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Abstract
Structural topology optimization, which aims to find the
optimal physical structure that maximizes mechanical per-
formance, is vital in engineering design applications in
aerospace, mechanical, and civil engineering. Generative ad-
versarial networks (GANs) have recently emerged as a pop-
ular alternative to traditional iterative topology optimization
methods. However, these models are often difficult to train,
have limited generalizability, and due to their goal of mim-
icking optimal structures, neglect manufacturability and per-
formance objectives like mechanical compliance. We pro-
pose TopoDiff — a conditional diffusion-model-based archi-
tecture to perform performance-aware and manufacturability-
aware topology optimization that overcomes these issues. Our
model introduces a surrogate model-based guidance strat-
egy that actively favors structures with low compliance and
good manufacturability. Our method significantly outper-
forms a state-of-art conditional GAN by reducing the av-
erage error on physical performance by a factor of eight
and by producing eleven times fewer infeasible samples. By
introducing diffusion models to topology optimization, we
show that conditional diffusion models have the ability to
outperform GANs in engineering design synthesis applica-
tions too. Our work also suggests a general framework for
engineering optimization problems using diffusion models
and external performance with constraint-aware guidance.
We publicly share the data, code, and trained models here:
https://decode.mit.edu/projects/topodiff/.

1 Introduction
Structural topology optimization (TO) of solid structures in-
volves generating the optimal shape of a material by mini-
mizing an objective function, for instance, mechanical com-
pliance, within a given domain and under a given set of con-
straints (volume fraction, boundary conditions, and loads).
TO is therefore becoming an essential design tool and is now
included in most professional design software, such as Au-
todesk’s Fusion 360 and Solidworks. It is the driving force
behind Autodesk’s generative design toolset, where design-
ers input design goals into the software, along with param-
eters such as performance or spatial requirements, materi-
als, manufacturing methods, and cost constraints. The soft-
ware quickly generates design alternatives. Most methods to
solve TO rely on gradient-based approaches, the most com-
mon method being the Solid Isotropic Material with Penal-
ization method (Bendsøe and Kikuchi 1988; Rozvany, Zhou,

and Birker 1992). Despite their wide adoption, these tradi-
tional methods have two major pitfalls: their iterative nature
makes them computationally expensive and they may gen-
erate non-optimal designs, for example, when penalization
and filtering augmentations are used to avoid grayscale pix-
els in SIMP (Sigmund and Maute 2013).

Several deep learning methods have been developed in re-
cent years to improve and speed up the TO process (Yu et al.
2018; Sharpe and Seepersad 2019; Nie et al. 2021; Behzadi
and Ilieş 2021) by learning from large datasets of optimized
structures. The latest and most promising results were ob-
tained with deep generative models (DGMs) and notably
with conditional generative adversarial networks (cGANs)
trained for image synthesis, which take as input the bound-
ary conditions and directly generate images of optimized
structures. Although popular, most of these models optimize
a loss function which does not align with the primary goals
of topology optimization — getting high-performance and
feasible structures. They often train for loss functions re-
lated to image reconstruction to achieve visual similarity and
ignore modeling the physical performance of the generated
structures. Most of them produce disconnected, floating ma-
terial that seriously affects the manufacturability of the gen-
erated design. They also suffer from limited generalizability,
especially for out-of-distribution boundary conditions.

We hypothesize that the absence of explicit methods to
generate designs with low compliance and good manufac-
turability causes these issues. We further hypothesize that
the reliance of the optimization objective on the sole cGAN
prompts the model to only mimic pixel-wise the ground truth
produced by traditional TO methods. As a result, two im-
ages with comparable pixel-wise similarity may still have
significantly different performance values. The absence of
explicit external guidance is even more problematic since
the ground truth data is not guaranteed to be optimal, as ex-
plained above.

This paper introduces TopoDiff, a conditional diffusion-
model-based method for TO. Dhariwal and Nichol (2021)
have shown that diffusion models can outperform GANs for
image generation, are easier to train, and are thus more read-
ily adaptable to other tasks. We show that by introducing
performance and constraints to diffusion models, they out-
perform GANs on topology optimization problems too. In
addition, the sequential nature of diffusion models makes



them compatible with external guidance strategies that as-
sist with performance and feasibility goals. By creating sur-
rogate models to estimate performance, we thus introduce
external guidance strategies to minimize mechanical com-
pliance and improve manufacturability in diffusion models.

Our main contributions include proposing: (1) TopoDiff
— a diffusion model based end-to-end Topology Optimiza-
tion framework that achieves an eight-times reduction in av-
erage physical performance errors and an eleven-times re-
duction in infeasibility compared to a state-of-art conditional
GAN, (2) a new guidance strategy for diffusion models to
perform physical performance optimization with enhanced
manufacturability constraint satisfaction, and (3) a general-
ized framework to solve inverse problems in engineering us-
ing diffusion models, when sample feasibility and perfor-
mance are a high priority.

