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Abstract
Deep generative models have proven useful for
automatic design synthesis and design space ex-
ploration. However, they face three challenges
when applied to engineering design: 1) generated
designs lack diversity, 2) it is difficult to explicitly
improve all the performance measures of gener-
ated designs, and 3) existing models generally
do not generate high-performance novel designs,
outside the domain of the training data. To ad-
dress these challenges, we propose MO-PaDGAN,
which contains a new Determinantal Point Pro-
cesses based loss function for probabilistic mod-
eling of diversity and performances. Through a
real-world airfoil design example, we demonstrate
that MO-PaDGAN expands the existing bound-
ary of the design space towards high-performance
regions and generates new designs with high di-
versity and performances exceeding training data.

1. Introduction
A designer wants good design solutions which are creative
and meets multiple performance requirements. By man-
ually and iteratively exploring design ideas using experi-
ence and design heuristics, the designers take the risks of
1) wasting time on unfavorable or even invalid design can-
didates and 2) not exploring as deeply as they might want
to. While recent advances in machine learning assisted
automatic design synthesis and design space exploration
are promising, the current methods are still far from this
ideal picture. To model a design space, researchers have
used deep generative models like variational autoencoders
(VAEs) (Kingma & Welling, 2013) and generative adver-
sarial networks (GANs) (Goodfellow et al., 2014), as they
can learn the distribution of existing designs. The hope
is that by learning an underlying latent space, which can
represent most designs, one can automatically synthesize
many new designs from the low-dimensional latent vectors,
which makes design exploration more efficient due to the
reduced dimensionality (Chen et al., 2017; Chen & Fuge,
2019; Chen et al., 2019). However, unlike image gener-
ation tasks where these generative models are commonly

applied, engineering design problems typically have multi-
ple performance (or quality) measures. Each performance
measure quantifies how well a design achieves its intended
goals and is defined based on the specific problem. For
example, beam design problems often have the compliance
value (Bendsoe & Sigmund, 2004) or both the compliance
and natural-frequency (Ahmed et al., 2016) as the perfor-
mance measures. For aerodynamic wing design, researchers
have defined performance using measures like the lift-to-
drag ratio (Chen et al., 2019) or the inverse of the drag
coefficient (Shu et al., 2020).

Current state-of-the-art generative models have no mech-
anism of explicitly promoting design generation with im-
proved performance or diversity. In this work, we focus
on addressing the problem of simultaneously maximizing
diversity and (possibly multivariate) performance of gener-
ated designs. Specifically, we develop a new loss function,
based on Determinantal Point Processes (DPPs) (Kulesza
& Taskar, 2012), for generative models to encourage both
high-performance and diverse design generation. Using this
loss function, we develop a new variant of GAN, named
MO-PaDGAN (Multi-Objective Performance Augmented
Diverse Generative Adversarial Network). We show that
it can generate new samples with a better coverage of the
design space and improvement in all performance measures
compared to a baseline GAN. More importantly, we found
that MO-PaDGAN can expand the existing boundary of the
design space towards high-performance regions outside the
training data, which indicates its ability of generating novel
high-performance designs.

One closely related work is the GDPP method (Elfeki et al.,
2019), where the authors devised an objective term that
matches the diversity of generated data with training data.
The diversity is modeled by the DPP kernel. MO-PaDGAN
differs from this method in two aspects. First, MO-PaDGAN
aims to maximize the diversity of generated samples rather
than matching it with training data. Thus, MO-PaDGAN
can generate diverse samples even when the original train-
ing data is biased in favor of a few modes, while GDPP
will mimic the bias in generated samples. Second, GDPP
does not consider the performance of generated samples,
whereas we incorporate (possibly multivariate) performance
measurements into the DPP kernel and encourage gener-
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Figure 1. Architecture of MO-PaDGAN. The operator � does the performance aggregation.

ation of high-performance samples. This is important in
engineering design settings as we want the generated de-
signs to not only look realistic, but also be useful. The
contributions and novelty of this work are as follows:

1. We propose a novel design generation method that
simultaneously encourage generation of diverse and
high-performance designs.

2. We propose a way to incorporate multivariate perfor-
mance measurements into the DPP kernel-based loss
function of GAN, so that the generated samples have
higher average and peak performance than training
data in all dimensions.

3. We find that MO-PaDGAN can expand the design
space boundary towards high-performance regions that
it had not seen from existing data.

2. Background
Below we provide background on GANs and DPP kernels.

2.1. Generative Adversarial Nets

Generative Adversarial Networks (Goodfellow et al., 2014)
model a game between a generative model (generator) and
a discriminative model (discriminator). The generator G
maps an arbitrary noise distribution to the data distribu-
tion (i.e., the distribution of designs in our scenario), thus
can generate new data; while the discriminator D tries to
perform classification, i.e., to distinguish between real and
generated data. Both G and D are usually built with deep
neural networks. As D improves its classification ability, G
also improves its ability to generate data that fools D. Thus,
a GAN has the following objective function:

min
G

max
D

V (D,G) = Ex∼Pdata
[logD(x)]+

Ez∼Pz [log(1−D(G(z)))],
(1)

where x is sampled from the data distribution Pdata, z is
sampled from the noise distribution Pz, and G(z) is the

generator distribution. A trained generator thus can map
from a predefined noise distribution to the distribution of
designs. The noise input z is considered as the latent repre-
sentation of the data, which can be used for design synthesis
and exploration.

