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ABSTRACT
Estimating the form and function of a design in the early

stages can be crucial for a designer for effective ideation. Hu-
mans have an innate ability to guess the size, shape, and type
of a design from a single view. The brain fills in the unknowns
in a fraction of a second. However, humans may struggle with
estimating the performance of designs in the early stages of the
design process without making prototypes or doing back-of-the-
envelope calculations. In contrast, machines need information
about the full 3D model of a design to understand its structure.
Machines can estimate the performance using pre-defined rules,
expensive numerical simulations, or machine learning models.
In this paper, we show how information about the form and func-
tion of a design can be estimated from a single image using ma-
chine learning methods. Specifically, we leverage the image-to-
image translation method to predict multiple projections of an
image-based design. We then train deep neural network models
on the predicted projections to provide estimates of design per-
formance. We demonstrate the effectiveness of our method by
predicting the aerodynamic performance from images of aircraft
models. To estimate ground truth aerodynamic performance,
we run CFD simulations for 4045 3D aircraft models from the
ShapeNet dataset and use their lift-to-drag ratio as the perfor-
mance metric. Our results show that single images do carry in-
formation for both form and function. From a single image, we
are able to produce six additional images of a design in different
orientations, with an average Structural Similarity Index score of
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0.872. We also find image-translation methods provide a promis-
ing direction in estimating the function of design. Using multiple
images of a design (gathered through image-translation) to pre-
dict design performance yields a recall value of 47%, which is
14% higher than a base guess, and 3% higher than using a single
image. Our work identifies the potential and provides a frame-
work for using a single image to predict the form and function of
a design during the early-stage design process.

INTRODUCTION
Designers often begin a concept with a single sketch. From

this sketch they brainstorm, add detail, and then generate a proto-
type. The goal of the prototype is to assess how effective a design
is, often through a set of performance metrics such as weight,
strength, displacement, lift, or drag. The information gathered
from the prototype is critical for revising and improving a de-
sign.

We often rely on simulations to generate these metrics, be-
cause the metrics are determined by the 3D form and characteris-
tics (such as material) of a design. Humans have an innate ability
to guess the size, shape and the type of a design from a single
view, but we may struggle when projecting this view into three
dimensions and estimating the function or performance from said
projections.

Consequently, we utilize the computer aided design (CAD)
or physical prototyping process to fully assess the effectiveness
of a design. However, this process is iterative, and it can be both
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time consuming and expensive, which is exacerbated through
repetition. What if designers could quickly acquire the perfor-
mance metrics of their design, not from a prototype, but from a
single image?

FIGURE 1. Early-stage aircraft designs. A designer may struggle
with estimating which design has the best and worst aerodynamic per-
formance. We propose machine learning models, which enable perfor-
mance estimation from a single image.

Consider the three images shown in Figure 1. A trained de-
signer may be able to infer from these images alone that design
a) will have better aerodynamic performance than design b), but
what about design c)? During the conceptual design phase, the
goal is to ideate creatively and also ensure that designs perform
their desired function optimally. These goals may hinder each
other if feedback on the function requires detailed, time inten-
sive, or expensive simulations. Therefore, we propose a method
that utilizes a series of machine learning models to provide de-
signers feedback about form and functional performance in the
early-stage design process, using a single image of a design.

Prior work has shown success in using generative adversar-
ial networks (GANs) [1] to predict performance metrics like drag
coefficients from 3D models [2]. These predictions are intended
to classify whether a design performs its function, say flying for
a plane. Feedback like this helps designers assess their design’s
effectiveness in early stages and make adjustments accordingly.
The 3D models currently being used for these predictions are in-
herently more information rich than a single image. However,
creating a 3D model is time consuming and requires training.
In this paper, we leverage the accomplishments in the field of
image-to-image translation, which have shown success in trans-
lating a single image into different orientations, thus gaining in-
formation about the form of a design [3, 4].

Our work builds from these successes. Starting with a sin-
gle image of an aircraft, we perform image-to-image translation
and generate images of that aircraft in six different orientations.
In parallel, we use computational fluid dynamics (CFD) simu-
lations to determine the ground truth lift-to-drag ratio for 4045
aircrafts from the ShapeNet dataset [5]. We use these ground
truths to perform supervised learning of a deep neural network
classification model. Our model is trained to predict the relative
lift-to-drag ratio of an aircraft design from both single and mul-
tiple images of the design. We successfully use both the original
input image and a combination of the original input image and

the six generated images to predict the performance of an aircraft
design.

Our research is some of the first work to utilize a single im-
age for predicting the form and function of a design. Our re-
sults indicate that there is promise in this field, and we provide
a framework and dataset to be used for future work. Our goal is
to develop an architecture that enables human designers to ideate
on the form of a design, while machine learning models provide
feedback on the function.

Our contributions are listed below:

1. We demonstrate that image-to-image translation methods
are capable of providing designers with additional informa-
tion about the form of a design. We generate multiple dis-
tinct views of a design from a single image input. We show
that the quality of predicted images can be quantified using
the SSIM image similarity metric.

