DeCoDE Lab is based in the Mechanical Engineering department at MIT. Our vision is to create a world where humans and AI design together to solve our biggest challenges. We study machine learning and optimization methods to better design complex mechanical systems and assist teams of human designers in creating better products.
Our work lies at the intersections of Mechanical Engineering, Artificial Intelligence, and Human-Computer Interaction. A few questions we are interested in: How can algorithms synthesize high-performing designs that meet real-world requirements? How can algorithms help discover or create creative designs that have never been seen before? How can we enable distributed teams of people to create better products? How can we design, develop, and deploy advanced engineering material systems for complex non-linear inverse problems? How can we quickly and reliably evaluate thousands of ideas to accelerate innovation? While these questions address different areas, our underlying approach is to mathematically characterize these questions as generalizable machine learning and optimization problems, make testable predictions for new problems, and tie together or understand individual empirical results that researchers have generated.
Our techniques apply to a wide range of problems in Engineering. We aim to transform the way humans design products and measure our success by the impact of our work on society. We believe in reproducible and open-source science and do our part by making most of our research code and papers available online.
Prospective Ph.D. students - If you are interested in joining the DeCoDE lab, you can apply to the Computational Science and Engineering Program or to the Mechanical Engineering department at MIT.
If you are interested in joining the DeCoDE lab, drop me an email with the following text in your subject line "Join DeCoDE:" followed by the position you are interested in (for example, a postdoc, intern, visiting student, etc.).