2.2. Decomposition of a DPP kernel

DPP kernels can be decomposed into quality and diversity
parts (Kulesza & Taskar, 2012). The (i, j)th entry of a
positive semi-definite DPP kernel L can be expressed as:

Lij = qi φ(i)
T φ(j) qj . (2)

We can think of qi ∈ R+ as a scalar value measuring the
quality of an item i, and φ(i)T φ(j) as a signed measure
of similarity between items i and j. The decomposition
enforces L to be positive semidefinite. Suppose we select
a subset S of samples, then this decomposition allows us
to write the probability of this subset S as the square of the
volume spanned by qiφi for i ∈ S using the equation below:

PL(S) ∝
∏
i∈S

(qi
2) det(KS), (3)

where KS is the similarity matrix of S. As item i’s quality
qi increases, so do the probabilities of sets containing item i.
As two items i and j become more similar, φiTφj increases
and the probabilities of sets containing both i and j decrease.
The key intuition of MO-PaDGAN is that if we can integrate
the probability of set selection from Eq. (3) to the loss
function of any generative model, then while training it will
be encouraged to generate high probability subsets, which
will be both diverse and high-performance.

3. Methodology
MO-PaDGAN adds a performance augmented DPP loss to
a standard GAN architecture which measures the diversity
and performance of a batch of generated designs during
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training. The overall model architecture of MO-PaDGAN
is shown in Fig. 1. We describe the DPP kernel part next.

3.1. Creating a DPP kernel

We create the kernel L for a sample of points generated by
MO-PaDGAN from known inter-sample similarity values
and performance vector.

The similarity terms φ(i)Tφ(j) can be derived using any
similarity kernel, which we represent using k(xi,xj) =
φ(i)Tφ(j) and ‖φ(i)‖ = ‖φ(j)‖ = 1. Here xi is a vector
representation of a design. Note that in a DPP model, the
quality of an item is a scalar value representing design per-
formance, like compliance, displacement, drag-coefficient,
etc. The performance can be estimated using an external
model (like a physics-based simulator). For multivariate
performance, we use a performance aggregator, which
outputs a scalar quality value (qi) by taking a weighted
sum of multiple dimensions of performance (p) defined
as q(x) =

∑K
j=1 wjpj(x). For each design, the weights

w1, ..., wK are positive numbers sampled uniformly at ran-
dom and sum to 1. Maximizing the weighted sum of ob-
jectives gradually pushes the non-dominated Pareto set of
generated samples in the performance space to have higher
values. While more complex performance aggregators like
the Chebyshev distance from an ideal performance vector
can also be used in our method, we used the commonly
used weighted sum to have fewer assumptions about the
performance space.

3.2. Performance Augmented DPP Loss

Our performance augmented DPP loss models diversity and
performance simultaneously and gives a lower loss to sets
of designs which are both high-performance and diverse.
Specifically, we construct a kernel matrixLB for a generated
batch B based on Eq. (2). For each entry of LB , we have

LB(i, j) = k(xi,xj) (q(xi)q(xj))
γ0 , (4)

where xi,xj ∈ B, q(x) is the quality function at x, and
k(xi,xj) is the similarity kernel between xi and xj . For
a given kernel, DPP decomposition does not allow us to
change the trade-off between quality and diversity. To allow
this, we adjust the dynamic range of the quality scores by
using an exponent (γ0) as a parameter to change the distribu-
tion of quality. A larger γ0 increases the relative importance
of quality as compared to diversity, which provides the flex-
ibility to a user of MO-PaDGAN in deciding emphasis on
quality vs diversity.

The performance augmented DPP loss is expressed as

LPaD(G) = −
1

|B|
log det(LB) = −

1

|B|

|B|∑
i=1

log λi, (5)

where λi is the i-th eigenvalue of LB . We add this loss
to the vanilla GAN’s objective in Eq. (1) and form a new
objective:

min
G

max
D

V (D,G) + γ1LPaD(G), (6)

where γ1 controls the weight of LPaD(G). For the backpro-
pogation step, to update the weight θiG in the generator in
terms of LPaD(G), we descend its gradient based on the
chain rule:

∂LPaD(G)

∂θiG
=

|B|∑
j=1

(
∂LPaD(G)

∂q(xj)

dq(xj)

dxj
+
∂LPaD(G)

∂xj

)
∂xj
∂θiG

,

(7)
where xj = G(zj). Equation (7) indicates a need for
dq(x)/dx, which is the gradient of the quality function.
In practice, this gradient is accessible when the quality is
evaluated through a performance estimator that is differen-
tiable, like adjoint-based solver methods. If the gradient of
a performance estimator is not available, one can either use
numerical differentiation or approximate the quality func-
tion using a differentiable surrogate model (e.g., a neural
network-based surrogate model, as used in our experiments).