2. We simulate the performance, as measured by lift-to-drag
ratio, of 4045 3D CAD aircraft models using a high-fidelity
CFD solver. An ancillary benefit of our work is that we
release a dataset with the lift and drag values of 4045 3D
aircraft models calculated using OpenFOAM software for
other researchers to study aircraft design.

3. We show that a single image can provide low-fidelity func-
tion feedback to aid designers in early stage conceptual de-
sign. We estimate the relative lift-to-drag ratio of an aircraft
from a single input image using classification models with
an average recall of 44%.

4. We demonstrate that image-to-image translation guided
form prediction leads to a further 3% improvement in recall
score, a final recall score of 47%, compared to prediction
with a single image.

RELATED WORK
Our work touches upon three major areas of research: per-

formance simulation in the early design stage, image-to-image
translation, and classification modeling for performance estima-
tion of designs. The great strides in these fields have motivated
and provided foundations for our work. In this section we will
discuss related work in each field.

Performance Simulation in the Early Design Stage
More than seventy percent of the life-cycle costs of a prod-

uct are determined by decisions made by designers during the
early design stages [6]. It also becomes increasingly difficult to
achieve performance gains in the later stages of design. There-
fore it is important to estimate and optimize performance and
cost of a design as early and as accurately as possible. In this pa-
per, we focus only on the performance estimation, however, the
method we propose can generalize to other measures like cost
too.
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Fields, like building construction and architecture, have
adopted methods for performance simulation feedback in the
early design stage using computational modeling [7, 8]. These
models have the benefit of providing feedback to designers be-
fore additional time and resources have been invested, or per-
manent design decisions have been made. Because of the ben-
efit that early stage design performance has in the building con-
struction field, building performance simulation (BPS) and build-
ing information modelling (BIM) methods are commonly em-
ployed [9]. However, such methods are less common in many
engineering design problems, as the early design stage often fo-
cuses on expressing ideas using sketches or images.

In other engineering fields, guidelines or empirical design
rules are also used to estimate performance or requirements in
the early stages. For instance, when designing a truss-structure,
one may use a rule-of-thumb to have more elements near the area
where a force is applied, without running any simulations. Sim-
ilarly, as demonstrated in Figure 1, trained designers may know
that a more streamlined fuselage with wider wings will gener-
ate more lift and less resistance in the air. Therefore aircraft a)
likely generates more lift than aircraft b). However, when pre-
sented with a third option, the relative comparison may become
more difficult. Similarly, for decisions on novel design or deci-
sions that are not easily visualized, designers may have to create
a 3D model and simulate it using an expensive CFD simulation
to figure out the relative performance of design options. In such
cases, designers can benefit from simulation based performance
feedback.

There has been recent success in using 3D models to predict
the drag coefficient of aircrafts [2]. Additionally, convolutional
neural networks (CNNs) have been successfully utilized to as-
sess the performance of existing designs using images [10, 11].
Research has also been done to optimize the aesthetic form of
a design through machine learning to enhance consumer inter-
est [12]. However, to the best of our knowledge, no prior re-
search has used single images of a complex 3D design to predict
CFD-based performance metrics of a design in the early design
stage.

Image-to-Image Translation
Image-to-image translation is a transfer learning approach in

which a machine learning model learns from multiple domains
simultaneously and transfers knowledge from one domain to an-
other. The typical goal of image-to-image translation is to find
a mapping of an image from one domain to another. Recent
developments that use deep learning for image-to-image trans-
lation have shown excellent results. For example, for a given
input image of a city in the daytime, one may use an image-
to-image translation method to generate an image of what the
city may look like at night time. Another example of two image
domains is grayscale images and colorized images; an image-to-

image translation method may be used to colorize an image from
one domain, even when the method has never seen an example of
the colored image of the same object in another domain. These
techniques have also been used to change a certain aspect of an
image. This could mean changing the hair color of a person in an
image from brown to blonde [13] or changing the style of an im-
age from photo-realistic to a Van Gogh painting [14]. Pioneering
papers in this field displayed the ability to translate images from
aerial views to street maps, from day images to night, and from
winter scenes to summer ones [4].

Building from these initial successes, researchers have also
tackled the problem of translating across different views or 3D
projections, i.e. translating an image of a side-view of a car
into an image of the front-view of a car [3, 13]. From a ma-
chine learning modeling perspective, Image-to-image translation
can often be represented as an encoder and a decoder model. A
model takes in an image from Domain X as the input, encodes
this image into a latent representation, and then decodes this la-
tent representation as an output image in Domain Y . However,
translating images requires a deeper understanding of the size,
shape and form of an object, which makes it more difficult than
other translation tasks. In order to successfully translate across
different geometries, Gonzales-Garcia [3] proposed a new archi-
tecture which imposes a specific structure to the latent represen-
tation that allows different aspects of an image, like shadows,
viewpoint, and orientation to be disentangled from one another.
The model effectively disentangles the latent representation into
three distinct parts: one part that is shared across domains and
two parts that are exclusive to each domain [3]. In this paper, we
use their model for image-to-image translation.