2 Background and Related Work
2.1 Topology Optimization
Topology Optimization (TO) finds an optimal subset of ma-
terial Ωopt included in the full design domain Ω under a set
of displacement boundary conditions and loads applied on
the nodes of the domain and a volume fraction condition. A
structure is optimal when it minimizes an objective function,
such as mechanical compliance, subject to constraints. Fig.
1 summarizes the principle of TO.

Figure 1: Topology Optimization aims to find the optimal
structure that minimizes objectives such as compliance for a
given set of load, boundary conditions, and volume fraction.

Traditional TO methods rely on Finite Elements Analy-
sis (FEA) using gradient-based (Bendsøe and Kikuchi 1988)
or gradient-free methods (Ahmed, Bhattacharya, and Deb
2013). One popular gradient-based method is the Solid
Isotropic Material with Penalization (SIMP) method (Roz-
vany, Zhou, and Birker 1992).

SIMP associates every element of the mesh with a contin-
uous density to perform gradient-based methods (Sigmund
2001). However, because intermediary densities make no
physical sense, SIMP uses a penalization factor to encour-
age binary densities.

This penalization strategy (with p > 1) is efficient but
introduces non-convexity in the objective function, as stated
by Sigmund and Maute (2013). As a result, SIMP is likely to
converge towards local optima. Other techniques to encour-
age binary densities include filters, but they also introduce
non-convexity (Sigmund and Maute 2013).

2.2 Deep Learning for Topology Optimization
Traditional TO methods are often slow due to the iterative
FEA steps they include (Amir and Sigmund 2011). Many
deep learning methods (Regenwetter, Nobari, and Ahmed
2022; Guo et al. 2018; Lin et al. 2018; Sosnovik and Os-
eledets 2019) have recently been developed to improve the
speed and quality of topology generation or address issues
such as non-convexity.

A group of deep learning approaches, to which our work
belongs, consists in proposing an end-to-end TO framework
from the constraints to the optimal topology (Oh et al. 2019;
Sharpe and Seepersad 2019; Chandrasekhar and Suresh
2021; Parrott, Abueidda, and James 2022). Below, we re-
view a few representative works. Yu et al. (2018) propose an
iteration-free method, which predicts a low-resolution solu-
tion with a CNN encoder-decoder, which is then passed into
a GAN to increase the resolution. In line with the work by
Rawat and Shen (2019), Li et al. (2019) use two GANs to
solve the TO problem and then predict the refined structure
at high resolution. Sharpe and Seepersad (2019) introduce
conditional GANs as a means of generating a compact latent
representation of structures resulting from TO. Their work is
improved by Nie et al. (2021), who greatly extend the gen-
eralizability in their model named TopologyGAN, which is
trained on more diverse conditions and uses physical fields
as input to represent loads and boundary conditions. In par-
allel, Wang et al. (2021) develop a U-Net to perform TO for
improved generalization. These promising models neverthe-
less show a limited generalization ability, notably regarding
boundary conditions outside the training distribution. They
are also both prone to the problem of disconnected material.
To solve this issue, Behzadi and Ilieş (2021) propose a con-
ditional GAN architecture that includes a topological mea-
sure of connectivity in its loss function. Their results seem to
improve generalizability and connectivity; however, they set
the volume fraction to a constant value, limiting the prob-
lem’s scope.

It is crucial to note that none of these methods explic-
itly include a process to minimize compliance, which is the
goal of TO. The minimization of compliance is expected in-
directly through the GAN training, which is challenging to
control. As incorporating some measure of predicted struc-
tural performance inside a conditional model seems nec-
essary, we propose explicit guidance methods in diffusion
models for low-compliance and good-feasibility structures.

2.3 Diffusion Models
Diffusion models are a new type of deep generative mod-
els (DGMs) introduced by Sohl-Dickstein et al. (2015).
They have received much attention recently because Dhari-
wal and Nichol (2021) showed that diffusion models out-
perform GANs for image synthesis. Diffusion models are
increasingly being applied to various fields: image gen-
eration (Nichol and Dhariwal 2021), segmentation (Amit
et al. 2021), image editing (Meng et al. 2021), text-to-
image (Nichol et al. 2022; Kim and Ye 2021), etc.

The idea behind diffusion models is to train a neural net-
work to reverse a noising process that maps the data distribu-



tion to a white noise distribution. The forward noising pro-
cess, which is fixed, consists of progressively adding noise
to the samples following the Markov chain:

q(xt|xt−1) = N (xt;
√
αtxt−1, (1− αt)I) (1)

where (αt)
T
t=1 is a variance schedule.

