

# Motivation

### **Topology Optimization (TO)**

Objective: find the optimal physical structure  $\bullet$ under a set of constraints



- Key problem in many engineering domains  $\bullet$ (aerospace, mechanical engineering...)
- Included in most design software (Autodesk, Solidworks...)



### **Problem & Questions**

- **GANs: promising approach** to improve traditional TO methods (speed and local optima convergence)
- GANs face several issues:
  - Difficult to train
  - Limited generalization
  - Neglect physical objectives
- Hypothesis: Performance and manufacturability explicit guidance is needed
- Question: Can diffusion models outperform GANs for TO?



Example of unmanufacturable design generated by a GAN

# Diffusion Models Beat GANs on Topology Optimization François Mazé<sup>1</sup>, Faez Ahmed<sup>1</sup> <sup>1</sup>Massachusetts Institute of Technology

Topology Optimization Dataset

- 33000 optimal Main dataset: diverse topologies for combinations of input conditions
- Every data point contains:
  - Optimal topology
  - Physical fields
  - Raw constraints



l, v

 $\mathcal{X}_t$ 



# TopoDiff: A conditional guided diffusion model

### **Conditional Diffusion Model**

- Main architecture: **conditional diffusion model** with constraints passed as extra channels of the noisy input
- Denoising process:  $p_{\theta}(x_{t-1}|x_t, l, v, f) \sim \mathcal{N}(\mu_{\theta}, \Sigma_{\theta})$

### **Explicit Guidance Strategy**

### • Two surrogates:

- **Regressor** for compliance prediction







### Results

- Two-level test dataset
- Level 1: in-distribution boundary conditions
- Level 2: out-of-distribution boundary conditions

# **TopoDiff outperforms state-of-art cGAN**

|                      | Level 1 test data |                      | <i>Level 2</i> tes |   |
|----------------------|-------------------|----------------------|--------------------|---|
| Model                | TopologyGAN       | Guided<br>TopoDiff   | TopologyGAN        |   |
| Average CE (%)       | 48.51 +/- 16.38   | <b>4.39</b> +/- 0.94 | 143.08 +/- 38.50   | 1 |
| Median CE (%)        | 2.06              | 0.83                 | 6.82               |   |
| Prop. of CE>30% (%)  | 10.11             | 2.56                 | 24.10              |   |
| Average VFE (%)      | 11.87 +/- 0.52    | <b>1.85</b> +/- 0.03 | 14.31 +/- 0.75     | - |
| Proportion of LV (%) | 0.00              | 0.00                 | 0.00               |   |
| Proportion of FM (%) | 46.78             | 5.54                 | 67.90              |   |

### • On out-of-distribution boundary conditions:



## Future Directions

- Reduce sampling time for diffusion models
- Remove dependency on mesh size
- Extend to 3D topology optimization

# Conclusion

- Diffusion models can also outperform GANs in engineering design applications
- General diffusion-model-based framework to solve other physical optimization problems.

Paper, code, datasets...