Another success within image-to-image translation is the
ability to translate between sketches and images. Recent papers
have shown the ability to translate from incomplete edge maps,
automatically augment data, and include user interaction in gen-
erating images from sketches [4, 15, 16]. These sketch to im-
age methods are of particular interest to our research since most
early-stage design concepts are sketches which supplement our
work by providing an image input. Our work focuses on predict-
ing performance metrics from an image.

Computational Fluid Dynamics-based Performance
Evaluation

Performance evaluation of complex structures (such as air-
craft) using CFD simulations can be extremely time-consuming.
When running CFD simulations researchers often wait for sev-
eral hours and even days to obtain their results. Then, if they have
to make a slight change in their input parameters, they must run
their analysis again. This iterative process of defining a problem
and evaluating solutions may take several days and sometimes
several weeks. As an alternative to mesh-based simulations, re-
searchers have developed various approximation-based models
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that predict the results of the time-consuming analysis and re-
duce computation time. These simple analytical models, known
as “meta- or surrogate models,” are based on data available from
limited analysis runs. These “models of the model” seek to ap-
proximate computation-intensive functions within a considerably
shorter time than expensive simulation codes that require signif-
icant computing power. However, the surrogate models also re-
ceive the same input (typically a 3D model) as the CFD model.

It is important to note a distinction between our work and
surrogate models which predict CFD performance metrics from a
CAD model input. Our work deals with the problem of the input
design being represented in a different form (image or sketch)
than a 3D model. One can argue that an image cannot have a
performance metric, as a simulation model cannot be used di-
rectly on it without a prototyping or CAD modeling step in-
volved. While the performance of a design corresponds to its
high-fidelity CAD model, we assume that the same performance
is associated with the conceptual image. As we discuss later, we
also look at the problem of performance prediction from a dif-
ferent lens: instead of training surrogate models, we train clas-
sification models that can estimate the relative performance of
designs. To train such models, we first estimate 3D model per-
formance using a CFD solver, named OpenFOAM.

OpenFOAM is a robust tool for running CFD simulations.
Written in C++, it provides the framework for streamlining
highly customized simulations. We modeled our simulations
based on the work done by [17] in OpenFOAM. Our goal was
to create a new model to learn how to predict the lift and drag
coefficients. Theoretically, if a 3D model is available, one could
use OpenFOAM to predict its performance metrics. We would
greatly benefit from a machine learning model for the follow-
ing reasons: generated 3D models might have some irregularities
like holes which could vastly alter the results of a CFD simula-
tion or prevent the simulation from executing fully; eventually
our tools are meant for designers, and we do not want to place
the overhead of downloading and setting up an additional appli-
cation. Additionally, CFD simulations take a long time to set up
and run, and we would like to provide quick feedback to design-
ers. For these reasons, we utilized OpenFOAM to get ground
truth lift and drag coefficients for the 4045 aircraft models in
ShapeNet and trained a machine learning model to function in
the place of OpenFOAM using this data.

METHODOLOGY
Our architecture starts with a single input image of a de-

sign, from which we generate multiple images of this design at
different orientations, and finally estimate the aerodynamic per-
formance of the design using machine learning. This process is
shown in part a) of Figure 2. Each step is defined as a separate
module. In this section we describe the methodology for Module
1: Image-to-Image Translation and Module 2: Machine Learning

based Performance Estimation, as well as the dataset we utilized
and the one we created.

Dataset
We developed our dataset using ShapeNet [5], which is an

annotated, large-scale dataset of 3D shapes including aircrafts.
ShapeNet provides 3D models and corresponding 2D images of
thousands of aircrafts. We utilized this dataset to train our image-
to-image translation model. Of the 4045 total models ShapeNet
provided, which we also use for CFD simulation, 1282 aircraft
models had the corresponding 2D images we required. Each of
these aircraft models includes 2D images in different orienta-
tions, including various isometric views, side, top, bottom, front,
and back views. We compiled the provided images for the image-
to-image translation experiments shown in Figure 5.

Module 1: Image-to-Image Translation
In this module we use a single 2D image of an aircraft to

generate multiple images in different orientations. Specifically,
we start with an isometric image, and from that generate top, bot-
tom, and side views, along with three different isometric views.
We accomplish this using the image-to-image translation tech-
nique adopted from Gonzalez-Garcia et al. [3].

The models work by separating the latent representations
of the aircrafts into the two parts that are exclusive to each do-
main (the image orientation), and single part that is shared by the
two domains (the color and style of the image). This technique
builds upon Isola et al.’s Pix2Pix framework but disentangles the
style from the orientation of each image to allow for geomet-
ric changes previously not captured in image-to-image transla-
tion [4].

Our input for the image-to-image translation model is an iso-
metric view, as indicated in Figure 5. In Figure 2 part a) we
show a sketch of an aircraft connected to the aircraft image by a
dashed line. This is to indicate the potential of inputting a sketch
and using image-to-image translation to generate the type of in-
put image we actually use. Our model, however, starts with an
isometric 2D image from the ShapeNet dataset.