To reverse this noising process, we approximate the true
posterior with the parametric Gaussian process:

pθ(xt−1|xt) = N (µθ(xt),Σθ(xt)). (2)

We then generate new data by sampling an image from
N (0, I) and gradually denoising it using Eq. 2.

Training a diffusion model, therefore, involves training
two neural networks, µθ(xt) and Σθ(xt), to predict the mean
and the variance of the denoising process respectively. Let us
note that Ho, Jain, and Abbeel (2020) showed that Σθ(xt)
might be fixed to a constant instead of being learned.

2.4 Guidance Methods in Diffusion Models
In many machine learning applications, a model is expected
to generate samples conditioned on some input conditions.
For example, popular text-to-image models such as DALL-
E are conditioned on text input. Researchers have developed
a few guidance methods to perform conditional image gen-
eration, such as including class labels when the model tries
to generate an image corresponding to a given class.

Including conditioning information inside the denoising
networks A method to condition a diffusion model con-
sists in adding the conditioning information (for example,
a class label) as an extra input to the denoising networks
µθ and Σθ. In practice, the conditioning information can
be added as an extra channel to the input image. Similarly,
Dhariwal and Nichol (2021) suggest adding conditioning in-
formation into an adaptive group normalization layer in ev-
ery residual block.

Classifier guidance Additional methods have been devel-
oped to guide the denoising process using classifier output.
In line with Sohl-Dickstein et al. (2015) and Song et al.
(2020), who have used external classifiers to guide the de-
noising process, Dhariwal and Nichol (2021) introduce clas-
sifier guidance to perform class-conditional image genera-
tion. In classifier guidance, a separate classifier is trained
on noisy data (with different levels of noise) to predict the
probability pϕ(y|xt) that an image xt at noise level t corre-
sponds to the class y. Let pθ(xt|xt+1) be an unconditional
reverse noising process. Classifier guidance consists of sam-
pling from:

pθ,ϕ(xt|xt+1, y) = Zpθ(xt|xt+1)pϕ(y|xt) (3)

instead of pθ(xt|xt+1), where Z denotes a normalizing con-
stant. Under reasonable assumptions, Dhariwal and Nichol
(2021) show that sampling from pθ,ϕ(xt|xt+1, y) is equiva-
lent to perturbing the mean with the gradient of the proba-
bility predicted by the classifier. Specifically, the perturbed
mean is:

µ̂θ(xt) = µθ(xt) + sΣθ(xt)∇xt log pϕ(y|xt) (4)

where s is a scale hyperparameter that needs to be tuned.
A variant called classifier-free guidance is proposed by Ho
and Salimans (2021). This technique is theoretically close to
classifier guidance but does not require training a separate
classifier on noisy data.

However, none of these methods provide guidance for
both continuous values (such as performance obtained from
regression models) and discrete values (such as class la-
bels obtained from classification models), which is impor-
tant for TO to achieve feasible, high-performing samples.
To overcome these issues, we propose a regressor and clas-
sifier guidance strategy that penalizes low-compliance and
infeasible structures at every step.

3 Method
3.1 Architecture and General Pipeline
TopoDiff’s diffusion architecture consists of a UNet (Ron-
neberger, Fischer, and Brox 2015)-based denoiser at every
step with attention layers. We add conditioning to this archi-
tecture by including information on constraints and bound-
ary conditions as additional channels to the input image
given to the denoiser, as shown in Figure 2. The UNet model
uses these extra channels as additional information to de-
noise the first channel of the input in a way that respects
the constraints and is optimal for the given boundary condi-
tions. Similarly to TopologyGAN (Nie et al. 2021), we use
physical fields, namely strain energy density and von Mises
stress, to represent constraints and boundary conditions. The
physical fields are computed using a finite element method
(Guarı́n-Zapata and Gómez 2020) and help avoid the spar-
sity problem caused by raw constraints and boundary con-
dition matrices. The final input to our conditional diffusion
model has four channels representing the volume fraction,
the strain energy density, the von Mises stress, and the loads
applied to the domain’s boundary.

3.2 Minimizing compliance
Most deep learning models used for TO rely on minimiz-
ing the pixel-wise error between the output topology and
the ground truth obtained with traditional methods. For in-
stance, the reference model TopologyGAN (Nie et al. 2021)
attempts to mimic the ground truth topology and is encour-
aged to do so by the L2 loss function of its generator. GANs
for TO are often evaluated using mean absolute error (MAE)
between the ground truth topology and the topology pre-
dicted by their model. However, we hypothesize that set-
ting the minimization of a pixel-wise error as an objective
does not properly address the aim of TO: generate manufac-
turable structures that minimize mechanical compliance. We
pose this hypothesis for two main reasons:

1. The topology used as ground truth may be sub-optimal
due to penalization factor and filters (Sec. 2.1);

2. A small pixel-wise error is compatible with a large com-
pliance error if the material is missing at critical places.

Without additional guidance, our conditional diffusion
model is prone to the same problem. To solve that issue,



Figure 2: TopoDiff: Proposed constrained guided conditional diffusion model architecture for TO. (xt)t=0,··· ,T is the gradually
denoised topology; gc and gfm are the guidance gradients; l is the load applied, represented with an arrow on the topology; v
is the volume fraction; f are the physical fields, and bc are the boundary conditions, represented with color lines and dots.

we introduce a new type of guidance called regressor guid-
ance, inspired by the classifier guidance used by Dhariwal
and Nichol (2021).

