSE N/A rbf
Kernel Coefficient Categorical [’scale’, ’auto’] FALSE N/A auto
Class Weight Categorical [’balanced’, None] FALSE N/A None
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