We trained six separate image-to-image translation models
using Gonzalez-Garcia et al.’s framework [3] to generate six 2D
images of the aircraft in different orientations given the single
input image. For each model, the input image comes from the
same domain, X , however the output image domain, Y , is dif-
ferent for each of the distinct models as it represents the desired
output orientation. We illustrate this in Figure 5.

For each model we performed an 80-20 train-test split on a
complete dataset of paired images from domains X and Y . The
image-to-image translation model learns to translate between the
the two different orientations and generates output images in do-
main Y as seen in Figure 5.
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FIGURE 2. Part a) shows the overall architecture of our model. Our work is comprised of three main parts: 1) the generation of a dataset of lift and
drag performance metrics, 2) an image-to-image translation model that takes in a single image of a design and produces six more images in different
orientations, and 3) a performance classification model trained on the generated dataset from part 1 to predict performance metrics from one or more
design images. Part b) shows the architecture of the image translators of Module 1, which successfully translate across structural changes between
domains X and Y . Part c) shows the architecture of the cross-domain autoencoders used in Module 1, which help ensure that the generated output still
represents the information from the input image, just in a different domain.

Part b) and c) of Figure 2 show the architecture of the image-
to-image translation model including both b) the image transla-
tors and c) the cross-domain autoencoders. Interested readers can
explore this specific architecture further in [3]. The overall loss
function to be minimized during model training is defined as:

L= wGAN
(
LX

GAN +LY
GAN

)
+wEx

(
LGX

d
GAN +LFy

d
GAN

)
+wLl

(
LS +LX

auto +LY
auto +LX

recon +LY
recon

) (1)

Module 2: Performance Estimation from a Single Im-
age

In this module, we predict relative lift-to-drag ratio classi-
fications of an aircraft design using a model trained on multi-
ple views of an aircraft. We hypothesized that a machine model
would be able to look at aircraft images and predict whether they

have high or low lift and drag coefficients metrics, similarly to
experts familiar with aircraft design.

We pose this as a classification problem and use ResNet-
50 [18] to generate vector embeddings of our aircraft images.
These embeddings serve as the input to our model. The ground
truth is the lift-to-drag ratios calculated using OpenFOAM, run
through a classification split. Similar to [17], we use the in-
compressible simpleFoam solver, with Reynolds-averaged simu-
lation turbulence modeling. We run the simulation for 200 iter-
ations and record the coefficients on the last iteration. We simu-
lated with air velocity of 150 m/s, angle of attack of 0 degrees,
kinematic viscosity of air of ν = 1.5e− 5 m2/s. The values of
the lift and drag coefficients are normalized to values between 0
and 1 for before being split into categories.

Our ResNet-50 based model is a deep neural network with
softmax as the final activation layer, which creates a classifica-
tion model. For classification, we bin our performance values
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FIGURE 3. Two models with the same core architecture are shown:
one for single view prediction and one for multi-view prediction. The
embeddings from running aircraft images through ResNet-50 minus the
last softmax layer serve as the input for the single view model. For the
multi-view model, the ResNet-50 embeddings are concatenated before
being passed into the dense layers.

into three groups. We classify each model by its relative lift-to-
drag ratio: normalized ratios below 0.40 were classified as poor,
those between 0.40 and 0.46 as medium, and those at or above
0.46 as high. These cut-offs correspond to roughly a three way
split of the ratios in our data.

Our model architectures, depicted in Fig. 3 makes use of
the pretrained ResNet-50 model. We run our normalized images
through ResNet-50 and remove the last softmax layer to obtain
embeddings of each image. For the single view model, we use a
single embedding and passed it through three dense layers. For
the multi-view model we concatenated the embeddings of the six
total views and then ran the resulting vector through the same set
of dense layers. We train the single view model with an isometric

view provided in the ShapeNet dataset. This serves as the initial
image. For the multi-view model, we use predicted images from
module 1 for the remaining six views. We use mean squared
error loss, the Adam optimizer, and a learning rate of 1e−3. Our
hypothesis was that the ResNet-50 embeddings would contain
rich data about edges, their relationships, and other spatial data
which would be useful for learning to predict classifications of
lift to drag ratios.

Given that an image has limited information about the 3D
structure of an object, we do not expect the models to provide ac-
curate performance predictions. However, we are looking more
for relative accuracy as opposed to numerical precision. The
reason for this is two fold. First, for our overarching goal we
mean to provide relative feedback on designs. It is important that
our methodology is able to correctly predict the performance of
a design relative to other designs. While very accurate lift to
drag ratio prediction would provide this, we have to consider our
pipeline starting from a single image that will contain propagated
error. This ties to the second point of the feasibility of calculating
very accurate ground truth coefficients. In ShapeNet, there are
many different kinds of aircrafts. They fly at different speeds or
different altitudes and have different sizes. However, it is a chal-
lenging task to automate taking all these into account while per-
forming OpenFOAM simulations. For these reasons, we kept the
simulation settings the same across all ShapeNet models and fo-
cused on relative results. One such visualization of OpenFOAM
simulation is shown in Fig. 4 with the pressure distribution across
the surface of an aircraft. The normal and tangent components of
the pressure to the surface of the plane are integrated to produce
the lift and drag coefficients, respectively.