Consider a conditional diffusion model as presented in
Sec. 3.1: pθ(xt|xt+1, v, f, l), where v is the volume fraction,
f are the physical fields (strain energy density and von Mises
stress) and l are the loads applied. Regressor guidance con-
sists in sampling each transition according to:

pθ,ϕ(xt|xt+1, v, f, l, bc) =

Zpθ(xt|xt+1, v, f, l)e
−cϕ(xt,v,f,l,bc) (5)

where cϕ is a surrogate neural network predicting the com-
pliance of the topology under given constraints, bc are the
boundary conditions applied, and Z is a normalizing con-
stant. It is worth noting that cϕ must be able to predict com-
pliance on noisy images of structures. To perform this task,
we use the encoder of a UNet architecture modified for re-
gression values.

We show in Sec. 3.5 that under simple assump-
tions, adding regressor guidance simply amounts to shift-
ing the mean predicted by the diffusion model by
−Σ∇xtcϕ(xt, v, f, l, bc) where Σ is the variance of the
Gaussian distribution representing pθ(xt|xt+1, v, f, l). This
method thus modifies the distribution according to that
which we sample at each step by penalizing structures with
high compliance. The resulting algorithm is Alg. 1.

3.3 Avoiding Floating Material
Disconnected pixels in predicted structures are a serious
problem because this phenomenon leads to floating material
and therefore affects the manufacturability of the predicted
topology. This problem is generally ignored in deep learning

Algorithm 1 Regressor guidance for TO, given a conditional
diffusion model (µθ(xt|xt+1, v, f, l),Σθ(xt|xt+1, v, f, l))
and a regressor cϕ(xt, v, f, l, bc).

Require: v, l, bc ▷ Volume, loads and boundary conditions
Require: f ▷ Physical fields
Require: λc ▷ Regressor gradient scale

xT ← sample from N (0, I)
for t from T to 1 do

µ,Σ← µθ(xt|xt+1, v, f, l),Σθ(xt|xt+1, v, f, l)
xt−1 ← sample from N (µ −

λcΣ∇xtcϕ(xt, v, f, l, bc)|xt=µ, Σ)
return x0

models for TO, and is notably not considered by the pixel-
wise error because a small pixel-wise error is compatible
with the presence of floating material.

Similar to what has been exposed in Sec. 3.2, we further
modify the sampling distribution at each step by penalizing
structures that contain floating material. To do so, we train
a classifier pγ that returns the probability that the topology
does not contains floating material. We then use this classi-
fier to perform classifier guidance, as introduced in Sec. 2.4.
Eventually, this amounts to shifting the mean predicted by
the diffusion model by +Σ∇xt

log pγ(xt).

3.4 Combining Guidance Strategies
Our model ultimately consists of one conditional diffusion
model pθ(xt|xt+1, v, f, l) and two surrogate models used
for guidance when sampling: cϕ(xt, v, f, l, bc) for compli-
ance and pγ(xt) for floating material.

One challenge is to find a way to combine these two guid-
ance strategies. To combine them, we sample at every step



according to:

pθ,ϕ,γ(xt|xt+1, v, f, l, bc) =

Zpθ(xt|xt+1, v, f, l)e
−cϕ(xt,v,f,l,bc)pγ(xt). (6)

This amounts to shifting the mean predicted by the diffu-
sion model by:

−λcΣ∇xt
cϕ(xt, v, f, l, bc)+λfmΣ∇xt

log pγ(xt) (7)

where λc and λfm are gradient scale hyperparameters.
However, as is, this approach has two pitfalls: 1. The gra-

dients are always computed at the same point µ (the mean
predicted by the diffusion model), even though this mean is
shifted by the previous guidance strategy; and 2. The gra-
dients are computed at every denoising step, even if we
might want to favor one guidance over the other at a given
denoising step. We modify the point at which the second
gradient is computed to address these issues by consider-
ing the shift induced by the previous gradient. In addition,
we determine a maximum level of noise (MLN) beyond
which the classifier/regressor guidance should not be in-
cluded for every classifier and regressor. We then introduce
classifier/regressor guidance only if the image is denoised
enough to have a noise level below the MLN of the given
classifier or regressor.