4. Experimental Results
In this section, we demonstrate the merit of modeling per-
formance and diversity simultaneously by applying MO-
PaDGAN on a real-world airfoil shape generation problem
and comparing it against a vanilla GAN.

An airfoil is the cross-sectional shape of a wing or a pro-
peller/rotor/turbine blade. In this example, we use the UIUC
airfoil database1 as our data source. It provides the geome-
tries of nearly 1,600 real-world airfoil designs. Each design
is represented by discrete 2D coordinates along their upper
and lower surfaces. We preprocessed and augmented the
dataset based on Chen et al. (2019) to generate a dataset
of 38,802 airfoils. We use two performance measures for
designing the airfoils — the lift coefficient (CL) and the lift-
to-drag ratio (CL/CD). These two are common objectives
in aerodynamic design optimization problems and have been
used in different multi-objective optimization studies (Park
& Lee, 2010). We use XFOIL (Drela, 1989) for computa-
tional fluid dynamics (CFD) simulations and compute CL
and CD values2. We scaled the performance scores between
0 and 1. To provide the gradient of the quality function for
Eq. (7), we trained a neural network-based surrogate model
on all 38,802 airfoils to approximate both CL and CD.

To demonstrate the effectiveness of MO-PaDGAN, we com-
pare it with a vanilla GAN. We use a RBF kernel with

1http://m-selig.ae.illinois.edu/ads/
coord_database.html

2We set CL = CL/CD = 0 for unsuccessful simulations.

http://m-selig.ae.illinois.edu/ads/coord_database.html
http://m-selig.ae.illinois.edu/ads/coord_database.html
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Figure 2. Diversity and performance statistics of randomly sam-
pled airfoils.

a bandwidth of 1 when constructing LB in Eq. (4), i.e.,
k(xi,xj) = exp(−0.5‖xi − xj‖2). We set γ0 = 5 and
γ1 = 0.2 for MO-PaDGAN. We used a residual neural net-
work (ResNet) (He et al., 2016) as the surrogate model and
a BézierGAN (Chen et al., 2019; Chen & Fuge, 2018) to
generate airfoils. For simplicity, we refer to the BézierGAN
as a vanilla GAN and the BézierGAN with loss LPaD as a
MO-PaDGAN in the rest of the paper.

We measure the diversity of generated designs using the log
determinant of the similarity matrix:

Diversity = log det(LSi
), (8)

where Si ⊆ Y is a random subset of Y (the set of gen-
erated samples or training data), and LSi

is the similarity
matrix of Si with entries LSi

(j, k) = k(xj ,xk) for each
xj ,xk ∈ Si. We evaluate the diversity for 1000 times. Each
time we randomly sample 100 designs from Y (which con-
tains 1000 airfoils). We show the statistics of computed
diversity in Fig. 2, together with two performance measures
(CL and CL/CD) of Y . It shows that MO-PaDGAN can
generate samples with higher diversity and performances
than training data and samples from the vanilla GAN.

To compare the distribution of real and generated airfoils
in the design space, we map randomly sampled airfoils
into a two-dimensional space through t-SNE, as shown in
Figure 3. The results indicate that comparing with a vanilla
GAN, MO-PaDGAN generates airfoils that are further away
from training data, driven by the DPP loss.

Figure 3. Randomly sampled airfoils embedded into a 2D space
via t-SNE. MO-PaDGAN expands the boundary of training data.

Figure 4. Performance space visualization for airfoils shown in
Fig. 3 shows MO-PaDGAN improves both performance objectives.
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Figure 5. Top five performances and shapes among airfoils shown
in Fig. 4. We see MO-PaDGAN samples have significantly higher
performance than GAN.

Figure 4 visualizes the joint distribution of CL and CL/CD
for randomly sampled airfoils. It shows that MO-PaDGAN
generates airfoils with performances exceed randomly sam-
pled airfoils from training data and the vanilla GAN (i.e., the
non-dominated Pareto set of generated samples is pushed
further in the performance space to have higher values).
Figures 3 and 4 indicate that MO-PaDGAN can expand
the existing boundary of the design space towards high-
performance regions outside the training data. This directed
expansion is allowed since we provide the quality gradients
(i.e., dq(x)/dx) information to MO-PaDGAN. Figure 5
further demonstrates that the top airfoils generated by MO-
PaDGAN have much higher performances than those from
data and the vanilla GAN (i.e., the performances of the top
five airfoils generated by MO-PaDGAN dominates those
from training data and the vanilla GAN).

5. Conclusion
We proposed MO-PaDGAN with a new loss function based
on Determinantal Point Processes. This model is useful
when we want to explore different high-performance design
alternatives or discover novel solutions. For example, when
performing design optimization, one may accelerate the
search for global optimal solutions by sampling start points
from the proposed model. It can also be a tool in the early
conceptual design stage to aid the creative process. The
proposed framework also generalizes to other generative
models like VAEs and can be used for various synthesis
problems like 3D shape generation and molecule discovery.
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