FIGURE 4. A visualization of the airflow across an aircraft during our
OpenFOAM simulation. The magnitude of the velocity, U, is pictured.
The pressure distribution across the aircraft model can also be seen. This
is a higher resolution simulation than the simulation results used in this
study. This is presented for better visualization, as apart from the gran-
ularity of meshing and scaling, the methodology is the same.
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Evaluation metrics
In this section, we describe the metrics used to evaluate dif-

ferent models proposed in our methods.

Measuring image-to-image translation performance: As a
quantitative measurement of how well our generated images
matched their ground truth counterparts, we utilized the Struc-
tural Similarity Index (SSIM) [19]. A traditional objective met-
ric of image comparison is the mean squared error (MSE). How-
ever, we chose to use SSIM rather than MSE because MSE eval-
uates the difference between pixel intensities in images, which
does not necessarily capture structural information of an image.
Our goal in Module 1’s image-to-image translation is to trans-
late across domains of different orientations, thus achieving the
correct structural information of the target domain is our main
objective. Wang et al. [19] developed SSIM as an objective im-
age quality metric that is based on the similarity of structural
information between two images. Therefore, we evaluate the
effectiveness of Module 1 by finding the SSIM score between
our generated images and the ground truth images. SSIM scores
range from 0-1, with 1 indicating perfect structural similarity be-
tween two images.

Measuring classification performance: In Module 2 we both
generate a dataset of performance metrics (lift, drag, and lift-to-
drag ratio) for the 4045 aircraft models in ShapeNet, and build a
supervised deep neural network classification model that predicts
the relative lift-to-drag ratio of an aircraft.

We alter the traditional evaluation metrics of binary classi-
fication, precision and recall, for our multi-class problem. Pre-
cision and recall are both defined based on the number of true
positive (TP), false positive (FP), and false negative (FN) pre-
diction. For binary classification between classes -1 and 1, TP
means predicting 1 and the actual class being 1. FP means pre-
dicting 1 but the actual class is -1. FN means predicting -1 when
the actual class is 1.

Precision indicates how many positive predictions are true.
It is defined as:

Precision =
T P

T P+FP
(2)

Recall, also known as the true positive rate (TPR), measures
how many of the positive cases our model is able to correctly
predict. Recall is defined as:

Recall =
T P

T P+FN
(3)

To use these metrics for multi-class classification, we simply
take a one versus all approach. For each class we find the pre-

cision and recall by assuming that class is positive and all other
classes are negative. We also calculate the average recall for all
classes.

RESULTS
In this section we detail the results of both modules using

qualitative examples and quantitative metrics described in the
Evaluation Metrics section above. Due to the sequential nature
of our model, the results of Module 2 rely on the results of Mod-
ule 1; thus, both accuracy and errors propagate throughout the
modules.

Image-to-Image Translation Yields Additional Form In-
formation

Results for the image-to-image translation from one orien-
tation to another are shown in Figure 5. This figure shows the
qualitative results of Module 1. The input image shown in part a)
of Figure 5 is an isometric view of an aircraft. From this input im-
age, six different image-to-image translation models were trained
to translate the input into six different orientation domains, each
shown in the outputs column.

Part b) of Figure 5 demonstrates examples of generated out-
put images, their ground truth counterparts, and the SSIM score
that pair received. The SSIM score, as described in the Eval-
uation Metrics section above, is a quantitative measure of the
structural similarity of two images. We show three examples of
different pairs and their SSIM score. The examples shown have
decreasing SSIM scores from the top row to the bottom. The
first row shows a generated image and ground truth pair with the
highest SSIM score of 0.979, the second row has an SSIM score
or 0.872, and the third row has the lowest SSIM score of 0.803.

The SSIM scores of the first two rows are quite high, indicat-
ing high structural similarity between the generated images and
their ground truth, which can be visually verified too. The low
score of the third row demonstrates a common theme in Module
1. The plane model used in the third row is less like the classic
aircraft shape. In general, the image-to-image translation per-
formed the best on aircraft models that looked like the models
in the first two rows. For models that differed greatly from this
design, the image-to-image translation was often unable to pro-
duce realistic results. For example, the image in the Generated
column of row three has a part of the plane disconnected from
the rest.

SSIM Scores Vary Based on Orientation
The effectiveness of Module 1 is further reiterated in Fig-

ure 6. Figure 6 shows a violin plot of the SSIM scores for the
252 generated images in each of the six translated orientations.
The overall average SSIM score for all 1512 generated images is
0.872. To gain a visual understanding of what this score might
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FIGURE 5. Results of the image-to-image translation. Part a) shows the results of image-to-image translation on dataset one, the 2D images
provided from ShapeNet. The input is an isometric image of an aircraft, and the outputs are generated images of that same aircraft model in six different
orientations: three isometric orientations, front, side, and top orientation. Under each image is the SSIM score, where a score of 1 indicates perfect
structural similarity between a generated image and its ground truth counterpart. Part b) exhibits three examples of image-to-image translation from
one isometric view to another. The input image is shown in the left column, the middle column shows the image generated through image-to-image
translation as well as its ground truth counterpart, and the right most column shows the SSIM score of the generated and ground truth pair.

mean, one can check the middle row of Figure 5 part b), which
has an SSIM score of 0.872.