The final guidance algorithm resulting from the combina-
tion of these guidance strategies is Alg. 2. Fig. 2 also sum-
marizes the overall architecture.

Algorithm 2 Guidance strategy for TO using Conditional
Diffusion Model.
Require: v, l, bc ▷ Volume, loads and boundary conditions
Require: f ▷ Physical fields
Require: λc, λfm ▷ Regressor and classifier gradient scale
Require: MLNc,MLNfm ▷ Maximum levels of noise

xT ← sample from N (0, I)
for t from T to 1 do

µ,Σ← µθ(xt|xt+1, v, f, l),Σθ(xt|xt+1, v, f, l)
if t < MLNfm then

µ← µ+ λfmΣ∇xt log pγ(xt)|xt=µ

if t < MLNc then
µ← µ− λcΣ∇xtcϕ(xt, v, f, l, bc)|xt=µ

xt−1 ← sample from N (µ, Σ)
return x0

It should be noted that we also considered applying re-
gressor and classifier guidance for other constraints (vol-
ume, load position), but the conditional diffusion model al-
ready sufficiently respects these constraints and makes guid-
ance unnecessary.

3.5 Mathematical Motivations for Regressor
Guidance

Similarly to Dhariwal and Nichol (2021) about classifier
guidance, we show in this section the mathematical motiva-
tions behind regressor guidance, and in particular, we prove
that adding regressor guidance, i.e., sampling each transition

according to the modified distribution, amounts to a shift in
the mean predicted by the diffusion model.

Let pθ(xt|xt+1, v, f, l) be our conditional diffusion
model. Regressor guidance consists in sampling according
to:

pθ,ϕ(xt|xt+1, v, f, l, bc) =

Zpθ(xt|xt+1, v, f, l)e
−cϕ(xt,v,f,l,bc) (8)

where Z is a normalizing constant and all variables are the
ones defined in Sec. 3.2.

Let µ and Σ be the mean and variance of the Gaussian
distribution representing pθ(xt|xt+1, v, f, l).

log pθ(xt|xt+1, v, f, l) =

− 1

2
(xt − µ)TΣ−1(xt − µ) + C (9)

where C is a constant.
By doing a Taylor expansion of the regressor predicting

the compliance cϕ(xt, v, f, l, bc), we obtain:

cϕ(xt, v, f, l, bc) ≈ cϕ(µ, v, f, l, bc)

+ (xt − µ)∇xt
cϕ(xt, v, f, l, bc)|xt=µ. (10)

In Eq. 10, we neglect the terms of second order and above
because we make the assumption that the curvature of
cϕ(xt) is low compared to Σ−1, to which it will be summed
in Eq. 11. This assumption is reasonable in the limit of infi-
nite diffusion steps, where ||Σ|| → 0, as stated by Dhariwal
and Nichol (2021).

Hence, Eq. 10 can be rewritten cϕ(xt, v, f, l, bc) ≈ (xt −
µ)gc+D, where gc is the gradient of the compliance regres-
sor evaluated in µ and D is a constant.

This gives:

log(pθ(xt|xt+1, v, f, l)e
−cϕ(xt,v,f,l,bc)) ≈

− 1

2
(xt − µ)TΣ−1(xt − µ)− (xt − µ)gc + C +D.

(11)

Hence:

log(pθ(xt|xt+1, v, f, l)e
−cϕ(xt,v,f,l,bc)) ≈

−1

2
(xt−µ+Σgc)

TΣ−1(xt−µ+Σgc)+
1

2
gTc Σgc+C+D.

(12)

The last three terms of Eq. 12 are all constant and are en-
capsulated in the normalizing constant Z from Eq. 8. There-
fore, we have shown that pθ,ϕ(xt|xt+1, v, f, l, bc) can be ap-
proximated by a Gaussian with a mean shifted by −Σgc.

4 Empirical Evaluation
We created three datasets to train the proposed models,
which we make public to provide a standard benchmark for
future research in this area.



4.1 Dataset
The main dataset used to train, validate and test TopoDiff
consists of 33000 64x64 2D images corresponding to opti-
mal structures for diverse input conditions. Every data sam-
ple contains six channels:
1. The first channel is the black and white image represent-

ing the optimal topology;
2. The second channel is uniform and includes the pre-

scribed volume fraction;
3. The third channel is the von Mises stress of

the full domain under the given load con-
straints and boundary conditions, defined as
σvm =

√
σ2
11 − σ11σ22 + σ2

22 + 3σ2
12;

4. The fourth channel is the strain energy density of the
full domain under the given load constraints and bound-
ary conditions, defined as W = 1

2 (σ11ϵ11 + σ22ϵ22 +
2σ12ϵ12);

5. The fifth channel represents the load constraints in the
x-direction. Every node is given the value of the force
applied in the x-direction on this load (0 if no force is
applied on the load);

6. The sixth channel similarly represents the load con-
straints in the y-direction;

where (σ11, σ22, σ12) and (ϵ11, ϵ22, ϵ12) are respectively the
components of the stress and strain fields.

We randomly selected a combination of conditions (vol-
ume fraction, boundary conditions, loads) to generate every
structure and then computed the optimal topology using the
SIMP-based TO library ToPy (Hunter et al. 2017). We de-
fined the possible conditions in a similar way to what was
done in previous works, namely: 1. The volume fraction is
chosen in the interval [0.3, 0.5], with a step of 0.02; 2. The
displacement boundary conditions are chosen among 42 sce-
narios for training and five additional scenarios only used for
testing; 3. The loads are applied on unconstrained nodes ran-
domly selected on the domain’s boundary. The direction is
selected in the interval [0, π], with a step of π

6 .
The main dataset is divided into training, validation, and

testing as follows:
1. The training data consist of 30,000 combinations of

constraints containing 42 of the 47 boundary conditions;
2. The validation data consist of 200 new combinations of

constraints containing the same 42 boundary conditions;
3. The level 1 test data consist of 1800 new combinations

of constraints containing the same 42 boundary condi-
tions;

4. The level 2 test data consist of 1000 new combinations
of constraints containing five out-of-distribution bound-
ary conditions.

In all test data, the combination of constraints is unseen.
While level 1 dataset contains boundary conditions that are
also in the training data, we introduce more difficult condi-
tions in level 2 to rigorously compare the TopoDiff model’s
generalization ability with existing methods. In addition to
the main dataset, two other datasets consisting of 12,000 and
30,000 non-optimal structures are used to train regressor and
classifier guidance models.

4.2 Evaluation Metrics
Using relevant evaluation metrics is vital for every scientific
study. It is particularly critical for mechanical design genera-
tion because most metrics used in DGMs do not correspond
to the physical objective one wants a design to achieve. In
this work, contrary to most generative models applied to TO
in previous works, we do not use pixel-wise error as a final
evaluation metric because it does not guarantee low compli-
ance, which is the objective we are trying to achieve.

Hence, we define and use four evaluation metrics that re-
flect the compliance minimization objective, as well as the
constraints that the generated structures have to respect:

1. Compliance error (CE) relative to the ground truth, de-
fined as: CE = (C(ŷ)− C(y))/C(y) where C(y) and
C(ŷ) are, respectively, the compliance of the SIMP-
generated topology and the topology generated by our
diffusion model. It should be noted that a negative com-
pliance error means that our model returns a topology
with lower compliance than the ground truth;

2. Volume fraction error (VFE) relative to the input volume
fraction, defined as: V FE = |V F (ŷ)−V F (y)|/V F (y)
where V F (y) and V F (ŷ) are, respectively, the pre-
scribed volume fraction and the volume fraction of the
topology generated by our diffusion model;

3. Load violation (LV), defined as a boolean that is 1 if there
is no material at a place where a load is applied and 0 if
there is always material where loads are applied;

4. Presence of floating material (FM), defined as a boolean
that is 1 if the topology contains floating material and 0
otherwise.

A model which generates samples with high scores on
these metrics is expected to yield high-performance man-
ufacturable designs.

4.3 Choice of hyperparameters
One of the most crucial hyperparameters is the gradient
scales in our guidance strategies. These parameters quan-
tify the relative importance of compliance minimization and
floating material avoidance. As explained in Sec. 4.1, a val-
idation dataset of 200 structures was used to perform hy-
perparameter tuning. We used a grid search method to de-
cide the hyperparameters using compliance error and float-
ing material presence as evaluation metrics. Topology gen-
eration and FEA were used to evaluate the results.

5 Results and Discussions
5.1 Evaluation of the full diffusion model
To evaluate the performance, we use the two test sets de-
scribed in Sec. 4.1, corresponding to two difficulty levels.
We run every test nine times and then compute the results’
average. We compare the performance of our model on all
evaluation metrics (Sec. 4.2) to a state-of-art cGAN model,
named TopologyGAN (Nie et al. 2021), which performs the
same task as our model.