Figure 6 exhibits the SSIM distribution as well as the av-
erage SSIM score for each of the predicted orientations. The re-
sults indicate that the effectiveness of image-to-image translation
from one orientation (Domain X ) to another (Domain Y ) varies
based on Domain Y . For example, when predicting images in
the front orientation, image-to-image translation performs con-
sistently well, with an average SSIM score of 0.943. In contrast,
our image-to-image translation produces the worst results when
predicting into the top orientation. These predicted set of images
can provide insights on the form of a design to a user. For each
design, we now have six additional images in various orienta-
tions. In the next section, we show how these images can also
help in predicting the function.

Generation of a Performance Metric Dataset
We used OpenFOAM CFD simulations to generate the lift

and drag coefficients of all 4045 aircraft models in the ShapeNet
dataset, and built a new dataset of the performance metrics for
each model. Figure 7 presents the histograms for lift, drag co-
efficients from the OpenFOAM simulations. We also show the
distribution of lift-to-drag ratio. The mean and standard devia-
tion for the lift coefficients are 0.259 and 0.879. For the drag
coefficients, they are 0.563 and 0.458.

Figure 8 illustrates examples of performance metric results

generated through OpenFOAM CFD simulations. Each row
shows three aircrafts that increase in the specified performance
metric from left to right. These examples give qualitative indica-
tions of the results generated by OpenFOAM. For example, the
top row looks at the lift coefficient of an aircraft, and we observe
that the “low” aircraft has a less streamlined fuselage and wings
than the “high” aircraft.

Machine Learning Models Yield to Function Feedback
In this section, we show our results for predicting perfor-

mance evaluation starting with a single image. We used our gen-
erated dataset of lift-to-drag ratios as the ground truth to com-
pare against our predicted lift-to-drag ratio found through a neu-
ral network.

Due to the continuous nature of the lift-to-drag ratios, we
first experimented with regression models. When training our
models for regression, we noticed that the models predicted the
mean value of lift-to-drag ratio with very slight variation. This is
a common issue in regression training since predicting the mean
value corresponds to a local minimum in the loss manifold. As
a result, our R2 values were poor for both single view and multi
view models - both around−0.09 for the end to end models. Due
to the poor regression results and the fact that precise numbers
are not our goal, but rather low-fidelity feedback for early stage
design decisions, we opted for a classification model for our lift
to drag ratios.
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FIGURE 6. A violin plot of the SSIM scores for all six generated
orientation. The input image is an isometric view, as indicated in the
input column of Figure 5. For each of the predicted orientations, 252 test
images were generated and their SSIM scores were found in comparison
to their ground truth counterparts.The median for each orientation is
shown with a white dot, the interquartile range is shown as a black bar,
and each orientation’s mean is shown above its name on the x-axis. The
average of all SSIM scores for all orientations is 0.872, with a standard
deviation of 0.085.

Our prediction is multi-class; with the classes being low,
medium, or high lift-to-drag ratio. We illustrate our model accu-
racy with a confusion matrix, as shown in Table 1. The predicted
class is along the y-axis, the actual class is along the x-axis. A
perfect confusion matrix only has numbers along the diagonal,
meaning every aircraft that is predicted to be in the low class, is
actually in the low class – the same applies for the medium and
high classes. We show both the results of predicting the lift-to-
drag ratio using a) a single image and b) multiple images of a
design.

In both of these cases the initial input into our model is a
single image of a design. In case a) the image is directly input
into our performance classifier model, as seen in Figure 2. In
case b), however, the single input image is first input into our
image-to-image translation model, which produces six additional
images of the aircraft in six new orientations. In combination
with the original input image, we input these seven images into
the performance classifier to predict the lift-to-drag ratio class of
the aircraft.

Our hypothesis and motivation for case b) is that providing
additional information about the form of an aircraft, including
front, side, and top views, will improve a model’s ability to pre-
dict the aircraft’s function in the form of lift-to-drag ratio. We
show our results in Table 1.

The average precision with a single image is 44%, while
the average precision with multiple images in 48%, producing
an increase of 4% from the single image. Similarly, the average
recall with a single image is 44%, while the average precision
with multiple images in 47%, producing an increase of 3% from
the single image.

Overall, the model with multiple views had a recall of 47%
while the model with a single view had one of 44%. A random
guess would give a recall of 33%. This shows that image-to-
image translation is able to improve classification performance.
as measured by recall, by 14%.

We note that with testing on translated views generated from
the training portion of module 1 (and not on predicted translated
images from the test set), the recall was 49%, 5% higher than pre-
dicting with a single image and 2% higher than when testing on
the test images from module 1, which is what we are reporting.
This 2% drop in performance can be attributed to error propaga-
tion that occurs through the image-to-image translation.