Fig. 3 shows examples of a few structures obtained with
the SIMP method (ground truth), with TopologyGAN, and



Level 1 test data Level 2 test data
Model TopologyGAN Unguided TopoDiff Guided TopoDiff TopologyGAN Unguided TopoDiff Guided TopoDiff

Average Compliance Error (%) 48.51 ± 16.38 4.10 ± 0.88 4.39 ± 0.94 143.08 ± 38.50 22.13 ± 8.52 18.40 ± 5.88
Median Compliance Error (%) 2.06 0.80 0.83 6.82 1.88 1.82

Proportion of Compliance Error >30% (%) 10.11 2.33 2.56 24.10 8.20 8.10
Average Volume Fraction Error (%) 11.87 ± 0.52 1.86 ± 0.03 1.85 ± 0.03 14.31 ± 0.75 1.81 ± 0.04 1.80 ± 0.04

Proportion of Load Violation (%) 0.00 0.00 0.00 0.00 0.00 0.00
Proportion of Floating Material (%) 46.78 6.64 5.54 67.90 7.53 6.21

Table 1: Comparison of performance between TopologyGAN and TopoDiff (guided and not guided) on the two level test sets.
Values after ± indicate the 95 % confidence interval around averages. The values in bold are the best ones for each level.

Figure 3: Comparison of generated structures on randomly
selected samples from both test datasets. GT stands for
ground truth, CE is the compliance error relative to the GT,
and FM indicates the presence or not of floating material.

with TopoDiff for randomly selected constraints from level 1
and level 2 test sets. Qualitatively, we notice that Topology-
GAN tries to mimic pixel-wise the topology obtained from
SIMP but neglects both the compliance and the manufac-
turability of the generated structures, which almost all have
some floating material and high compliance error. The ten
structures generated by TopoDiff, on the other hand, may
visually differ more from the SIMP results but have bet-
ter physical properties than TopologyGAN. Only one of the
TopoDiff-generated structures have no floating material, and
all ten outperform the TopologyGAN structures in terms of
compliance error. To confirm these qualitative observations,
Table 1 summarizes the performance of the structures ob-
tained with all test sets. TopoDiff outperforms Topology-
GAN on all the metrics.

On the level 1 test set, TopoDiff notably reduces the av-
erage CE by a factor of eleven and the proportion of FM

by more than a factor of eight. The proportion of non-
manufacturable designs thus drops from 46.8% with cGAN
to 5.5% with TopoDiff. It also significantly reduces the av-
erage VFE from 11.9% to 1.9%.

On the level 2 test set, TopoDiff achieves demon-
strates strong generalizability performance. It performs an
eight-times reduction in the average CE, from 143.1% to
18.4%, and a four-times reduction in the median CE. Non-
manufacturability drops from 67.9% to 6.2%, while the VFE
is reduced by a factor of eight, from 14% to less than 2%.
A paired one-tailed t-test confirms a reduction of the aver-
age CE and of the average VFE with a p-value of 9 · 10−12

and 5 · 10−160 respectively. These results show the efficacy
of diffusion models in learning to generate high-performing
and manufacturable structures for a wide set of testing con-
ditions.

5.2 Efficiency of guidance strategy
Surrogate models Guidance can only work if the regres-
sors and classifiers can perform well on the challenging task
of predicting compliance and floating material for noisy im-
ages. Table 2 shows the compliance regressor and floating
material classifier performance according to the noise level.
These results show that both surrogate models are very reli-
able on low-noise structures, and as expected, their perfor-
mance decreases with an increase in noise.

0-25% noise 25-75% noise 75-100% noise Global

Regressor R2 (%) 82.4 82.4 61.8 77.3
Classifier accuracy (%) 98.8 76.8 54.6 76.8

Table 2: Performance (R2-score and accuracy) of both sur-
rogate models on validation data with respect to noise level.

Ablation study To evaluate the impact of our guidance
strategy on the performance of TopoDiff, we also tested it
without guidance on the two test sets, as shown in Table 1.

With in-distribution boundary conditions (level 1), our
guidance strategy has no significant impact on compliance
error (both on average and median). A two-tailed paired t-
test does not reject the null hypothesis (p = 0.1). We believe
that this happens because the diffusion model has implic-
itly learned to perform well with these boundary conditions
and does not need explicit compliance guidance. In contrast,
our guidance strategy significantly impacts the proportion of
floating material, with decreases from 6.6% to 5.5%.

With out-of-distribution boundary conditions (level 2), the
positive impact of our guidance strategy is evident both on
the average compliance error and on the proportion of float-
ing material. A paired one-tailed t-test confirms a reduction



of the average CE with a p-value of 0.05. The average com-
pliance error is reduced by 17% and the average proportion
of floating material by 18%. As expected, guidance seems to
have no effect on load respect and on volume fraction error.
More interestingly, guidance seems to have no significant
effect on the median of the compliance error, which sug-
gests that compliance regressor guidance primarily reduces
the number of structures with very high compliance errors.