DISCUSSION
In Module 1 we demonstrate the ability to generate six de-

sign views in different orientations from a single image. We eval-
uated the effectiveness of our image-to-image translation model
using an SSIM score. As demonstrated in Figure 6, the average
SSIM score for all orientations is 0.872, which can be qualita-
tively understood by looking at Figure 5 part b) in which the
middle row shows the generated image and ground truth com-
parison that produce an SSIM score of 0.872.

We were successful in translating a single isometric view
into various views that contain dissimilar information: such as
the top and front views. The ability to generate these dissimilar
views is particularly important in performance prediction.

Drag generally increases with an increased cross-sectional
area, which is best defined by the front view. Lift, on the other
hand, may be most affected by information portrayed in the top
view. Our success in generating these views indicates that the in-
clusion of an image-to-image translation model should increase
the accuracy of performance metric predictions.

In image-to-image translation, we notice that certain orien-
tations are most effectively predicted. For example, Figure 6
shows that the front view has the highest average SSIM score
as well as the most condensed SSIM scores across all tested air-
crafts. In contrast, the top view has the lowest average SSIM
score. Because drag is most impacted by the front view, and lift
most impacted by the top view, these translation results may cre-
ate a disparity in predicting lift vs. drag coefficients. However,
in Module 2 we predict the lift-to-drag ratio, which incorporates
both coefficients. Future work may explore analyses of predict-
ing these coefficients separately.

In Module 2 we demonstrate performance estimation start-
ing with a single image. In particular, we compare the results of
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FIGURE 7. The histograms of lift coefficients, drag coefficients, and lift-to-drag ratio from the OpenFOAM simulations run on all 4045 ShapeNet
aircraft models.
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Single-Image Input Multi-Image Input

Low Medium High Low Medium High

Low 48 43 37 39 25 18

Medium 29 53 38 24 33 33

High 37 34 72 6 19 36

Actual Class Actual Class

Single-Image Input Multi-Image Input

Precision % Recall % Precision % Recall %

Low 38 42 48 57

Medium 44 41 37 43

High 50 49 59 41

Average 44 44 48 47

TABLE 1. Confusion matrix for multi-class classification. Average recall with a single image is 44%, which is significantly better than a random
baseline value of 33%. We observe that multiple images further improve the classification performance with average recall increasing to 47%. Inter-
estingly, the multi-view model performed better against extreme misclassifications. The percentage of samples misclassified from low to high and vice
versa decreases when using multi-view models.

estimating the performance with a single image alone vs. with
multiple images generated from the single image through Mod-
ule 1. The confusion matrix in Table 1 shows our results. The
average TPR for a single-image input is 44%, while the average
TPR for a multi-image input is 47%. The average precision also
increased from 44% to 48% with single vs. multi-image inputs.
These results indicate slight classification improvements when
using multiple images.

Our classes are not independent of one another, meaning that
aircrafts in the low class have design metrics closer to that of the
medium class than the high class. Because of this, not all mis-
classifications are equal. An extreme misclassification is classi-
fying a low as a high or vice versa, we aim to minimize these mis-
classifications over all others. The multi-view model performed
better against extreme misclassifications, only falsely predicting
2.6% of low class aircrafts as high class and 7.7% of high class
aircrafts as low class. These false predictions are higher, both at
9.5%, with the single view model.

We want to highlight that our research demonstrates prelim-
inary work in the area of predicting the form and function of a
design from a single image. Our performance evaluation pro-
vides a low-fidelity prediction of the lift-to-drag ratio of an air-
craft. This prediction is not our main contribution; rather, we
have identified a problem and created a framework to solve it.
We have shown the potential of using a single image to predict
design performance, and provided preliminary results that sug-
gest there is promise in this area. Further, we have provided a
dataset for researchers to use for future work in this field.

LIMITATIONS AND FUTURE WORK
This work demonstrated that data-driven methods show

promise in predicting design form and function. Information
on performance can be critical for a designer to make informed
changes to a design and observe how the performance may
change. Similarly, richer information on the form can help them
visualize different aspects of the design, without spending sig-
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FIGURE 8. An illustration of the performance metric results we gath-
ered through OpenFOAM CFD simulations. For each aircraft model in
the ShapeNet dataset we found the lift, drag, and lift to drag ratio. Here
we demonstrate example planes for different values of these metrics.

nificant time in building an accurate 3D CAD model or running
complex numerical simulations. However, it is important to un-
derstand that predicting form and function from a single image
should be limited to providing rough estimates and cannot re-
place high-fidelity modeling and simulations. The performance
of the methods is dependent on both how rich the training data
is and how dependent the performance is on the external form of
the design, which can be observed in an image. Below, we note
the assumptions and limitations of our proposed methodology.

We tried an end-to-end model for predicting lift to drag ra-
tios, with both a single view and multiple views. These models
were composed of convolutional layers, which we hypothesized
would provide information on the spatial relationships between
parts of the aircrafts, and dense layers. With this structure, we
were unable to learn to predict lift to drag ratios from the air-
craft views - it largely predicted values very close to the mean
of the ratios. Our thoughts on the reasons for this are guided by
the comparison of the performance of the Resnet-based model.
Our dataset size for training was only around 1,000 models since
those were the ones that came with standardized screenshots in
ShapeNet. This is quite a small number to learn a complex phys-
ical phenomenon like lift to drag ratio. Coupled with the small
dataset, variety within the dataset likely also played a role. Many
aircrafts have many similar structures, making it difficult for the
model to learn generalizable methods of predicting the lift to
drag ratio. Due to the complexity of the problem and the small
amount of data available from which to generalize, we believe

reasonably training the millions of parameters was unattainable.
Since Resnet was trained using a variety of different images in
addition to a deep framework, the embeddings generated carried
more of the pertinent information needed to calculate the ratios.
Lastly, we will discuss some of the attempts we made to com-
bat the difficulty presented in learning for our end-to-end model.
We used data augmentation to randomly scale and shift aircraft
views while keeping the correct ratio truth value. We thought the
slight perturbations would push for more generalizable learning.
This allowed us to increase our dataset size, but the learning did
not significantly improve. We also tried different normalization
techniques for both the images and the coefficients and/or ratios
themselves. We believe that since humans can generally predict
lift and drag coefficients from looking at images of aircrafts (for
example, the top view is helpful for predicting drag and the front
for lift), that with the right model architecture and data normal-
ization, a neural network should be able to as well. We plan to
look further into advanced techniques and dataset augmentation,
to reach the limits of predicting performance from a single im-
age.

Dependence on the number of views: In our experiments, we
train our machine learning model to generate six views for each
input image. As shown in Figure 6, image-to-image models vary
in performance for different views. For instance, the top view
was the most difficult to generate, while the front view genera-
tion quality was more easily generated. As these views are used
as an input to the classification model, both the type of views
(top, front, side) and their generation quality is expected to di-
rectly impact the prediction performance. In future work, we aim
to conduct a systematic view to uncover design performance’s
dependence on different views.

Dependence on the design space: Our image-to-image trans-
lation model learns from a large collection of designs to generate
different views of an image. While the overall performance of
the model is good (as measured by average SSIM scores), on dig-
ging deeper into the results, we found that the performance of the
image-to-image translation model drops significantly for novel
designs where the look of the aircraft differs from most other air-
craft. This is demonstrated in the bottom right image translation
output in Fig. 5, which shows a lower SSIM score for a unique
aircraft design. While the limitation of a machine learning model
not performing well for sparse regions of data is widely known,
this issue also limits the applicability of our model for novel in-
put images - where knowing performance estimates can be even
more important for a designer. Hence, the generalizability of our
approach is limited by the design space covered by the training
data. Our approach will generalize better for applications with
large datasets and multiple classes of designs.
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Future work: While recent advances in machine learning
methods have shown the promise of performance prediction with
a 3D CAD model as input, predicting complex CFD-based per-
formance metrics from a single image appears improbable. How-
ever, our work shows that by leveraging transfer learning, ma-
chine learning models can provide good estimates of perfor-
mance. Future work will focus on refining these models, train-
ing regression models, and testing the limits of their accuracy
and generalizability. We will also expand our analysis to di-
rectly predict performance from human-made design sketches,
instead of projection images. While a sketch may have even less
information than an image, it is also closer to what a designer
would normally draw in the conceptual design stage. To test our
model, we will first create a dataset of sketches along with CAD
models and then leverage both sketch understanding and image-
translation models for performance prediction. Finally, an im-
portant area of research is to conduct experiments with humans
and AI working together to test the final efficacy of providing
enhanced form and function information on creative outcomes.
We envision an AI-assistant, which can also recommend design
changes to a human-generated conceptual design, such that the
final high-fidelity model has high performance.

CONCLUSION
Our goal is to help designers generate new ideas by giving

them feedback on function and form of initial designs. We have
shown that employing state of the art image-to-image translation
techniques during early-stage design can provide richer informa-
tion about the form of a design. This is demonstrated through
Module 1, in which we generate six images of a design in six
different orientations from a single isometric image.

In order to provide a designer with feedback regarding the
function of a design, we have 1) developed a dataset of aero-
dynamic performance metrics for 4045 aircrafts and 2) built a
deep neural network model that provides low fidelity perfor-
mance metrics of a design from a single or multiple images.

This is a preliminary work in which we believe our greatest
contributions are identifying and providing methods for ongoing
research. We have identified a problem- using a single image to
predict the form and function of a design- and created a frame-
work to solve it. Our results have shown the promise of using
a single image to acquire inexpensive low-fidelity performance
predictions in the early stage of a design. We intend for this
method to provide feedback to designers without having to cre-
ate complex 3D CAD models or run time-consuming CFD sim-
ulations for every small change during conceptual design stage.

We hope that our work will both give rise to and support fu-
ture research in this field. We believe that using machine learning
for these performance predictions can enable better human-AI
collaboration. This collaboration can capitalize fully on humans’
ability to extrapolate, understand, and create new forms when

provided little information, and a machine’s ability to rapidly
evaluate function when provided more information. Utilizing
these complementary abilities can enable humans to ideate ef-
fectively on the form, while AI gives feedback on the function.
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