5.3 Limitations and future work

TopoDiff shows good performance and good generaliza-
tion to out-of-distribution boundary conditions. The pro-
posed guidance strategy is beneficial to minimizing com-
pliance and ensuring constraints, such as manufacturability.
However, several challenges still need to be addressed. The
most significant limitation is the computation time, diffu-
sion models being slower than GANs. It takes 0.06 seconds
for TopologyGAN to generate one topology, while TopoDiff
needs 21.59 seconds. Reducing the computation time of dif-
fusion models has recently seen significant successes (Ma
et al. 2022), which will directly improve TO-based diffu-
sion models. Other potential directions for future research
include applying TopoDiff to more complex TO problems,
notably 3D problems, and scaling it to higher resolutions and
more boundary conditions. Reducing dependency on mesh
size and large training datasets is also critical. We provide
a framework for conditioning a diffusion model with con-
straints, training it on optimal data, and guiding it with a
regressor predicting physical performance and some classi-
fiers predicting the respect of constraints. This is a general
method that should allow for solving similar design gener-
ation problems involving performance objectives and con-
straints, such as aerodynamic design (Heyrani, Chen, and
Ahmed 2021) and bicycle synthesis (Regenwetter, Curry,
and Ahmed 2022). Future work also includes expanding the
TopoDiff framework to solve many inverse problems in en-
gineering domains with multi-modal inputs.

6 Conclusion
Diffusion Models have been extremely successful in model-
ing high-dimensional multi-modal distributions with aston-
ishing results in high-fidelity image generation. We propose
TopoDiff — a conditional diffusion model to perform end-
to-end topology optimization. By introducing conditional
diffusion models for topology optimization, we show that
diffusion models can outperform GANs in engineering de-
sign applications too. Our model is augmented with an ex-
plicit guidance strategy to ensure performance maximiza-
tion and avoidance of non-manufacturable designs. TopoD-
iff achieves an eight-times reduction in the average compli-
ance error and produces 11-times fewer non-manufacturable
designs compared with a state-of-art conditional GAN. It
also achieves an eight-times reduction in volume fraction er-
ror and generalizes well to out-of-distribution boundary con-
ditions. More generally, we provide a diffusion model-based
framework to solve many physical optimization problems in
engineering with performance objectives and constraints.
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A1 Additional datasets used for surrogate
models

The main dataset used to train, validate and test the diffu-
sion model was presented in the paper. This section provides
more information about the two other datasets that were used
to train and validate the two surrogate models, namely the
regressor predicting compliance and the classifier predicting
the presence of floating material.

For the regressor predicting compliance, we used a
dataset of 72000 labeled samples, with the label indi-
cating the compliance of the topology under the given
constraints. Every sample is an image containing eight
channels (black and white topology, volume fraction, von
Mises stress, strain energy density, load in x-direction, load
in y-direction, x-displacement boundary condition and y-
displacement boundary condition). In order to give our re-
gressor good generalization abilities, we not only used opti-
mal topologies (generated by SIMP), but also negative sam-
ples, corresponding to non optimal topologies. This dataset
includes:
• 30000 images from the diffusion model main dataset,

corresponding to optimal topologies (25000 for training,
5000 for validation);

• 12000 images corresponding to non-optimal topologies,
generated using the fake-load method, explained below
(10000 for training, 2000 for validation);

• 30000 images corresponding to non-optimal topologies,
generated by the unguided conditional diffusion model
by using the same constraints as in the main dataset
(25000 for training, 5000 for validation).

It should be noted that the final dataset contains less than
72000 samples because it was filtered to remove outlier
structures (with compliance higher than 50 for the first
42000 and with compliance higher than 25 for the diffusion-
generated structures). To generate non-optimal structures,
we notably used the fake-load method, which consists in
adding an extra load to the input constraints given to SIMP
for generating the structure. SIMP thus generates a topology
that is optimal for the extra-loaded constraints but not for the
real ones. This method allows to generate non-optimal data
while still respecting basic requirements like the presence of
material where loads are applied.

For the classifier predicting the presence of floating ma-
terial, we used a dataset of 70000 labeled samples (58000
for training and 12000 for validation), with the label be-
ing a boolean indicating if floating material is present on
the topology or not. Every sample is an image containing
only one channel: the black and white topology. This dataset
includes:
• the first 15000 images from the diffusion model main

dataset, on which floating material was added;
• the first 14000 images from a dataset containing topolo-

gies at diverse volume fractions, on which floating mate-
rial was added;

• the first 6000 images from the non-optimal topologies
dataset generated with the fake-load method, on which
floating material was added;

• the next 15000 images from the diffusion model main
dataset, on which floating material was not added;

• the next 14000 images from a dataset containing topolo-
gies at diverse volume fractions, on which floating mate-
rial was not added;

• the next 6000 images from the non-optimal topologies
dataset generated with the fake-load method, on which
floating material was not added.

It should be noted that while some datasets were used to
train several different models, we have paid careful attention
to avoiding leakage of data from training datasets to valida-
tion datasets. All models were validated on data that they
had not been trained on. The final TopoDiff model (diffu-
sion model + surrogate models) was tested on data that was
never used for training or validating any of its component
models.


